Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = citri reticulatae pericarpium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1666 KiB  
Article
Effective Identification of Variety and Origin of Chenpi Using Hyperspectral Imaging Assisted with Chemometric Models
by Hangxiu Liu, Youyou Wang, Yiheng Wang, Jingyi Wang, Hanqing Hu, Xinyi Zhong, Qingjun Yuan and Jian Yang
Foods 2025, 14(11), 1979; https://doi.org/10.3390/foods14111979 - 3 Jun 2025
Viewed by 476
Abstract
Geographical origins and varietal characteristics can significantly affect the quality of Citri Reticulatae Pericarpium (Chenpi), making rapid and accurate identification essential for consumer protection. To overcome the inefficiency and high cost of conventional detection methods, this study proposed a nondestructive approach that integrates [...] Read more.
Geographical origins and varietal characteristics can significantly affect the quality of Citri Reticulatae Pericarpium (Chenpi), making rapid and accurate identification essential for consumer protection. To overcome the inefficiency and high cost of conventional detection methods, this study proposed a nondestructive approach that integrates hyperspectral imaging (HSI) with deep learning to classify Chenpi varieties and their geographical origins. Hyperspectral data were collected from 15 Chenpi varieties (citrus peel) across 13 major production regions in China using three dataset configurations: exocarp-facing-upward (Z), endocarp-facing-upward (F), and a fused dataset combining random orientations (ZF). Convolutional neural networks (CNNs) were developed and compared with conventional machine learning models, including partial least-squares discriminant analysis (PLS-DA), support vector machines (SVMs), and a multilayer perceptron (MLP). The CNN model achieved 96.39% accuracy for varietal classification with the ZF dataset, while the Z-PLSDA model optimized with second derivative (D2) preprocessing and competitive adaptive reweighted sampling (CARS) feature selection attained 91.67% accuracy in geographical origin discrimination. Feature wavelength selection strategies, such as CARS, simplified the model complexity while maintaining a classification performance comparable to that of the full-spectrum models. These findings demonstrated that HSI combined with deep learning could provide a rapid, nondestructive, and cost-effective solution for Chenpi quality assessment and origin traceability. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 2625 KiB  
Article
Effects of Probiotic-Fermented Chinese Herb on Immune Response and Growth Performance in Common Carp (Cyprinus carpio)
by Wenzheng Zou, Xuanxuan Huang, Fang Han and Zhongqin Li
Fishes 2025, 10(5), 196; https://doi.org/10.3390/fishes10050196 - 26 Apr 2025
Viewed by 611
Abstract
This study investigated the effects of fermented Chinese herb (FCH) on the growth indices, leukocyte activity, and biochemical indices of carp (Cyprinus carpio). Astragalus membranaceus (AM), Pericarpium Citri Reticulatae (PCR), and Glycyrrhizae Radix et Rhizoma (GRR) as feed additives enhance immune [...] Read more.
This study investigated the effects of fermented Chinese herb (FCH) on the growth indices, leukocyte activity, and biochemical indices of carp (Cyprinus carpio). Astragalus membranaceus (AM), Pericarpium Citri Reticulatae (PCR), and Glycyrrhizae Radix et Rhizoma (GRR) as feed additives enhance immune function, promote growth, and exert anti-inflammatory effects, respectively. Therefore, this study investigated the effects of co-fermented blends of these three herbs on growth performance and related parameters in common carp. By adding 2%, 5%, and 10% of the FCH to co-incubate with carp leukocytes, the results show that all three experimental treatments could enhance the respiratory burst activity and phagocytic activity of carp leukocytes. After 28 days of feeding with basal feed supplemented with 2%, 5%, and 10% (w/v) of the FCH, the weight gain rate and specific growth rate of carp were significantly higher than those of the control treatment without additives (ANOVA, p < 0.05), with the 5% treatment showing the highest. The activities of intestinal digestive enzymes were significantly increased (ANOVA, p < 0.05). On the 21st day, the activities of amylase (AMS), lipase (LPS), and chymotrypsin were increased compared to the control treatment. The 5% and 10% treatments showed significantly higher intestinal digestive enzyme activities compared to the 2% treatment. The serum superoxide dismutase (SOD) levels in both the control and experimental treatments initially increased and then decreased, with all three experimental treatments having higher levels than the control treatment. The activities of liver glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) in the experimental treatments showed no significant changes compared to the control treatment (ANOVA, p > 0.05). However, the serum GPT activity in the 5% treatment was significantly lower than that of the control treatment (ANOVA, p < 0.05), while no significant differences were observed in the other treatments. The results indicate that adding 2~10% of FCH to carp feed can improve intestinal digestion, enhance phagocytic activity and the body’s antioxidant defense capabilities, and effectively promote the growth of carp. It can significantly improve farming efficiency and economic benefits, reduce dependence on chemical drugs, and lower environmental pollution, showing good application prospects in production. Full article
(This article belongs to the Special Issue Intestinal Health of Aquatic Organisms)
Show Figures

