Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = clay 3D printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5269 KB  
Article
An Earthworm-Inspired Subsurface Robot for Low-Disturbance Mitigation of Grassland Soil Compaction
by Yimeng Cai and Sha Liu
Appl. Sci. 2026, 16(1), 115; https://doi.org/10.3390/app16010115 - 22 Dec 2025
Viewed by 49
Abstract
Soil compaction in grassland and agricultural soils reduces water infiltration, root growth and ecosystem services. Conventional deep tillage and coring can alleviate compaction but are energy intensive and strongly disturb the turf. This study proposes an earthworm-inspired subsurface robot as a low-disturbance loosening [...] Read more.
Soil compaction in grassland and agricultural soils reduces water infiltration, root growth and ecosystem services. Conventional deep tillage and coring can alleviate compaction but are energy intensive and strongly disturb the turf. This study proposes an earthworm-inspired subsurface robot as a low-disturbance loosening tool for compacted grassland soils. Design principles are abstracted from earthworm body segmentation, anchoring–propulsion peristaltic locomotion and corrugated body surface, and mapped onto a robotic body with anterior and posterior telescopic units, a flexible mid-body segment, a corrugated outer shell and a brace-wire steering mechanism. Kinematic simulations evaluate the peristaltic actuation mechanism and predict a forward displacement of approximately 15 mm/cycle. Using the finite element method and a Modified Cam–Clay soil model, different linkage layouts and outer-shell geometries are compared in terms of radial soil displacement and drag force in cohesive loam. The optimised corrugated outer shell combining circumferential and longitudinal waves lowers drag by up to 20.1% compared with a smooth cylinder. A 3D-printed prototype demonstrates peristaltic locomotion and steering in bench-top tests. The results indicate the potential of earthworm-inspired subsurface robots to provide low-disturbance loosening in conservation agriculture and grassland management, and highlight the need for field experiments to validate performance in real soils. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

21 pages, 6457 KB  
Article
Optimization of Kaolin Clay Composition for Enhanced Mechanical Properties in 3D-Printed Structures
by Muhammad Irfan Nuryanta, Muhammad Afif Nurhary, Hendrix Noviyanto Firmansyah, Dicke Joshua, Makbul Hajad, Rahmat Doni Widodo, Teguh Dwi Widodo, Muhammad Kusni, Ardi Wiranata, Arif Kusumawanto and Muhammad Akhsin Muflikhun
Constr. Mater. 2025, 5(4), 83; https://doi.org/10.3390/constrmater5040083 - 24 Nov 2025
Viewed by 404
Abstract
Clay 3D printing is an emerging field within additive manufacturing that presents significant opportunities for both structural and artistic applications. Driven by the increasing interest in this technology, there is a growing demand for optimized printing protocols tailored to clay, a readily available [...] Read more.
Clay 3D printing is an emerging field within additive manufacturing that presents significant opportunities for both structural and artistic applications. Driven by the increasing interest in this technology, there is a growing demand for optimized printing protocols tailored to clay, a readily available and versatile material. This study investigates the optimal processing parameters for kaolin clay composites and assesses the influence of clay-to-water ratios on the physical and mechanical properties of printed specimens. Experimental results demonstrate that higher clay content enhances the dimensional stability and structural integrity of printed components. The optimal formulation was determined to be 60% clay and 40% water, which produced the highest mechanical performance: the flexural strength of sintered specimens reached 1.3125 MPa and the compressive strength attained a maximum of 6.14 MPa. Shrinkage analysis indicated that specimens with greater water content experienced increased volumetric shrinkage, with reductions of up to 10% in linear dimensions and 14% in mass during drying and sintering. These findings highlight the critical relationship between material composition and final part performance in clay 3D printing and provide guidance for optimizing material formulations to enhance the mechanical robustness of printed clay composite structures for diverse applications. Full article
Show Figures

