Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = class imbalanced distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 666 KB  
Article
Continual Learning for Intrusion Detection Under Evolving Network Threats
by Chaoqun Guo, Xihan Li, Jubao Cheng, Shunjie Yang and Huiquan Gong
Future Internet 2025, 17(10), 456; https://doi.org/10.3390/fi17100456 - 4 Oct 2025
Viewed by 346
Abstract
In the face of ever-evolving cyber threats, modern intrusion detection systems (IDS) must achieve long-term adaptability without sacrificing performance on previously encountered attacks. Traditional IDS approaches often rely on static training assumptions, making them prone to forgetting old patterns, underperforming in label-scarce conditions, [...] Read more.
In the face of ever-evolving cyber threats, modern intrusion detection systems (IDS) must achieve long-term adaptability without sacrificing performance on previously encountered attacks. Traditional IDS approaches often rely on static training assumptions, making them prone to forgetting old patterns, underperforming in label-scarce conditions, and struggling with imbalanced class distributions as new attacks emerge. To overcome these limitations, we present a continual learning framework tailored for adaptive intrusion detection. Unlike prior methods, our approach is designed to operate under real-world network conditions characterized by high-dimensional, sparse traffic data and task-agnostic learning sequences. The framework combines three core components: a clustering-based memory strategy that selectively retains informative historical samples using DP-Means; multi-level knowledge distillation that aligns current and previous model states at output and intermediate feature levels; and a meta-learning-driven class reweighting mechanism that dynamically adjusts to shifting attack distributions. Empirical evaluations on benchmark intrusion detection datasets demonstrate the framework’s ability to maintain high detection accuracy while effectively mitigating forgetting. Notably, it delivers reliable performance in continually changing environments where the availability of labeled data is limited, making it well-suited for real-world cybersecurity systems. Full article
Show Figures

Figure 1

25 pages, 9804 KB  
Article
GLFNet: Attention Mechanism-Based Global–Local Feature Fusion Network for Micro-Expression Recognition
by Meng Zhang, Long Yao, Wenzhong Yang and Yabo Yin
Entropy 2025, 27(10), 1023; https://doi.org/10.3390/e27101023 - 28 Sep 2025
Viewed by 250
Abstract
Micro-expressions are extremely subtle and short-lived facial muscle movements that often reveal an individual’s genuine emotions. However, micro-expression recognition (MER) remains highly challenging due to its short duration, low motion intensity, and the imbalanced distribution of training samples. To address these issues, this [...] Read more.
Micro-expressions are extremely subtle and short-lived facial muscle movements that often reveal an individual’s genuine emotions. However, micro-expression recognition (MER) remains highly challenging due to its short duration, low motion intensity, and the imbalanced distribution of training samples. To address these issues, this paper proposes a Global–Local Feature Fusion Network (GLFNet) to effectively extract discriminative features for MER. Specifically, GLFNet consists of three core modules: the Global Attention (LA) module, which captures subtle variations across the entire facial region; the Local Block (GB) module, which partitions the feature map into four non-overlapping regions to emphasize salient local movements while suppressing irrelevant information; and the Adaptive Feature Fusion (AFF) module, which employs an attention mechanism to dynamically adjust channel-wise weights for efficient global–local feature integration. In addition, a class-balanced loss function is introduced to replace the conventional cross-entropy loss, mitigating the common issue of class imbalance in micro-expression datasets. Extensive experiments are conducted on three benchmark databases, SMIC, CASME II, and SAMM, under two evaluation protocols. The experimental results demonstrate that under the Composite Database Evaluation protocol, GLFNet consistently outperforms existing state-of-the-art methods in overall performance. Specifically, the unweighted F1-scores on the Combined, SAMM, CASME II, and SMIC datasets are improved by 2.49%, 2.02%, 0.49%, and 4.67%, respectively, compared to the current best methods. These results strongly validate the effectiveness and superiority of the proposed global–local feature fusion strategy in micro-expression recognition tasks. Full article
Show Figures