Figure 1

23 pages, 5736 KiB  
Article
The Anti-Inflammatory Effects and Molecular Mechanism of Citri Reticulatae Pericarpium Essential Oil: A Combined GC-MS and Network Pharmacology Study
by Junmei Pu, Jiabao Cui, Hui Yang, Jianxin Cao, Shanshan Xiao and Guiguang Cheng
Foods 2025, 14(9), 1455; https://doi.org/10.3390/foods14091455 - 23 Apr 2025
Viewed by 993
Abstract
This study investigated the chemical composition and anti-inflammatory effects of essential oils extracted from Citrus aurantium flower, Citrus sinensis, Brazilian Citrus sinensis, Citrus limon, Citrus bergamia, and Citri Reticulatae Pericarpium using steam distillation and gas chromatography-mass spectrometry (GC-MS). Their [...] Read more.
This study investigated the chemical composition and anti-inflammatory effects of essential oils extracted from Citrus aurantium flower, Citrus sinensis, Brazilian Citrus sinensis, Citrus limon, Citrus bergamia, and Citri Reticulatae Pericarpium using steam distillation and gas chromatography-mass spectrometry (GC-MS). Their anti-inflammatory activities were assessed in LPS-stimulated RAW 264.7 cells. Among them, Citri Reticulatae Pericarpium essential oil (CRPEO) exhibited the most potent anti-inflammatory effects, with D-Limonene (76.51%), α-Pinene (2.68%), and Linalool (2.11%) as its primary constituents. The CCK-8 assay showed that the essential oil exhibited no cytotoxicity on HaCaT cells at a concentration of 50 μg/mL. CRPEO significantly preserved cell viability and reduced the production of pro-inflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and nitric oxide (NO). Gene expression analysis via RT-qPCR further confirmed the downregulation of TNF-α, IL-6, IL-1β, and inducible nitric oxide synthase (iNOS) at the mRNA level. Network pharmacology and molecular docking studies were employed to identify α-Bulnesene as a key bioactive component of CRPEO and revealed that its principal target is the NLR Family Pyrin Domain-Containing 3 (NLRP3) inflammasome. These findings highlight the strong anti-inflammatory potential of CRPEO and suggest its promising therapeutic application for inflammation-related conditions. Full article
Show Figures

Figure 1

26 pages, 14636 KiB  
Article
Hepatoprotective Effects of Citri reticulatae Pericarpium and Chaenomelese speciosa (Sweet) Nakai Extracts in Alcohol-Related Liver Injury: Modulation of Oxidative Stress, Lipid Metabolism, and Gut Microbiota
by Shuangshuang Ma, Lingtao Kang, Zhipeng Gao, Zhaoping Pan, Lvhong Huang, Jiaxu Chen, Yanfang Liao, Jiajing Guo and Fuhua Fu
Antioxidants 2025, 14(3), 343; https://doi.org/10.3390/antiox14030343 - 14 Mar 2025
Cited by 1 | Viewed by 916
Abstract
Chronic and excessive alcohol consumption induces alcohol-related liver injury (ALI), characterized by oxidative stress (OS), disrupted lipid metabolism, and gut microbiota dysbiosis. Given the lack of effective pharmacological treatments, flavonoid-rich fruits have attracted growing attention as potential intervention strategies. This study investigated the [...] Read more.
Chronic and excessive alcohol consumption induces alcohol-related liver injury (ALI), characterized by oxidative stress (OS), disrupted lipid metabolism, and gut microbiota dysbiosis. Given the lack of effective pharmacological treatments, flavonoid-rich fruits have attracted growing attention as potential intervention strategies. This study investigated the independent and combined effects of extracts from Citri reticulatae pericarpium (CRPE) and Chaenomeles speciosa (Sweet) Nakai (CSPE), previously shown to possess hepatoprotective properties, in a mouse model of ethanol-induced chronic ALI. The flavonoid composition of CRPE and CSPE was characterized using LC-MS/MS, and their potential mechanisms of action were further elucidated through transcriptomic analysis. The results showed that CRPE and CSPE, whether administered individually or in combination, effectively alleviated alcohol-induced hepatic histological damage and inflammatory responses. Furthermore, both extracts significantly reduced OS and improved lipid metabolism. Notably, CRPE, CSPE, and their combination regulated the gut microbiota, as shown by increased abundances of beneficial bacteria such as Lactobacillus and Bifidobacterium, along with elevated levels of short-chain fatty acids (SCFAs). These findings highlight that combinations of multiple fruit extracts exhibit significant potential in alleviating ALI by modulating the gut microbiota, providing valuable insights for the development of functional foods. Full article
Show Figures

