Recent Advances in the Health Benefits and Application of Tangerine Peel (Citri Reticulatae Pericarpium): A Review
Abstract
:1. Introduction
2. Health Benefits
2.1. Anticancer Effects
2.1.1. Lung Cancer
2.1.2. Nasopharyngeal Cancer
2.1.3. Liver Cancer
2.1.4. Breast Cancer
2.2. Cardiovascular Disease Effects
2.3. Effect on the Digestive System
2.4. Antioxidant and Anti-Inflammatory Effects
2.5. Alzheimer’s Disease (AD)
2.6. The Protective Effect on the Skeleton
2.7. Anti-Allergic Properties
3. Application in Food
3.1. CRP Products
3.1.1. Beverages
3.1.2. Jelly
3.1.3. Tea
3.1.4. Essential Oil
3.2. Dietary Supplements
4. Toxicology
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [PubMed]
- Zhang, W.; Fu, X.; Zhang, Y.; Chen, X.; Feng, T.; Xiong, C.; Nie, Q. Metabolome Comparison of Sichuan Dried Orange Peels (Chenpi) Aged for Different Years. Horticulturae 2024, 10, 421. [Google Scholar] [CrossRef]
- Xia, J.; Kotani, A.; Hakamata, H.; Kusu, F. Determination of hesperidin in Pericarpium Citri Reticulatae by semi-micro HPLC with electrochemical detection. J. Pharm. Biomed. Anal. 2006, 41, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Xiong, P.; Zhang, W.; Hu, H.; Tang, S.; Jia, B.; Huang, W. Mechanism of Citri Reticulatae Pericarpium as an anticancer agent from the perspective of flavonoids: A Review. Molecules 2022, 27, 5622. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.P.; Rajavel, T.; Nabavi, S.F.; Setzer, W.N.; Ahmadi, A.; Mansouri, K.; Nabavi, S.M. Hesperidin: A promising anticancer agent from nature. Ind. Crops Prod. 2015, 76, 582–589. [Google Scholar] [CrossRef]
- Yu, X.; Sun, S.; Guo, Y.; Liu, Y.; Yang, D.; Li, G.; Lü, S. Citri Reticulatae Pericarpium (Chenpi): Botany, ethnopharmacology, Phytochemistry, and pharmacology of a frequently used traditional Chinese medicine. J. Ethnopharmacol. 2018, 220, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Yang, H.; Ding, G. Mechanisms of Qi-blood circulation and Qi deficiency syndrome in view of blood and interstitial fluid circulation. J. Tradit. Chin. Med. 2013, 33, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Hu, D.; Song, Z.; Xu, Y.; Cai, F.; Chen, L.; Meng, W.; Li, L.; Chen, L.; Mao, Q.; et al. Distinguishing Radix Angelica sinensis from different regions by HS-SFME/GC–MS. Food Chem. 2015, 186, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Sui, X.; Ahmed, S.; Wang, Z.; Long, C. Ethnobotany and diversity of medicinal plants used by the buyi in eastern Yunnan, China. Plant Divers. 2020, 42, 401–414. [Google Scholar] [CrossRef]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.S. Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef]
- Chen, R.; Huang, B.; Yang, L.; Hong, F. Role of cholinergic signaling in alzheimer’s disease. Molecules 2022, 27, 1816. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Sato, T.; Takayama, Y.; Yoshihiro, M.; Yutaka, S.; Yano, M.; Ito, A. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macr-phages. Biochem. Pharmacol. 2003, 65, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Casquete, R.; Castro, S.M.; Martín, A.; Ruiz, S.; Saraiva, J.A.; Valera, M.; Teixeira, P. Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innov. Food Sci. Emerg. Technol. 2015, 31, 37–44. [Google Scholar] [CrossRef]
- Remigante, A.; Spinelli, S.; Straface, E.; Gambardella, L.; Russo, M.; Cafeo, G.; Caruso, D.; Falliti, G.; Dugo, P.; Dossena, S.; et al. Mechanisms underlying the anti-aging activity of bergamot (Citrus bergamia) extract in human red blood cells. Front. Physiol. 2023, 14, 1225552. [Google Scholar] [PubMed]