Figure 1

18 pages, 676 KB  
Article
Node Classification of Imbalanced Data Using Ensemble Graph Neural Networks
by Yuan Liang
Appl. Sci. 2025, 15(19), 10440; https://doi.org/10.3390/app151910440 - 26 Sep 2025
Viewed by 526
Abstract
In real-world scenarios, many datasets suffer from class imbalance. For example, on online review platforms, the proportion of fake and genuine comments is often highly skewed. Although existing graph neural network (GNN) models have achieved notable progress in classification tasks, their performance tends [...] Read more.
In real-world scenarios, many datasets suffer from class imbalance. For example, on online review platforms, the proportion of fake and genuine comments is often highly skewed. Although existing graph neural network (GNN) models have achieved notable progress in classification tasks, their performance tends to rely on relatively balanced data distributions. To tackle this challenge, we propose an ensemble graph neural network framework designed for imbalanced node classification. Specifically, we employ spectral-based graph convolutional neural networks as base classifiers and train multiple models in parallel. We then adopt a bagging ensemble strategy to integrate the predictions of these classifiers and determine the final classification results through majority voting. Furthermore, we extend this approach to fake review detection tasks. Extensive experiments conducted on imbalanced node classification datasets (Cora and BlogCatalog), as well as fake review detection (YelpChi), demonstrate that our method consistently outperforms state-of-the-art baselines, achieving significant gains in accuracy, AUC, and Macro-F1. Notably, on the Cora dataset, our model improves accuracy and Macro-F1 by 3.4% and 2.3%, respectively, while on the BlogCatalog dataset, it achieves improvements of 2.5%, 1.8%, and 0.5% in accuracy, AUC, and Macro-F1, respectively. Full article
Show Figures

Figure 1

26 pages, 7399 KB  
Article
ECL-ConvNeXt: An Ensemble Strategy Combining ConvNeXt and Contrastive Learning for Facial Beauty Prediction
by Junying Gan, Wenchao Xu, Hantian Chen, Zhen Chen, Zhenxin Zhuang and Huicong Li
Electronics 2025, 14(19), 3777; https://doi.org/10.3390/electronics14193777 - 24 Sep 2025
Viewed by 319
Abstract
Facial beauty prediction (FBP) is a cutting-edge topic in deep learning, aiming to endow computers with human-like esthetic judgment capabilities. Current facial beauty datasets are characterized by multi-class classification and imbalanced sample distributions. Most FBP methods focus on improving accuracy (ACC) as their [...] Read more.
Facial beauty prediction (FBP) is a cutting-edge topic in deep learning, aiming to endow computers with human-like esthetic judgment capabilities. Current facial beauty datasets are characterized by multi-class classification and imbalanced sample distributions. Most FBP methods focus on improving accuracy (ACC) as their primary goal, aiming to indirectly optimize other metrics. In contrast to ACC, which is well known to be a poor metric in cases of highly imbalanced datasets, the recall measures the proportion of correctly identified samples for each class, effectively evaluating classification performance across all classes without being affected by sample imbalances, thereby providing a fairer assessment of minority class performance. Therefore, targeting recall improvement facilitates balanced classification across all classes. The Macro Recall (MR), which averages the recall of all the classes, serves as a comprehensive metric for evaluating a model’s performance. Among numerous classic models, ConvNeXt, which integrates the designs of the Swin Transformer and ResNet, performs exceptionally well regarding its MR but still suffers from inter-class confusion in certain categories. To address this issue, this paper introduces contrastive learning (CL) to enhance the class separability by optimizing feature representations and reducing confusion. However, directly applying CL to all the classes may degrade the performance for high-recall categories. To this end, we propose using an ensemble strategy, ECL-ConvNeXt: First, ConvNeXt is used for multi-class prediction on the whole of dataset A to identify the most confused class pairs. Second, samples predicted to belong to these class pairs are extracted from the multi-class results to form dataset B. Third, true samples of these class pairs are extracted from dataset A to form dataset C, and CL is applied to improve their separability, training a dedicated auxiliary binary classifier (ConvNeXtCL-ABC) based on ConvNeXt. Subsequently, ConvNeXtCL-ABC is used to reclassify dataset B. Finally, the predictions of ConvNeXtCL-ABC replace the corresponding class predictions of ConvNeXt, while preserving the high recall performance for the other classes. The experimental results demonstrate that ECL-ConvNeXt significantly improves the classification performance for confused class pairs while maintaining strong performance for high-recall classes. On the LSAFBD dataset, it achieves 72.09% ACC and 75.43% MR; on the MEBeauty dataset, 73.23% ACC and 67.50% MR; on the HotOrNot dataset, 62.62% ACC and 49.29% MR. The approach is also generalizable to other multi-class imbalanced data scenarios. Full article
(This article belongs to the Special Issue Applications of Computer Vision, 3rd Edition)
Show Figures