Figure 1

34 pages, 9912 KiB  
Article
Identification and Therapeutic Potential of Polymethoxylated Flavones in Citri Reticulatae Pericarpium for Alzheimer’s Disease: Targeting Neuroinflammation
by Xinyu Wang, Zirong Yi, Yiming Zhang, Jing Zhang, Xueyan Li, Dongying Qi, Qianqian Wang, Xiaoyu Chai, Huan Liu, Guopeng Wang, Yanli Pan, Yang Liu and Guohua Yu
Molecules 2025, 30(4), 771; https://doi.org/10.3390/molecules30040771 - 7 Feb 2025
Viewed by 904
Abstract
Neuroinflammation is a significant driving force in the pathogenesis and progression of central nervous system (CNS) disorders. Polymethoxylated flavones (PMFs), the key lipid-soluble constituents in Citri Reticulatae Pericarpium (CRP), exhibit excellent blood–brain barrier permeability and anti-inflammatory properties, holding therapeutic potential for CNS disorders. [...] Read more.
Neuroinflammation is a significant driving force in the pathogenesis and progression of central nervous system (CNS) disorders. Polymethoxylated flavones (PMFs), the key lipid-soluble constituents in Citri Reticulatae Pericarpium (CRP), exhibit excellent blood–brain barrier permeability and anti-inflammatory properties, holding therapeutic potential for CNS disorders. However, the specific bioactive components and therapeutic effects of PMFs in treating CNS disorders are not well understood. This study employed a comprehensive sequential metabolism approach to elucidate the dynamic biotransformation of PMFs in vivo and identified seven brain-targeting components. Subsequently, network pharmacology and experimental validation were utilized to explore the potential mechanisms of PMFs. The results suggested that PMFs have potential therapeutic value for Alzheimer’s disease (AD)-like mice, with the inhibition of neuroinflammation likely being a key mechanism of their anti-AD effects. Notably, sinensetin, tangeretin, nobiletin, and 3,5,6,7,8,3′,4′-heptamethoxyflavone were identified as potent neuroinflammatory inhibitors. This research elucidated the chemical and therapeutic foundations of PMFs, indicating their potential as treatments or nutritional supplements for AD prevention and treatment. Moreover, the integrated triad approach of sequential metabolism, network pharmacology, and experimental validation may serve as a promising strategy for screening bioactive compounds in herbs or functional foods, as well as for elucidating their therapeutic mechanisms. Full article
Show Figures