Figure 1

32 pages, 1046 KB  
Review
Solidification Materials and Technology for Solid Self-Emulsifying Drug Delivery Systems
by Kyungho Baek and Sung Giu Jin
Pharmaceuticals 2025, 18(10), 1550; https://doi.org/10.3390/ph18101550 - 15 Oct 2025
Cited by 1 | Viewed by 1499
Abstract
The low aqueous solubility of many new drug candidates, a key challenge in oral drug development, has been effectively addressed by liquid self-emulsifying drug delivery systems (SEDDS). However, the inherent instability and manufacturing limitations of liquid formulations have prompted significant research into solid [...] Read more.
The low aqueous solubility of many new drug candidates, a key challenge in oral drug development, has been effectively addressed by liquid self-emulsifying drug delivery systems (SEDDS). However, the inherent instability and manufacturing limitations of liquid formulations have prompted significant research into solid SEDDS. This review provides a comprehensive analysis of the recent advancements in solid SEDDS, focusing on the pivotal roles of solid carriers and solidification techniques. We examine a wide range of carrier materials, including mesoporous silica, polymers, mesoporous carbon, porous carbonate salts, and clay-based materials, highlighting how their physicochemical properties can be leveraged to control drug loading, release kinetics, and in vivo performance. We also detail the various solidification methods, such as spray drying, hot melt extrusion, adsorption, and 3D printing, and their impact on the final product’s quality and scalability. Furthermore, this review explores applications of solid SEDDS, including controlled release, mucoadhesive technology, and targeted drug delivery, as well as the key commercial challenges and future perspectives. By synthesizing these diverse aspects, this paper serves as a valuable resource for designing high-performance solid SEDDS with enhanced stability, bioavailability, and functional versatility. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

12 pages, 615 KB  
Proceeding Paper
Systematic Literature Review: 3D Printing Technology for Sustainable Construction Innovation
by Sofa Lailatul Marifah, Utamy Sukmayu Saputri and Dio Damas Permadi
Eng. Proc. 2025, 107(1), 93; https://doi.org/10.3390/engproc2025107093 - 15 Sep 2025
Viewed by 1693
Abstract
Using systematic literature observations, this study explains how 3D printing technology is being applied to innovative sustainable construction (Systematic Literature Review). Additive manufacturing, also referred to as 3D printing technology, has greatly increased productivity and adoption in the building sector. The utilization of [...] Read more.
Using systematic literature observations, this study explains how 3D printing technology is being applied to innovative sustainable construction (Systematic Literature Review). Additive manufacturing, also referred to as 3D printing technology, has greatly increased productivity and adoption in the building sector. The utilization of eco-friendly materials, enhancing sustainable building practices, and the environmental impact of 3D printing technology in comparison to conventional techniques are the three primary areas of attention for this study. By reducing material waste through additive manufacturing methods, 3D printing technology may employ alternative resources like fly ash, geopolymers, and limestone calcined clay (LC3) cement, which lowers carbon emissions considerably, according to observation data. This technology also speeds up the construction process, saves costs, and enables complex architectural designs that are difficult to achieve with conventional methods. There are still a number of issues, though, such as the high upfront expenditures of supplies and equipment and the long-term robustness of the molded structures that are produced. Nevertheless, 3D printing has enormous potential to transform building methods into more effective and ecologically friendly ones as a result of technological advancements and growing knowledge of desirability. This research provides valuable insights for stakeholders in supporting wider application of this technology to achieve sustainable development goals. Full article
Show Figures

Figure 1

36 pages, 3622 KB  
Systematic Review
A Systematic Review of Robotic Additive Manufacturing Applications in Architecture, Engineering, and Construction
by Alexander Lopes de Aquino Brasil and Andressa Carmo Pena Martinez
Buildings 2025, 15(18), 3336; https://doi.org/10.3390/buildings15183336 - 15 Sep 2025
Viewed by 3709
Abstract
Additive manufacturing (AM) is gaining prominence in architecture, engineering, and construction (AEC). Within this context, robotic additive manufacturing (RAM) has emerged as a promising solution, offering enhanced flexibility and motion control for fabricating complex geometries and performing on-site production. However, it also introduces [...] Read more.
Additive manufacturing (AM) is gaining prominence in architecture, engineering, and construction (AEC). Within this context, robotic additive manufacturing (RAM) has emerged as a promising solution, offering enhanced flexibility and motion control for fabricating complex geometries and performing on-site production. However, it also introduces new, complex manufacturing processes that impact the design, making the control of manufacturing variables important for achieving accurate and feasible architectural results. In this sense, this study presents a systematic review of the state of the art in RAM for AEC, with a focus on extrusion-based 3D printing using flexible robotic arms and materials such as thermoplastics and paste-based mixtures (cementitious and earth-based compositions). This review includes 142 peer-reviewed journal and conference papers published between 2014 and 2025. It maps key research subfields, geographic trends, and RAM technology evolution, complemented by a bibliometric analysis of co-authorship and keyword networks. This review identifies four key areas of research: process, design, materials, and equipment. Most studies come from North America, Europe, and Asia, with clay emerging as a material receiving growing attention in construction within the RAM field. However, challenges like scalability, programming complexity, and AI integration still limit broader implementation. Full article
(This article belongs to the Special Issue Emerging Trends in Architecture, Urbanization, and Design)
Show Figures