Figure 1

26 pages, 6191 KB  
Article
HLAE-Net: A Hierarchical Lightweight Attention-Enhanced Strategy for Remote Sensing Scene Image Classification
by Mingyuan Yang, Cuiping Shi, Kangning Tan, Haocheng Wu, Shenghan Wang and Liguo Wang
Remote Sens. 2025, 17(19), 3279; https://doi.org/10.3390/rs17193279 - 24 Sep 2025
Viewed by 421
Abstract
Remote sensing scene image classification has extensive application scenarios in fields such as land use monitoring and environmental assessment. However, traditional methodologies based on convolutional neural networks (CNNs) face considerable challenges caused by uneven image quality, imbalanced sample distribution, intra-class similarities and limited [...] Read more.
Remote sensing scene image classification has extensive application scenarios in fields such as land use monitoring and environmental assessment. However, traditional methodologies based on convolutional neural networks (CNNs) face considerable challenges caused by uneven image quality, imbalanced sample distribution, intra-class similarities and limited computing resources. To address such issues, this study proposes a hierarchical lightweight attention-enhanced network (HLAE-Net), which employs a hierarchical feature collaborative extraction (HFCE) strategy. By considering the differences in resolution and receptive field as well as the varying effectiveness of attention mechanisms across different network layers, the network uses different attention modules to progressively extract features from the images. This approach forms a complementary and enhanced feature chain among different layers, forming an efficient collaboration between various attention modules. In addition, an improved lightweight attention module group is proposed, including a lightweight dual coordinate spatial attention module (DCSAM), which captures spatial and channel information, as well as the lightweight multiscale spatial and channel attention module. These improved modules are incorporated into the featured average sampling (FAS) bottleneck and basic bottlenecks. The experiments were studied on four public standard datasets, and the results show that the proposed model outperforms several mainstream models from recent years in overall accuracy (OA). Particularly in terms of small training ratios, the proposed model shows competitive performance. Maintaining the parameter scale, it possesses both good classification ability and computational efficiency, providing a strong solution for the task of image classification. Full article
Show Figures