Figure 1

12 pages, 22206 KiB  
Article
Accurate Discrimination of Mold-Damaged Citri Reticulatae Pericarpium Using Partial Least-Squares Discriminant Analysis and Selected Wavelengths
by Huizhen Tan, Yang Liu, Hui Tang, Wei Fan, Liwen Jiang and Pao Li
Foods 2024, 13(23), 3856; https://doi.org/10.3390/foods13233856 - 29 Nov 2024
Cited by 1 | Viewed by 744
Abstract
Unscrupulous merchants sell the mold-damaged Citri Reticulatae Pericarpium (CRP) after removing the mold. In this study, an accurate and non-destructive strategy was developed for the discrimination of mold-damaged CRPs using portable near-infrared (NIR) spectroscopy and chemometrics. The outer surface and inner surface spectra [...] Read more.
Unscrupulous merchants sell the mold-damaged Citri Reticulatae Pericarpium (CRP) after removing the mold. In this study, an accurate and non-destructive strategy was developed for the discrimination of mold-damaged CRPs using portable near-infrared (NIR) spectroscopy and chemometrics. The outer surface and inner surface spectra were obtained without destroying CRPs. The discrimination models were established using partial least squares-discriminant analysis (PLS-DA) and wavelength selection strategy was used to further improve the discrimination ability. The predictive ability of models was assessed using the test set and an independent test set obtained one month later. The results demonstrate that the models of the outer surface outperform those of the inner surface. With multiplicative scatter correction (MSC)-PLS-DA, 100% accuracies were obtained in test and independent test sets. Furthermore, the wavelength selection strategy simplified the models with 100% discrimination accuracy. In addition, the randomization test (RT)-PLS-DA model developed in this study combines both the benefits of high accuracy and robustness, which can be applied for the accurate discrimination of mold-damaged CRPs. Full article
Show Figures

Graphical abstract

22 pages, 10060 KiB  
Article
Quality Change of Citri Reticulatae Pericarpium (Pericarps of Citrus reticulata ‘Chachi’) During Storage and Its Sex-Based In Vitro Digestive Performance
by Peirong Yu, Yuying Zeng, Chunyu Li, Bixia Qiu, Yuan Shi, Qixi He, Uri Lesmes and Yigal Achmon
Foods 2024, 13(22), 3671; https://doi.org/10.3390/foods13223671 - 18 Nov 2024
Cited by 2 | Viewed by 1515
Abstract
Citri Reticulatae Pericarpium (CRP), particularly including the pericarp of Citrus reticulata ‘Chachi’ (GCP), has been widely used as a food, a dietary supplement, and traditional Chinese medicine. Despite the widespread use of traditional foods, there is limited evidence regarding the precise relationships between [...] Read more.
Citri Reticulatae Pericarpium (CRP), particularly including the pericarp of Citrus reticulata ‘Chachi’ (GCP), has been widely used as a food, a dietary supplement, and traditional Chinese medicine. Despite the widespread use of traditional foods, there is limited evidence regarding the precise relationships between storage conditions, aging duration, and the digestive performance of CRP. In this study, the aim was to investigate the impact of the storage conditions on the quality of aged GCP during shelf life and to evaluate the subsequent digestive performance of corresponding GCP decoctions. Respiration in GCP was monitored by measuring oxygen (O2), carbon dioxide (CO2), and methane (CH4) gases throughout the storage simulation, with O2 and CO2 validated as prospective safety measures. Five flavonoids (hesperidin, didymin, nobiletin, tangeretin, and 3,5,6,7,8,3′,4′-heptamethoxyflavone) were determined as quality indicators, and their contents were significantly affected by the duration of the storage simulation and the aging periods of GCP. Our study also found that temperature and humidity significantly affected the volatile organic compounds (VOCs) emission from GCP. Eighteen compounds were proposed to show potential as descriptive measures of aging periods while eight compounds were proposed as potential indicators to discriminate among the spoilage level. Furthermore, the bioaccessibility of hesperidin ranged from ~30% to ~50% and was not significantly affected by the GCP’s aging time nor the consumer’s sex (p < 0.05). This study presents evidence for the future control of the quality of GCP and its digestive performance in males and females. Full article
(This article belongs to the Special Issue Studying Food Digestion towards Healthier Future Food Choices)
Show Figures