Figure 1

26 pages, 4943 KB  
Article
Ultrasonic Pulse Velocity for Real-Time Filament Quality Monitoring in 3D Concrete Printing Construction
by Luis de la Flor Juncal, Allan Scott, Don Clucas and Giuseppe Loporcaro
Buildings 2025, 15(14), 2566; https://doi.org/10.3390/buildings15142566 - 21 Jul 2025
Cited by 1 | Viewed by 1060
Abstract
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance [...] Read more.
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance of quality control in 3DCP is broadly acknowledged, research lacks systematic methods. This research investigates the feasibility of using ultrasonic pulse velocity (UPV) as a practical, in situ, real-time monitoring tool for 3DCP. Two different groups of binders were investigated: limestone calcined clay (LC3) and zeolite-based mixes in binary and ternary blends. Filaments of 200 mm were extruded every 5 min, and UPV, pocket hand vane, flow table, and viscometer tests were performed to measure pulse velocity, shear strength, relative deformation, yield stress, and plastic viscosity, respectively, in the fresh state. Once the filaments presented printing defects (e.g., filament tearing, filament width reduction), the tests were concluded, and the open time was recorded. Isothermal calorimetry tests were conducted to obtain the initial heat release and reactivity of the supplementary cementitious materials (SCMs). Results showed a strong correlation (R2 = 0.93) between UPV and initial heat release, indicating that early hydration (ettringite formation) influenced UPV and determined printability across different mixes. No correlation was observed between the other tests and hydration kinetics. UPV demonstrated potential as a real-time monitoring tool, provided the mix-specific pulse velocity is established beforehand. Further research is needed to evaluate UPV performance during active printing when there is an active flow through the printer. Full article
Show Figures

Figure 1

21 pages, 3174 KB  
Article
Prospective LCA for 3D-Printed Foamed Geopolymer Composites Using Construction Waste as Additives
by Karina Balina, Rihards Gailitis, Maris Sinka, Pauls Pavils Argalis, Liga Radina and Andina Sprince
Sustainability 2025, 17(14), 6459; https://doi.org/10.3390/su17146459 - 15 Jul 2025
Viewed by 1093
Abstract
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and [...] Read more.
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and a foaming agent, with recycled clay brick waste (CBW) and autoclaved aerated concrete waste (AACW) added as alternative raw materials. The material formulations were evaluated for their compressive strength and thermal conductivity to define two functional units that reflect structural and thermal performance. A prospective life cycle assessment (LCA) was conducted under laboratory-scale conditions using the ReCiPe 2016 method. Results show that adding CBW and AACW reduces environmental impacts across several categories, including global warming potential and ecotoxicity, without compromising material performance. Compared to conventional wall systems, the 3D-FOAM materials offer a viable low-impact alternative when assessed on a functional basis. These findings highlight the potential of integrating recycled materials into additive manufacturing to support circular economy goals in the construction sector. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Graphical abstract

19 pages, 2955 KB  
Article
Innovative Wastewater Treatment Using 3D-Printed Clay Bricks Enhanced with Oyster Shell Powder: A Life Cycle Assessment
by Wathsala Benthota Pathiranage, Hunain Alkhateb and Matteo D’Alessio
Sustainability 2025, 17(12), 5428; https://doi.org/10.3390/su17125428 - 12 Jun 2025
Viewed by 1289
Abstract
With growing global concerns over sustainable wastewater treatment, there is a pressing need for low-cost, eco-friendly filtration solutions. This study conducted a life cycle assessment (LCA) to evaluate the potential of improving slow sand filtration efficiency by integrating alternative materials like clay and [...] Read more.
With growing global concerns over sustainable wastewater treatment, there is a pressing need for low-cost, eco-friendly filtration solutions. This study conducted a life cycle assessment (LCA) to evaluate the potential of improving slow sand filtration efficiency by integrating alternative materials like clay and oyster shell powder (OSP), while minimizing the environmental footprint. Additionally, the adaptability of three-dimensional (3D) printing was explored to incorporate these materials into innovative filter designs, assessing scalability for broader wastewater applications. Ten filter configurations, including a slow sand filter (SSF) enhanced with OSP (90:10) and 3D-printed clay–OSP bricks (ratios of 90:10, 85:15, 80:20), were assessed across three sourcing distances: local (in situ), regional (161 km), and distant (1609 km). The results showed that SSFs with OSP consistently delivered lower environmental impacts, reducing freshwater ecotoxicity, eutrophication, and human toxicity by up to 4% compared to conventional SSFs, particularly when transport was minimized. Among brick-based systems, single-brick columns offered the best balance of performance and impact, while three-brick columns had the highest environmental burden, largely due to the increased electricity use. Economic analysis reinforced the environmental findings: SSFs with OSP were the most cost-effective option, followed closely by SSFs, while brick-based systems were slightly more expensive, with costs rising sharply when sourcing distances exceeded 161 km. Overall, integrating OSP into SSFs offers an optimal balance of sustainability and affordability, while single-brick columns (90:10) present a promising alternative. Future research should further optimize material blends and design configurations to align with long-term environmental and economic goals. Full article
Show Figures