Graphical abstract

24 pages, 6747 KB  
Article
YOLOv11-MSE: A Multi-Scale Dilated Attention-Enhanced Lightweight Network for Efficient Real-Time Underwater Target Detection
by Zhenfeng Ye, Xing Peng, Dingkang Li and Feng Shi
J. Mar. Sci. Eng. 2025, 13(10), 1843; https://doi.org/10.3390/jmse13101843 - 23 Sep 2025
Viewed by 561
Abstract
Underwater target detection is a critical technology for marine resource management and ecological protection, but its performance is often limited by complex underwater environments, including optical attenuation, scattering, and dense distributions of small targets. Existing methods have significant limitations in feature extraction efficiency, [...] Read more.
Underwater target detection is a critical technology for marine resource management and ecological protection, but its performance is often limited by complex underwater environments, including optical attenuation, scattering, and dense distributions of small targets. Existing methods have significant limitations in feature extraction efficiency, robustness in class-imbalanced scenarios, and computational complexity. To address these challenges, this study proposes a lightweight adaptive detection model, YOLOv11-MSE, which optimizes underwater detection performance through three core innovations. First, a multi-scale dilated attention (MSDA) mechanism is embedded into the backbone network to dynamically capture multi-scale contextual features while suppressing background noise. Second, a Slim-Neck architecture based on GSConv and VoV-GSCSPC modules is designed to achieve efficient feature fusion via hybrid convolution strategies, significantly reducing model complexity. Finally, an efficient multi-scale attention (EMA) module is introduced in the detection head to reinforce key feature representations and suppress environmental noise through cross-dimensional interactions. Experiments on the underwater detection dataset (UDD) demonstrate that YOLOv11-MSE outperforms the baseline model YOLOv11, achieving a 9.67% improvement in detection precision and a 3.45% increase in mean average precision (mAP50) while reducing computational complexity by 6.57%. Ablation studies further validate the synergistic optimization effects of each module, particularly in class-imbalanced scenarios where detection precision for rare categories (e.g., scallops) is significantly enhanced, with precision and mAP50 improving by 60.62% and 10.16%, respectively. This model provides an efficient solution for edge computing scenarios, such as underwater robots and ecological monitoring, through its lightweight design and high underwater target detection capability. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 2093 KB  
Article
Dual-Stream Time-Series Transformer-Based Encrypted Traffic Data Augmentation Framework
by Daeho Choi, Yeog Kim, Changhoon Lee and Kiwook Sohn
Appl. Sci. 2025, 15(18), 9879; https://doi.org/10.3390/app15189879 - 9 Sep 2025
Viewed by 573
Abstract
We propose a Transformer-based data augmentation framework with a time-series dual-stream architecture to address performance degradation in encrypted network traffic classification caused by class imbalance between attack and benign traffic. The proposed framework independently processes the complete flow’s sequential packet information and statistical [...] Read more.
We propose a Transformer-based data augmentation framework with a time-series dual-stream architecture to address performance degradation in encrypted network traffic classification caused by class imbalance between attack and benign traffic. The proposed framework independently processes the complete flow’s sequential packet information and statistical characteristics by extracting and normalizing a local channel (comprising packet size, inter-arrival time, and direction) and a set of six global flow-level statistical features. These are used to generate a fixed-length multivariate sequence and an auxiliary vector. The sequence and vector are then fed into an encoder-only Transformer that integrates learnable positional embeddings with a FiLM + context token-based injection mechanism, enabling complementary representation of sequential patterns and global statistical distributions. Large-scale experiments demonstrate that the proposed method reduces reconstruction RMSE and additional feature restoration MSE by over 50%, while improving accuracy, F1-Score, and AUC by 5–7%p compared to classification on the original imbalanced datasets. Furthermore, the augmentation process achieves practical levels of processing time and memory overhead. These results show that the proposed approach effectively mitigates class imbalance in encrypted traffic classification and offers a promising pathway to achieving more robust model generalization in real-world deployment scenarios. Full article
(This article belongs to the Special Issue AI-Enabled Next-Generation Computing and Its Applications)
Show Figures