Graphical abstract

20 pages, 10441 KiB  
Article
Proto-DS: A Self-Supervised Learning-Based Nondestructive Testing Approach for Food Adulteration with Imbalanced Hyperspectral Data
by Kunkun Pang, Yisen Liu, Songbin Zhou, Yixiao Liao, Zexuan Yin, Lulu Zhao and Hong Chen
Foods 2024, 13(22), 3598; https://doi.org/10.3390/foods13223598 - 11 Nov 2024
Cited by 1 | Viewed by 1518
Abstract
Conventional food fraud detection using hyperspectral imaging (HSI) relies on the discriminative power of machine learning. However, these approaches often assume a balanced class distribution in an ideal laboratory environment, which is impractical in real-world scenarios with diverse label distributions. This results in [...] Read more.
Conventional food fraud detection using hyperspectral imaging (HSI) relies on the discriminative power of machine learning. However, these approaches often assume a balanced class distribution in an ideal laboratory environment, which is impractical in real-world scenarios with diverse label distributions. This results in suboptimal performance when less frequent classes are overshadowed by the majority class during training. Thus, the critical research challenge emerges of how to develop an effective classifier on a small-scale imbalanced dataset without significant bias from the dominant class. In this paper, we propose a novel nondestructive detection approach, which we call the Dice Loss Improved Self-Supervised Learning-Based Prototypical Network (Proto-DS), designed to address this imbalanced learning challenge. The proposed amalgamation mitigates the label bias on the most frequent class, further improving robustness. We validate our proposed method on three collected hyperspectral food image datasets with varying degrees of data imbalance: Citri Reticulatae Pericarpium (Chenpi), Chinese herbs, and coffee beans. Comparisons with state-of-the-art imbalanced learning techniques, including the Synthetic Minority Oversampling Technique (SMOTE) and class-importance reweighting, reveal our method’s superiority. Notably, our experiments demonstrate that Proto-DS consistently outperforms conventional approaches, achieving the best average balanced accuracy of 88.18% across various training sample sizes, whereas the Logistic Model Tree (LMT), Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN) approaches attain only 59.42%, 60.38%, and 66.34%, respectively. Overall, self-supervised learning is key to improving imbalanced learning performance and outperforms related approaches, while both prototypical networks and the Dice loss can further enhance classification performance. Intriguingly, self-supervised learning can provide complementary information to existing imbalanced learning approaches. Combining these approaches may serve as a potential solution for building effective models with limited training data. Full article
Show Figures

Graphical abstract

22 pages, 7373 KiB  
Article
Insights into the Therapeutic Potential of Active Ingredients of Citri Reticulatae Pericarpium in Combatting Sarcopenia: An In Silico Approach
by Amin Ullah, Yacong Bo, Jiangtao Li, Jinjie Li, Pipasha Khatun, Quanjun Lyu and Guangning Kou
Int. J. Mol. Sci. 2024, 25(21), 11451; https://doi.org/10.3390/ijms252111451 - 25 Oct 2024
Cited by 2 | Viewed by 1684
Abstract
Sarcopenia is a systemic medical disorder characterized by a gradual decline in muscular strength, function, and skeletal muscle mass. Currently, there is no medication specifically approved for the treatment of this condition. Therefore, the identification of new pharmacological targets may offer opportunities for [...] Read more.
Sarcopenia is a systemic medical disorder characterized by a gradual decline in muscular strength, function, and skeletal muscle mass. Currently, there is no medication specifically approved for the treatment of this condition. Therefore, the identification of new pharmacological targets may offer opportunities for the development of novel therapeutic strategies. The current in silico study investigated the active ingredients and the mode of action of Citri Reticulatae Pericarpium (CRP) in addressing sarcopenia. The active ingredients of CRP and the potential targets of CRP and sarcopenia were determined using various databases. The STRING platform was utilized to construct a protein–protein interaction network, and the key intersecting targets were enriched through the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Molecular docking was used to determine the binding interactions of the active ingredients with the hub targets. The binding affinities obtained from molecular docking were subsequently validated through molecular dynamics simulation analyses. Five active ingredients and 45 key intersecting targets between CRP and sarcopenia were identified. AKT1, IL6, TP53, MMP9, ESR1, NFKB1, MTOR, IGF1R, ALB, and NFE2L2 were identified as the hub targets with the highest degree node in the protein–protein interaction network. The results indicated that the targets were mainly enriched in PIK3-AKT, HIF-1, and longevity-regulating pathways. The active ingredients showed a greater interaction affinity with the hub targets, as indicated by the results of molecular docking and molecular dynamics simulations. Our findings suggest that the active ingredients of Citri Reticulatae Pericarpium, particularly Sitosterol and Hesperetin, have the potential to improve sarcopenia by interacting with AKT1 and MTOR proteins through the PI3K-AKT signaling pathway. Full article
(This article belongs to the Special Issue Network Pharmacology: An Emerging Field in Drug Discovery)
Show Figures