- Zhang, H.; Cui, J.; Tian, G.; DiMarco, C.C.; Gao, W.; Zhao, C.; Li, G.; Lian, Y.; Xiao, H.; Zheng, J. Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chem. 2019, 289, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; An, K.; Xiao, G. Evaluation of bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’) during storage. Food Chem. 2017, 230, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, P.; Duan, L.; Zheng, D.; Guo, L.; Yang, H.; Li, P. Simultaneous determination of six bioactive flavonoids in Citri Reticulatae Pericarpium by rapid resolution liquid chromatography coupled with triple quadrupole electrospray tandem mass spectrometry. Food Chem. 2013, 141, 3977–3983. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin. Cancer Biol. 2007, 17, 354–362. [Google Scholar] [CrossRef]
- Li, S.; Sang, S.; Pan, H.; Lai, S.; Lo, Y.; Yang, S.; Ho, T. Anti-inflammatory property of the urinary metabolites of nobiletin in mouse. Bioorganic Med. Chem. Lett. 2007, 17, 5177–5181. [Google Scholar] [CrossRef]
- Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Flavonoid profile and radical-scavenging activity of Mediterranean sweet lemon (Citrus limetta Risso) juice. Food Chem. 2011, 129, 417–422. [Google Scholar] [CrossRef]
- Guo, J.; Tao, H.; Cao, Y.; Ho, T.; Jin, S.; Huang, Q. Prevention of obesity and type 2 diabetes with aged Citrus Peel (chenpi) extract. J. Agric. Food Chem. 2016, 64, 2053–2061. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari, B.; Hadian, J.; Astatkie, T. Applications of essential oils and plant extracts in different industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Menon, V. Effect of hesperidin on matrix metalloproteinases and antioxidant status during nicotine-induced toxicity. Toxicology 2007, 238, 90–98. [Google Scholar] [CrossRef]
- Tan, S.; Dai, L.; Tan, P.; Liu, W.; Mu, Y.; Wang, J.; Huang, X.; Hou, A. Hesperidin administration suppresses the proliferation of lung cancer cells by promoting apoptosis via targeting the MIR-132/zeb2 signalling pathway. Int. J. Mol. Med. 2020, 46, 2069–2077. [Google Scholar] [CrossRef]
- Li, H.; Lin, L.; Feng, Y.; Zhao, M. Exploration of optimal preparation strategy of Chenpi (pericarps of Citrus reticulata blanco) flavouring essence with great application potential in sugar and salt-reduced foods. Food Res. Int. 2024, 175, 113669. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, Z.; Lu, A.; Liu, Z. Systems pharmacology-based strategy to explore the pharmacological mechanisms of citrus peel (Chenpi) for treating complicated diseases. Am. J. Chin. Med. 2021, 49, 391–411. [Google Scholar] [CrossRef]
- Nie, Y.; Wu, H.; Li, P.; Xie, L.; Luo, Y.; Shen, J.; Su, W. Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKS-AP-1 and ikks-iκb-NF-ΚB signaling pathways. Eur. J. Pharmacol. 2012, 690, 207–213. [Google Scholar] [CrossRef]
- Chen, M.; Peng, W.; Hu, S.; Deng, J. Mir-126/VCAM-1 regulation by Naringin suppresses cell growth of human non-small cell lung cancer. Oncol. Lett. 2018, 16, 4754–4760. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Li, S.; Ho, T.; Chang, H.; Tan, T.; Chung, W.; Wang, Y.; Chen, K.; Lin, C. Tangeretin derivative, 5-acetyloxy-6,7,8,4′-tetramethoxyflavone induces G2/M arrest, apoptosis and autophagy in human non-small cell lung cancer cells in vitro and in vivo. Cancer Biol. Ther. 2015, 17, 48–64. [Google Scholar]
- Zheng, D.; Hu, J.; Chao, X.; Zhou, Y.; Yang, J.; Chen, Z.; Yu, Y.; Cai, Y. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating parp-2/sirt1/ampk signaling pathway. Food Sci. Nutr. 2019, 7, 1104–1112. [Google Scholar] [CrossRef]
- Yeh, H.; Kao, T.; Hung, M.; Liu, J.; Lee, H.; Yeh, C. Hesperidin inhibited acetaldehyde-induced matrix metalloproteinase-9 gene expression in human hepatocellular carcinoma cells. Toxicol. Lett. 2009, 184, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Thangavel, P.; Vaiyapuri, M. Antiproliferative and apoptotic effects of naringin on diethylnitrosamine induced hepatocellular carcinoma in rats. Biomed. Aging Pathol. 2013, 3, 59–64. [Google Scholar] [CrossRef]