Figure 1

28 pages, 1433 KB  
Article
Class-Adaptive Weighted Broad Learning System with Hybrid Memory Retention for Online Imbalanced Classification
by Jintao Huang, Yu Wang and Mengxin Wang
Electronics 2025, 14(17), 3562; https://doi.org/10.3390/electronics14173562 - 8 Sep 2025
Viewed by 845
Abstract
Data stream classification is a critical challenge in data mining, where models must rapidly adapt to evolving data distributions and concept drift in real time, while extreme learning machines offer fast training and strong generalization, most existing methods struggle to jointly address multi-class [...] Read more.
Data stream classification is a critical challenge in data mining, where models must rapidly adapt to evolving data distributions and concept drift in real time, while extreme learning machines offer fast training and strong generalization, most existing methods struggle to jointly address multi-class imbalance, concept drift, and the high cost of label acquisition in streaming settings. In this paper, we present the Adaptive Broad Learning System for Online Imbalanced Classification (ABLS-OIC), which introduces three core innovations: (1) a Class-Adaptive Weight Matrix (CAWM) that dynamically adjusts sample weights according to class distribution, sample density, and difficulty; (2) a Hybrid Memory Retention Mechanism (HMRM) that selectively retains representative samples based on importance and diversity; and (3) a Multi-Objective Adaptive Optimization Framework (MAOF) that balances classification accuracy, class balance, and computational efficiency. Extensive experiments on ten benchmark datasets with varying imbalance ratios and drift patterns show that ABLS-OIC consistently outperforms state-of-the-art methods, with improvements of 5.9% in G-mean, 6.3% in F1-score, and 3.4% in AUC. Furthermore, a real-world credit fraud detection case study demonstrates the practical effectiveness of ABLS-OIC, highlighting its value for early detection of rare but critical events in dynamic, high-stakes applications. Full article
(This article belongs to the Special Issue Advances in Data Mining and Its Applications)
Show Figures

Figure 1

14 pages, 685 KB  
Proceeding Paper
Predictive Analysis of Voice Pathology Using Logistic Regression: Insights and Challenges
by Divya Mathews Olakkengil and Sagaya Aurelia P
Eng. Proc. 2025, 107(1), 28; https://doi.org/10.3390/engproc2025107028 - 27 Aug 2025
Viewed by 661
Abstract
Voice pathology diagnosis is essential for the timely detection and management of voice disorders, which can significantly impact an individual’s quality of life. This study employed logistic regression to evaluate the predictive power of variables that include age, severity, loudness, breathiness, pitch, roughness, [...] Read more.
Voice pathology diagnosis is essential for the timely detection and management of voice disorders, which can significantly impact an individual’s quality of life. This study employed logistic regression to evaluate the predictive power of variables that include age, severity, loudness, breathiness, pitch, roughness, strain, and gender on a binary diagnosis outcome (Yes/No). The analysis was performed on the Perceptual Voice Qualities Database (PVQD), a comprehensive dataset containing voice samples with perceptual ratings. Two widely used voice quality assessment tools, CAPE-V (Consensus Auditory-Perceptual Evaluation of Voice) and GRBAS (Grade, Roughness, Breathiness, Asthenia, Strain), were employed to annotate voice qualities, ensuring systematic and clinically relevant perceptual evaluations. The model revealed that age (odds ratio: 1.033, p < 0.001), loudness (odds ratio: 1.071, p = 0.005), and gender (male) (odds ratio: 1.904, p = 0.043) were statistically significant predictors of voice pathology. In contrast, severity and voice quality-related features like breathiness, pitch, roughness, and strain did not show statistical significance, suggesting their limited predictive contributions within this model. While the results provide valuable insights, the study underscores notable limitations of logistic regression. The model assumes a linear relationship between the independent variables and the log odds of the outcome, which restricts its ability to capture complex, non-linear patterns within the data. Additionally, logistic regression does not inherently account for interactions between predictors or feature dependencies, potentially limiting its performance in more intricate datasets. Furthermore, a fixed classification threshold (0.5) may lead to misclassification, particularly in datasets with imbalanced classes or skewed predictor distributions. These findings highlight that although logistic regression serves as a useful tool for identifying significant predictors, its results are dataset-dependent and cannot be generalized across diverse populations. Future research should validate these findings using heterogeneous datasets and employ advanced machine learning techniques to address the limitations of logistic regression. Integrating non-linear models or feature interaction analyses may enhance diagnostic accuracy, ensuring more reliable and robust voice pathology predictions. Full article
Show Figures