Figure 1

24 pages, 6005 KiB  
Article
Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway
by Yan Zhang, Yaping Yang, Huicong Liang, Yuerun Liang, Guixin Xiong, Fang Lu, Kan Yang, Qi Zou, Xiaomin Zhang, Guanhua Du, Ximing Xu and Jiejie Hao
Int. J. Mol. Sci. 2024, 25(19), 10406; https://doi.org/10.3390/ijms251910406 - 27 Sep 2024
Cited by 1 | Viewed by 2203
Abstract
Asthma is a chronic airway inflammation that is considered a serious public health concern worldwide. Nobiletin (5,6,7,8,3′,4′-hexamethyl flavonoid), an important compound isolated from several traditional Chinese medicines, especially Citri Reticulatae Pericarpium, is widely used for a number of indications, including cancer, allergic diseases, [...] Read more.
Asthma is a chronic airway inflammation that is considered a serious public health concern worldwide. Nobiletin (5,6,7,8,3′,4′-hexamethyl flavonoid), an important compound isolated from several traditional Chinese medicines, especially Citri Reticulatae Pericarpium, is widely used for a number of indications, including cancer, allergic diseases, and chronic inflammation. However, the mechanism by which nobiletin exerts its anti-asthmatic effect remains unclear. In this research, we comprehensively demonstrated the anti-asthmatic effects of nobiletin in an animal model of asthma. It was found that nobiletin significantly reduced the levels of inflammatory cells and cytokines in mice and alleviated airway hyperresponsiveness. To explore the target of nobiletin, we identified PDE4B as the target of nobiletin through pharmacophore modeling, molecular docking, molecular dynamics simulation, SPR, and enzyme activity assays. Subsequently, it was found that nobiletin could activate the cAMP-PKA-CREB signaling pathway downstream of PDE4B in mouse lung tissues. Additionally, we studied the anti-inflammatory and anti-airway remodeling effects of nobiletin in LPS-induced RAW264.7 cells and TGF-β1-induced ASM cells, confirming the activation of the cAMP-PKA-CREB signaling pathway by nobiletin. Further validation in PDE4B-deficient RAW264.7 cells confirmed that the increase in cAMP levels induced by nobiletin depended on the inhibition of PDE4B. In conclusion, nobiletin exerts anti-asthmatic activity by targeting PDE4B and activating the cAMP-PKA-CREB signaling pathway. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

21 pages, 1690 KiB  
Review
Recent Advances in the Health Benefits and Application of Tangerine Peel (Citri Reticulatae Pericarpium): A Review
by Minke Shi, Qihan Guo, Zhewen Xiao, Sarengaowa, Ying Xiao and Ke Feng
Foods 2024, 13(13), 1978; https://doi.org/10.3390/foods13131978 - 23 Jun 2024
Cited by 3 | Viewed by 5394
Abstract
Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within [...] Read more.
Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within the framework of the circular economy, CRP has emerged as a focal point due to its potential health benefits. CRP, extracted from Citrus reticulata cv. and aged for over three years, has attracted increasing attention for its diverse health-promoting effects, including its anticancer, cardiovascular-protecting, gastrointestinal-modulating, antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, CRP positively impacts skeletal health and various physiological functions. This review delves into the therapeutic effects and molecular mechanisms of CRP. The substantial therapeutic potential of CRP highlights the need for further research into its applications in both food and medicine. As a value-added functional ingredient, CRP and its constituents are extensively utilized in the development of food and health supplements, such as teas, porridges, and traditional medicinal formulations. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 6991 KiB  
Article
Metabolomic Profiling Reveals the Quality Variations in Citri Reticulatae Pericarpium (Citrus reticulata Blanco cv. Chachiensis) with Different Storage Ages in Response to “Candidatus Liberibacter Asiaticus” Infection
by Jiayin Liang, Yuqing Xi, Jiaming Li, Shugui Xu, Yongqin Zheng, Meirong Xu, Zheng Zheng and Xiaoling Deng
Foods 2024, 13(6), 827; https://doi.org/10.3390/foods13060827 - 8 Mar 2024
Cited by 4 | Viewed by 2368
Abstract
Citri Reticulatae Pericarpium, especially the pericarp of Citrus reticulata Blanco cv. Chachiensis (PCRC), is an important edible and medicinal ingredient for health and pharmacological properties. Citrus Huanglongbing, a devastating disease that currently threatens the citrus industry worldwide, is caused by a phloem-limited alpha-proteobacterium, [...] Read more.
Citri Reticulatae Pericarpium, especially the pericarp of Citrus reticulata Blanco cv. Chachiensis (PCRC), is an important edible and medicinal ingredient for health and pharmacological properties. Citrus Huanglongbing, a devastating disease that currently threatens the citrus industry worldwide, is caused by a phloem-limited alpha-proteobacterium, “Candidatus Liberibacter asiaticus” (CLas). The industry of cultivar Chachiensis has been suffering from HLB. Although HLB affected the quality of citrus fruit, whether the quality of PCRC was affected by HLB remains unclear. In this study, we compared the metabolite profiles between HLB-affected and healthy PCRC from three sources: fresh, 6-month-old, and 9-year-old PCRC, through the untargeted LC–MS method. Compared to healthy controls, various types of bioactive compounds, mainly flavonoids, terpenoids, alkaloids, coumarins, polysaccharides, and phenolic acids, accumulated in HLB-affected PCRC, especially in the HLB-affected 9-year PCRC. In particular, isorhamnetin, isoliquiritigenin, luteolin 7-O-beta-D-glucoside, limonin, geniposide, pyrimidodiazepine, scoparone, chitobiose, m-coumaric acid, malonate, and pantothenic acid, which contributed to the pharmacological activity and health care effects of PCRC, were highly accumulated in HLB-affected 9-year-old PCRC compared to the healthy control. Multibioassay analyses revealed that HLB-affected 9-year-old PCRC had a higher content of total flavonoids and total polyphenols and exhibited similar antioxidant capacity as compared to healthy controls. The results of this study provided detailed information on the quality of HLB-affected PCRC. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