Graphical abstract

30 pages, 10815 KB  
Review
A Review of the Performance, Sustainable Applications, and Research Challenges of Limestone-Calcined Clay-Cement (LC3) Systems
by Jingjing Shao, Shun Guo and Haibo Wang
Coatings 2025, 15(5), 611; https://doi.org/10.3390/coatings15050611 - 21 May 2025
Cited by 6 | Viewed by 10100
Abstract
This paper presents a systematic review of the progress of the research on limestone-calcined clay cement (LC3), focusing on its low-carbon characteristics, sustainable applications, and performance. LC3 can be used to address the high carbon emission problem in the cement industry, as its [...] Read more.
This paper presents a systematic review of the progress of the research on limestone-calcined clay cement (LC3), focusing on its low-carbon characteristics, sustainable applications, and performance. LC3 can be used to address the high carbon emission problem in the cement industry, as its use significantly reduces carbon dioxide emissions (by 30%–40%) due to clinker being partially replaced with calcined clay and limestone in its fabrication. Studies have shown that the hydration reaction of LC3 generates calcium-aluminum-silicate hydrate (C-A-S-H), carbon-aluminate, and calcium alumina, which optimize its microstructure and endow it with comparable mechanical properties (28 day compressive strength close to or exceeding that of OPC) and better durability (outstanding resistance to sulfate erosion and carbonation) compared to ordinary Portland cement (OPC). LC3 has been used in 3D printing, ocean engineering, geotechnical reinforcement, and other applications, all of which have verified its engineering feasibility. Despite the significant environmental and economic advantages of LC3, its high-temperature performance, freeze–thaw resistance, and long-term durability still need to be further investigated. This paper provides theoretical support and practical references for the development and promotion of low-carbon cement materials. Full article
Show Figures

Figure 1

13 pages, 1264 KB  
Article
Design and Fabrication of Bio-Enhancing Surfaces for Coral Settlement
by Despina Linaraki
Architecture 2025, 5(1), 20; https://doi.org/10.3390/architecture5010020 - 20 Mar 2025
Viewed by 2947
Abstract
Coral reefs are vital ecosystems facing rapid degradation. This research explores architectural design solutions for bio-enhancing modular prototypes to support coral attachment and growth. Inspired by coral polyps, nine biomimetic designs were created using Maya and Rhinoceros 3D to optimise surfaces for coral [...] Read more.
Coral reefs are vital ecosystems facing rapid degradation. This research explores architectural design solutions for bio-enhancing modular prototypes to support coral attachment and growth. Inspired by coral polyps, nine biomimetic designs were created using Maya and Rhinoceros 3D to optimise surfaces for coral settlement. A total of 75 prototypes (15 × 15 cm) were fabricated, incorporating four materials—PETG, concrete, oyster concrete, and clay—and seven colour variations—sand, translucent green, translucent brown, red, pink, grey, and reddish. The findings indicate that 3D printing with PETG was the most efficient fabrication method but required structural support and long-term underwater testing, while oyster concrete demonstrated potential for self-sustaining structures. This study highlights the role of architectural design in marine restoration, promoting biodiversity and resource-efficient solutions. By integrating corals into the design, these structures can self-grow and adapt, reducing material consumption and long-term maintenance. Full article
(This article belongs to the Special Issue Architectural Responses to Climate Change)
Show Figures