Figure 1

13 pages, 1341 KB  
Proceeding Paper
Predicting Nurse Stress Levels Using Time-Series Sensor Data and Comparative Evaluation of Classification Algorithms
by Ayşe Çiçek Korkmaz, Adem Korkmaz and Selahattin Koşunalp
Eng. Proc. 2025, 104(1), 30; https://doi.org/10.3390/engproc2025104030 - 22 Aug 2025
Viewed by 522
Abstract
This study proposes a machine learning-based framework for classifying occupational stress levels among nurses using physiological time-series data collected from wearable sensors. The dataset comprises multimodal signals including electrodermal activity (EDA), heart rate (HR), skin temperature (TEMP), and tri-axial accelerometer measurements (X, Y, [...] Read more.
This study proposes a machine learning-based framework for classifying occupational stress levels among nurses using physiological time-series data collected from wearable sensors. The dataset comprises multimodal signals including electrodermal activity (EDA), heart rate (HR), skin temperature (TEMP), and tri-axial accelerometer measurements (X, Y, Z), which are labeled into three categorical stress levels: low (0), medium (1), and high (2). To enhance the usability of the raw data, a resampling process was performed to aggregate the measurements into one-minute intervals, followed by the application of the Synthetic Minority Over-sampling Technique (SMOTE) to mitigate severe class imbalance. Subsequently, a comparative classification analysis was conducted using four supervised learning algorithms: Random Forest, XGBoost, k-Nearest Neighbors (k-NN), and LightGBM. Model performances were evaluated based on accuracy, weighted F1-score, and confusion matrices to ensure robustness across imbalanced class distributions. Additionally, temporal pattern analyses by the day of the week and the hour of the day revealed significant trends in stress variation, underscoring the influence of circadian and organizational factors. Among the models tested, ensemble-based methods, particularly Random Forest and XGBoost with optimized hyperparameters, demonstrated a superior predictive performance. These findings highlight the feasibility of integrating real-time, sensor-driven stress monitoring systems into healthcare environments to support proactive workforce management and improve care quality. Full article
Show Figures

Figure 1

15 pages, 2158 KB  
Article
A Data-Driven Approach for Internal Crack Prediction in Continuous Casting of HSLA Steels Using CTGAN and CatBoost
by Mengying Geng, Haonan Ma, Shuangli Liu, Zhuosuo Zhou, Lei Xing, Yibo Ai and Weidong Zhang
Materials 2025, 18(15), 3599; https://doi.org/10.3390/ma18153599 - 31 Jul 2025
Viewed by 470
Abstract
Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class [...] Read more.
Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class instances. This study proposes a predictive framework that integrates conditional tabular generative adversarial network (CTGAN) for synthetic minority sample generation and CatBoost for classification. A dataset of 733 process records was collected from a continuous caster, and 25 informative features were selected using mutual information. CTGAN was employed to augment the minority class (crack) samples, achieving a balanced training set. Feature distribution analysis and principal component visualization indicated that the synthetic data effectively preserved the statistical structure of the original minority class. Compared with the other machine learning methods, including KNN, SVM, and MLP, CatBoost achieved the highest metrics, with an accuracy of 0.9239, precision of 0.9041, recall of 0.9018, and F1-score of 0.9022. Results show that CTGAN-based augmentation improves classification performance across all models. These findings highlight the effectiveness of GAN-based augmentation for imbalanced industrial data and validate the CTGAN–CatBoost model as a robust solution for online defect prediction in steel manufacturing. Full article
(This article belongs to the Special Issue Latest Developments in Advanced Machining Technologies for Materials)
Show Figures