18 pages, 2375 KiB  
Article
Effects of Designed Herbal Formula on Growth Performance, Blood Indices, Organ Traits, and Cecum Microbiology in Broilers
by Yuelong Sun, Mengjie Zhang, Dongdong Shi, Xiaofeng Dai and Xiumei Li
Vet. Sci. 2024, 11(3), 107; https://doi.org/10.3390/vetsci11030107 - 29 Feb 2024
Cited by 2 | Viewed by 2487
Abstract
The objective of this study was to investigate the effect of the designed herbal formula (DHF) on growth performance, blood indices, organ traits, and cecum microbiology in broilers. A total of 96 male broilers of 1 d were selected and randomly assigned to [...] Read more.
The objective of this study was to investigate the effect of the designed herbal formula (DHF) on growth performance, blood indices, organ traits, and cecum microbiology in broilers. A total of 96 male broilers of 1 d were selected and randomly assigned to two groups with six replicates of eight broilers each. The control (CON) and the basal diet containing 1.0% DHF (Astragali radix, Atractylodes macrocephala Koidz., Isatis tinctoria Linnaeus, and Citri reticulatae pericarpium, 2:1:1:2) were fed separately. The experiment was conducted for 35 days. The results showed that the DHF diet increased body weight and decreased the feed conversion ratio (FCR) (p < 0.05). At 21 days, the spleen, thymus, lymphocytes, and thrombocytes were increased (p < 0.05), and pancreas, duodenum, heterophils, and mean corpuscular hemoglobin (MCH) were decreased (p < 0.05). At 35 days, the heart, pancreas, white blood cell, heterophils, hemoglobin, MCH and mean corpuscular hemoglobin concentration (MCHC) were decreased, while lymphocytes and middle cells were increased (p < 0.05). The results of microbial diversity analysis showed that the DHF diet decreased the microbial diversity of the cecum. Firmicutes and Bacteroidetes were the dominant phyla, where the DHF diet increased the relative abundances of Bacteroides uniformis, Bacteroides vulgatus, and Faecalibacterium prausnitzii, and then decreased the relative abundance of Shigella sonnei. In conclusion, DHF played a positive role in improving the growth performance, immune performance, and relative abundance of Bacteroides uniformis, Bacteroides vulgatus, and Faecalibacterium prausnitzii in cecum microbiology in broilers, and has the potential to be used as a novel feed additive. Full article
Show Figures