Figure 1

16 pages, 2644 KB  
Article
Co-Ce Clay-Based Materials: Their Feasibility as Catalysts for Soot and CO Oxidation Reactions
by Natalia L. Courtalón, Viviana G. Milt, María L. Dieuzeide, Eduardo E. Miró, Ezequiel D. Banús and Juan P. Bortolozzi
Catalysts 2024, 14(12), 882; https://doi.org/10.3390/catal14120882 - 3 Dec 2024
Cited by 1 | Viewed by 1261
Abstract
A series of Co-Ce clay-based catalysts were prepared via the wet impregnation method and tested for the catalytic combustion of diesel soot and carbon monoxide. The objective of this work was to find a suitable catalyst with an optimized active phase composition in [...] Read more.
A series of Co-Ce clay-based catalysts were prepared via the wet impregnation method and tested for the catalytic combustion of diesel soot and carbon monoxide. The objective of this work was to find a suitable catalyst with an optimized active phase composition in order to structure this system using a 3D-printing technique. The physicochemical characterization indicated that the support was mainly composed of kaolinite and quartz. When supported on commercial clay, the mixture of oxides (Co3O4 spinel and CeO2 fluorite) had higher activity than the individual oxides. The formation of a solid Co-Ce solution was verified along with a synergistic effect between these two selected metal oxides. The optimal molar composition was Co:Ce = 90:10. The corresponding catalyst showed the highest catalytic activity for soot combustion, with 335 °C being the temperature of the maximum combustion rate. Also, it produced the best system for CO oxidation. This formulation showed a balanced proportion of Co3+ and Co2+ on the surface and had the highest content of Ce3+ surface species among the catalysts prepared, which played a key role in the oxidation reactions studied. Full article
Show Figures

Graphical abstract

17 pages, 28882 KB  
Article
Enhancing 3D-Printed Clay Models for Heritage Restoration Through 3D Scanning
by Eduardo Diz-Mellado, Jose Perez-Fenoy, Miguel Mudarra-Mata, Carlos Rivera-Gómez and Carmen Galan-Marin
Appl. Sci. 2024, 14(23), 10898; https://doi.org/10.3390/app142310898 - 25 Nov 2024
Cited by 5 | Viewed by 4224
Abstract
Recent development of methodologies based on digital twins through 3D scanning and 3D printing has increased over the past decade, offering new possibilities in manufacturing, production and scaling of models’ applications. However, there are few examples of the application of model digitization technologies [...] Read more.
Recent development of methodologies based on digital twins through 3D scanning and 3D printing has increased over the past decade, offering new possibilities in manufacturing, production and scaling of models’ applications. However, there are few examples of the application of model digitization technologies for the restoration of ceramic-built heritage by means of 3D modelling. That is why this research focuses on the application of these advanced methodologies to the recovery of architectural ceramic ornamental objects in heritage buildings. Deteriorated ceramic pieces are selected and scanned during field campaigns using 3D scanning technology in early 20th century heritage sites in Seville (Spain). The aim is to create accurate replicas of these damaged objects by 3D printing with clay using non-invasive techniques. The study stands out for its practical approach and its implications for the conservation of built cultural heritage. The results proved effective for replacing lost or damaged elements in a heritage context. Once the investment in the necessary equipment and technologies has been made, the use of clay as a material for 3D printing not only proves feasible but also offers advantages in terms of cost and time savings for repairs compared to traditional restoration techniques. In the present investigation the production time of similar pieces using 3D printing took 6.3–10.9 h while traditional methods take over a week. The application of these technologies represents an advancement in integrating modern methods into cultural heritage conservation, opening new possibilities for the preservation of history and art worldwide. Full article
(This article belongs to the Special Issue Application of Digital Technology in Cultural Heritage)
Show Figures

Figure 1

6 pages, 462 KB  
Proceeding Paper
Optimization of Printing Parameters for Extrusion 3D Printing of Ceramic Clay
by Romina Donyadari, Barbara Ferruzca Ortiz and Mohammad Abu Hasan Khondoker
Eng. Proc. 2024, 76(1), 47; https://doi.org/10.3390/engproc2024076047 - 28 Oct 2024
Cited by 1 | Viewed by 1782
Abstract
With substantial advancements in the additive manufacturing (AM) of polymers and metals in the last few decades, the AM of ceramic material has recently gained research traction. Manufacturing complex ceramic parts is an extremely challenging process that can be revolutionized by AM. While [...] Read more.
With substantial advancements in the additive manufacturing (AM) of polymers and metals in the last few decades, the AM of ceramic material has recently gained research traction. Manufacturing complex ceramic parts is an extremely challenging process that can be revolutionized by AM. While many industrial-grade expensive AM systems are available for printing ceramic parts, the use of inexpensive desktop-type extrusion AM systems for ceramic parts is particularly challenging, which mandates printing parameter optimization. In this paper, the printing parameters of an inexpensive extrusion AM system, such as layer height, line width, extrusion speed, infill, and flow percentage, were optimized, which resulted in ceramic parts with desired qualities in terms of part density. For this, Clay Body 370 was chosen to produce clay with different percentages of water content ranging from 5% to 15%. Printed samples were subjected to sintering in a furnace to sinter at 1100 °C, followed by shrinkage and weight loss measurements. Finally, the printing parameters that resulted in good surface quality and less dimensional shrinkage with higher compression strength were reported. Full article
Show Figures