Figure 1

28 pages, 2379 KB  
Article
FADEL: Ensemble Learning Enhanced by Feature Augmentation and Discretization
by Chuan-Sheng Hung, Chun-Hung Richard Lin, Shi-Huang Chen, You-Cheng Zheng, Cheng-Han Yu, Cheng-Wei Hung, Ting-Hsin Huang and Jui-Hsiu Tsai
Bioengineering 2025, 12(8), 827; https://doi.org/10.3390/bioengineering12080827 - 30 Jul 2025
Viewed by 744
Abstract
In recent years, data augmentation techniques have become the predominant approach for addressing highly imbalanced classification problems in machine learning. Algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) and Conditional Tabular Generative Adversarial Network (CTGAN) have proven effective in synthesizing minority class [...] Read more.
In recent years, data augmentation techniques have become the predominant approach for addressing highly imbalanced classification problems in machine learning. Algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) and Conditional Tabular Generative Adversarial Network (CTGAN) have proven effective in synthesizing minority class samples. However, these methods often introduce distributional bias and noise, potentially leading to model overfitting, reduced predictive performance, increased computational costs, and elevated cybersecurity risks. To overcome these limitations, we propose a novel architecture, FADEL, which integrates feature-type awareness with a supervised discretization strategy. FADEL introduces a unique feature augmentation ensemble framework that preserves the original data distribution by concurrently processing continuous and discretized features. It dynamically routes these feature sets to their most compatible base models, thereby improving minority class recognition without the need for data-level balancing or augmentation techniques. Experimental results demonstrate that FADEL, solely leveraging feature augmentation without any data augmentation, achieves a recall of 90.8% and a G-mean of 94.5% on the internal test set from Kaohsiung Chang Gung Memorial Hospital in Taiwan. On the external validation set from Kaohsiung Medical University Chung-Ho Memorial Hospital, it maintains a recall of 91.9% and a G-mean of 86.7%. These results outperform conventional ensemble methods trained on CTGAN-balanced datasets, confirming the superior stability, computational efficiency, and cross-institutional generalizability of the FADEL architecture. Altogether, FADEL uses feature augmentation to offer a robust and practical solution to extreme class imbalance, outperforming mainstream data augmentation-based approaches. Full article
Show Figures

Graphical abstract

24 pages, 3235 KB  
Article
A Cost-Sensitive Small Vessel Detection Method for Maritime Remote Sensing Imagery
by Zhuhua Hu, Wei Wu, Ziqi Yang, Yaochi Zhao, Lewei Xu, Lingkai Kong, Yunpei Chen, Lihang Chen and Gaosheng Liu
Remote Sens. 2025, 17(14), 2471; https://doi.org/10.3390/rs17142471 - 16 Jul 2025
Cited by 1 | Viewed by 562
Abstract
Vessel detection technology based on marine remote sensing imagery is of great importance. However, it often faces challenges, such as small vessel targets, cloud occlusion, insufficient data volume, and severely imbalanced class distribution in datasets. These issues result in conventional models failing to [...] Read more.
Vessel detection technology based on marine remote sensing imagery is of great importance. However, it often faces challenges, such as small vessel targets, cloud occlusion, insufficient data volume, and severely imbalanced class distribution in datasets. These issues result in conventional models failing to meet the accuracy requirements for practical applications. In this paper, we first construct a novel remote sensing vessel image dataset that includes various complex scenarios and enhance the data volume and diversity through data augmentation techniques. Secondly, we address the class imbalance between foreground (small vessels) and background in remote sensing imagery from two perspectives: the sensitivity of IoU metrics to small object localization errors and the innovative design of a cost-sensitive loss function. Specifically, at the dataset level, we select vessel targets appearing in the original dataset as templates and randomly copy–paste several instances onto arbitrary positions. This enriches the diversity of target samples per image and mitigates the impact of data imbalance on the detection task. At the algorithm level, we introduce the Normalized Wasserstein Distance (NWD) to compute the similarity between bounding boxes. This enhances the importance of small target information during training and strengthens the model’s cost-sensitive learning capabilities. Ablation studies reveal that detection performance is optimal when the weight assigned to the NWD metric in the model’s loss function matches the overall proportion of small objects in the dataset. Comparative experiments show that the proposed NWD-YOLO achieves Precision, Recall, and AP50 scores of 0.967, 0.958, and 0.971, respectively, meeting the accuracy requirements of real-world applications. Full article
Show Figures