Figure 1

15 pages, 7915 KiB  
Article
Network Pharmacology and Molecular Modeling Techniques in Unraveling the Underlying Mechanism of Citri Reticulatae Pericarpium aganist Type 2 Diabetic Osteoporosis
by Jiangtao Li, Ying Wang, Amin Ullah, Ruiyang Zhang, Yuge Sun, Jinjie Li and Guangning Kou
Nutrients 2024, 16(2), 220; https://doi.org/10.3390/nu16020220 - 10 Jan 2024
Cited by 6 | Viewed by 2943
Abstract
Type 2 diabetic osteoporosis (T2DOP) is a common complication in diabetic patients that seriously affects their health and quality of life. The pathogenesis of T2DOP is complex, and there are no targeted governance means in modern medicine. Citri Reticulatae Pericarpium (CRP) is a [...] Read more.
Type 2 diabetic osteoporosis (T2DOP) is a common complication in diabetic patients that seriously affects their health and quality of life. The pathogenesis of T2DOP is complex, and there are no targeted governance means in modern medicine. Citri Reticulatae Pericarpium (CRP) is a traditional Chinese medicine that has a long history and has been used in the treatment of osteoporosis diseases. However, the molecular mechanism for the CRP treatment of T2DOP is not clear. Therefore, this study aimed to explore the underlying mechanisms of CRP for the treatment of T2DOP by using network pharmacology and molecular modeling techniques. By retrieving multiple databases, we obtained 5 bioactive compounds and 63 common targets of bioactive compounds with T2DOP, and identified AKT 1, TP 53, JUN, BCL 2, MAPK 1, NFKB 1, and ESR 1 as the core targets of their PPI network. Enrichment analysis revealed that these targets were mainly enriched in the estrogen signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway in diabetics, which were mainly related to oxidative stress and hormonal regulation. Molecular docking and molecular dynamics simulations have shown the excellent binding effect of the bioactive compounds of CRP and the core targets. These findings reveal that CRP may ameliorate T2DOP through multiple multicomponent and multitarget pathways. Full article
(This article belongs to the Special Issue Trace Elements and Bone Health)
Show Figures

Figure 1

9 pages, 5771 KiB  
Article
Citri Reticulatae Pericarpium Limits TLR-4-Triggered Inflammatory Response in Raw264.7 Macrophages by Activating RasGRP3
by Ji Hye Lee, Yon-Suk Kim and Kang Hyun Leem
Int. J. Mol. Sci. 2023, 24(18), 13777; https://doi.org/10.3390/ijms241813777 - 7 Sep 2023
Cited by 2 | Viewed by 1756
Abstract
Inflammation is an important immune response to pathogen invasion, but excessive inflammation leads to tissue injury and even cytokine storm. Therefore, proper response is needed depending on the intensity of the infection. Ras guanine nucleotide releasing protein 3 (RasGRP3) is a regulator of [...] Read more.
Inflammation is an important immune response to pathogen invasion, but excessive inflammation leads to tissue injury and even cytokine storm. Therefore, proper response is needed depending on the intensity of the infection. Ras guanine nucleotide releasing protein 3 (RasGRP3) is a regulator of the TLR-mediated response. In low-intensity inflammation, it negatively regulates production of pro-inflammatory cytokines, especially IL-6. Citri Reticulatae Pericarpium, the peel of Citrus reticulata Blanco, is a major medicinal herb in Korean medicine. The present study aims to investigate whether the Citri Reticulatae Pericarpium extract (CRE) has immunomodulatory activity using the Raw264.7 macrophage. Also, we investigated the effect of CRE on RasGRP3 expression. In the present study, CRE reduced IL-6 production in the low-LPS environment (1 ng/mL) and did not in the high-LPS environment (100 ng/mL). The suppression of IL-6 production in the low-LPS environment (1 ng/mL) was abolished after the pretreatment of RasGRP3 siRNA. The reduced RasGRP3 protein content by 100 ng/mL LPS treatment was increased by CRE treatment. Additionally, nobiletin, a major component of CRE showed a suppressive effect on IL-6 production in the low-LPS environment (1 ng/mL). The present results suggest that CRE alleviates inflammatory response via activating RasGRP3 expression in low-intensity inflammation. Full article
(This article belongs to the Special Issue Macrophage Activation, Natural Products and Inflammatory Diseases)
Show Figures

Figure 1

Back to TopTop