Figure 1

20 pages, 6974 KB  
Article
Valorisation of Aggregate-Washing Sludges in Innovative Applications in Construction
by Yury Villagran-Zaccardi, Francisca Carreño, Line Granheim, Antonio Espín de Gea, Ulf Smith Minke, Stefania Butera, Elena López-Martínez and Arne Peys
Materials 2024, 17(19), 4892; https://doi.org/10.3390/ma17194892 - 5 Oct 2024
Cited by 1 | Viewed by 1811
Abstract
The valorisation of sludges from aggregate production into construction materials is required for full circularity in mining waste management. This study explores valorisation pathways, relevant regulatory frameworks, and End-of-Waste (EoW) criteria for specific settings in Spain and Norway. The explored valorisation routes involved [...] Read more.
The valorisation of sludges from aggregate production into construction materials is required for full circularity in mining waste management. This study explores valorisation pathways, relevant regulatory frameworks, and End-of-Waste (EoW) criteria for specific settings in Spain and Norway. The explored valorisation routes involved the production of filler, supplementary cementitious materials (SCMs), and lightweight aggregates (LWAs) for the production of cement-based products, and precursors for 3D printed construction material. The sludge from Norway revealed a non-polluted stream and a stream contaminated with organic phases and clays. Sludge-based filler proved suitable in concrete production with contents of up to 40% of total binder, providing adequate consistency and cohesion. However, clays in the sludge increased the demand for water and superplasticizer. Clay contents were still insufficient for the applications as SCMs, as the calcined sludge demonstrated limited reactivity. The application to produce LWAs was promising, but further microstructure optimization is still required. The clay content was also relevant for the sludge from the site in Spain, as it provided 3D printing mixes with good plasticity. The dosage optimization still required the addition of enzymes, limestone, and natural fibres to improve cohesion, workability, and resistance to the cracking of the 3D printing mix. Full article
(This article belongs to the Special Issue Advance in Sustainable Construction Materials, Second Volume)
Show Figures

Figure 1

17 pages, 6147 KB  
Article
Tactile Simultaneous Localization and Mapping Using Low-Cost, Wearable LiDAR
by John LaRocco, Qudsia Tahmina, John Simonis, Taylor Liang and Yiyao Zhang
Hardware 2024, 2(4), 256-272; https://doi.org/10.3390/hardware2040012 - 29 Sep 2024
Viewed by 2350
Abstract
Tactile maps are widely recognized as useful tools for mobility training and the rehabilitation of visually impaired individuals. However, current tactile maps lack real-time versatility and are limited because of high manufacturing and design costs. In this study, we introduce a device (i.e., [...] Read more.
Tactile maps are widely recognized as useful tools for mobility training and the rehabilitation of visually impaired individuals. However, current tactile maps lack real-time versatility and are limited because of high manufacturing and design costs. In this study, we introduce a device (i.e., ClaySight) that enhances the creation of automatic tactile map generation, as well as a model for wearable devices that use low-cost laser imaging, detection, and ranging (LiDAR,) used to improve the immediate spatial knowledge of visually impaired individuals. Our system uses LiDAR sensors to (1) produce affordable, low-latency tactile maps, (2) function as a day-to-day wayfinding aid, and (3) provide interactivity using a wearable device. The system comprises a dynamic mapping and scanning algorithm and an interactive handheld 3D-printed device that houses the hardware. Our algorithm accommodates user specifications to dynamically interact with objects in the surrounding area and create map models that can be represented with haptic feedback or alternative tactile systems. Using economical components and open-source software, the ClaySight system has significant potential to enhance independence and quality of life for the visually impaired. Full article
Show Figures

Figure 1

Back to TopTop