Figure 1

33 pages, 2048 KB  
Article
Multimodal Hidden Markov Models for Real-Time Human Proficiency Assessment in Industry 5.0: Integrating Physiological, Behavioral, and Subjective Metrics
by Mowffq M. Alsanousi and Vittaldas V. Prabhu
Appl. Sci. 2025, 15(14), 7739; https://doi.org/10.3390/app15147739 - 10 Jul 2025
Viewed by 941
Abstract
This paper presents a Multimodal Hidden Markov Model (MHMM) framework specifically designed for real-time human proficiency assessment, integrating physiological (Heart Rate Variability (HRV)), behavioral (Task Completion Time (TCT)), and subjective (NASA Task Load Index (NASA-TLX)) data streams to infer latent human proficiency states [...] Read more.
This paper presents a Multimodal Hidden Markov Model (MHMM) framework specifically designed for real-time human proficiency assessment, integrating physiological (Heart Rate Variability (HRV)), behavioral (Task Completion Time (TCT)), and subjective (NASA Task Load Index (NASA-TLX)) data streams to infer latent human proficiency states in industrial settings. Using published empirical data from the surgical training literature, a comprehensive simulation study was conducted, with the MHMM (Trained) achieving 92.5% classification accuracy, significantly outperforming unimodal Hidden Markov Model (HMM) variants 61–63.9% and demonstrating competitive performance with advanced models such as Long Short-Term Memory (LSTM) networks 90%, and Conditional Random Field (CRF) 88.5%. The framework exhibited robustness across stress-test scenarios, including sensor noise, missing data, and imbalanced class distributions. A key advantage of the MHMM over black-box approaches is its interpretability by providing quantifiable transition probabilities that reveal learning rates, forgetting patterns, and contextual influences on proficiency dynamics. The model successfully captures context-dependent effects, including task complexity and cumulative fatigue, through dynamic transition matrices. When demonstrated through simulation, this framework establishes a foundation for developing adaptive operator-AI collaboration systems in Industry 5.0 environments. The MHMM’s combination of high accuracy, robustness, and interpretability makes it a promising candidate for future empirical validation in real-world industrial, healthcare, and training applications in which it is critical to understand and support human proficiency development. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Industrial Engineering)
Show Figures

Figure 1

18 pages, 7705 KB  
Article
Aviation Fuel Pump Fault Diagnosis Based on Conditional Variational Self-Encoder Adaptive Synthetic Less Data Enhancement
by Tiejun Liu, Yaoping Zhang, Xiaojing Yin and Weidong He
Mathematics 2025, 13(14), 2218; https://doi.org/10.3390/math13142218 - 8 Jul 2025
Cited by 1 | Viewed by 524
Abstract
The aircraft fuel pump is a critical component of the aviation fuel supply system, and its fault diagnosis is essential in ensuring flight safety. However, in practical operating conditions, fault samples are scarce and data distributions are highly imbalanced, which severely limits the [...] Read more.
The aircraft fuel pump is a critical component of the aviation fuel supply system, and its fault diagnosis is essential in ensuring flight safety. However, in practical operating conditions, fault samples are scarce and data distributions are highly imbalanced, which severely limits the ability of traditional models to identify minority-class faults. To address this challenge, this paper proposes a fault diagnosis method for aircraft fuel pumps based on adaptive synthetic data augmentation using a Conditional Variational Autoencoder (CVAE). The CVAE generates semantically consistent and feature-diverse minority-class samples under class-conditional constraints, thereby enhancing the overall representational capacity of the dataset. Simultaneously, the Adaptive Synthetic (ADASYN) approach adaptively augments hard-to-classify samples near decision boundaries, enabling fine-grained control over sample distribution. The integration of these two techniques establishes a “broad coverage + focused refinement” augmentation strategy, effectively mitigating the class imbalance problem. Experimental results demonstrate that the proposed method significantly improves the recognition performance of minority-class faults on real-world aircraft fuel pump fault datasets. Full article
Show Figures

Figure 1

Back to TopTop