- Naz, H.; Tarique, M.; Ahamad, S.; Alajmi, M.F.; Hussain, A.; Rehman, M.T.; Luqman, S.; Hassan, M.I. Hesperidin-CAMKIV interaction and its impact on cell proliferation and apoptosis in the human hepatic carcinoma and neuroblastoma cells. J. Cell. Biochem. 2019, 120, 15119–15130. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ono, M.; Takeshima, M.; Nakano, S. Antiproliferative and Apoptosis-inducing Activity of Nobiletin Against Three Subtypes of Human Breast Cancer Cell Lines. Anticancer Res. 2014, 34, 1785–1792. [Google Scholar] [PubMed]
- Hermawan, A.; Putri, H.; Hanif, N.; Ikawati, M. Integrative Bioinformatics Study of Tangeretin potential targets for preventing metastatic breast cancer. Evid.-Based Complement. Altern. Med. 2021, 2021, 2234554. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.; Choi, S.; Liu, R.; Kim, H.; Kim, L.; Yun, S.; Lee, S. Inhibitory effects of Tangeretin, a citrus peel-derived flavonoid, on breast cancer stem cell formation through suppression of STAT3 signaling. Molecules 2020, 25, 2599. [Google Scholar] [CrossRef] [PubMed]
- Arivazhagan, L.; Sorimuthu, S. Tangeretin ameliorates oxidative stress in the renal tissues of rats with experimental breast cancer induced by 7,12-dimethylbenz[a]anthracene. Toxicol. Lett. 2014, 229, 333–348. [Google Scholar]
- Natarajan, N.; Thamaraiselvan, R.; Lingaiah, P.; Bala, S.; Balasubramanian, M.P. Effect of flavonone hesperidin on the apoptosis of human mammary carcinoma cell line MCF-7. Biomed. Prev. Nutr. 2011, 1, 207–215. [Google Scholar] [CrossRef]
- Lee, C.J.; Wilson, L.; Jordan, M.A.; Nguyen, V.; Tang, J.; Smiyun, G. Hesperidin suppressed proliferations of both Human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res. 2009, 24 (Suppl. 1), S15–S19. [Google Scholar] [CrossRef]
- Hsu, H.; Chen, H.; Juan, C.; Hsieh, C.; Lin, C.; Mai, T.; Chen, Y. Hesperidin and Chlorogenic Acid Synergistically Inhibit the Growth of Breast Cancer Cells via Estrogen Receptor/Mitochondrial Pathway. Life 2021, 11, 950. [Google Scholar] [CrossRef]
- Li, H.; Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Wan, J.; Luo, F.; Zhang, L.; Li, H.; Ren, G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol. Lett. 2013, 220, 219–228. [Google Scholar] [CrossRef]
- Agrawal, Y.O.; Sharma, P.K.; Shrivastava, B.; Arya, D.S.; Goyal, S.N. Hesperidin blunts streptozotocin-isoproternol induced myocardial toxicity in rats by altering of PPAR-γ receptor. Chem.-Biol. Interact. 2014, 219, 211–220. [Google Scholar] [CrossRef]
- Testai, L.; Martelli, A.; Marino, A.; D’Antongiovanni, V.; Ciregia, F.; Giusti, L.; Lucacchini, A.; Chericoni, S.; Breschi, M.C.; Calderone, V. The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury. Biochem. Pharmacol. 2013, 85, 1634–1643. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Qiao, W.; Xiao, Y.; Cui, L.; Wang, X.; Ren, W. Naringin mitigates myocardial strain and the inflammatory response in sepsis-induced myocardial dysfunction through regulation of PI3K/AKT/NF-ΚB pathway. Int. Immunopharmacol. 2019, 75, 105782. [Google Scholar] [CrossRef] [PubMed]
- Ni, G.; Wang, K.; Zhou, Y.; Wu, X.; Wang, J.; Shang, H.; Wang, L.; Li, X. Citri Reticulatae Pericarpium attenuates ang ii-induced pathological cardiac hypertrophy via upregulating peroxisome proliferator-activated receptors gamma. Ann. Transl. Med. 2020, 8, 1064. [Google Scholar] [CrossRef]
- Jain, D.; Katti, N. Combination treatment of lycopene and hesperidin protect experimentally induced ulcer in laboratory rats. J. Intercult. Ethnopharmacol. 2015, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.; Kuo, T. Hesperidin, Nobiletin, and Tangeretin are collectively responsible for the anti-neuroinflammatory capacity of Tangerine Peel (Citri Reticulatae Pericarpium). Food Chem. Toxicol. 2014, 71, 176–182. [Google Scholar] [CrossRef]
- Shu, Z.; Yang, B.; Zhao, H.; Xu, B.; Jiao, W.; Wang, Q.; Wang, Z.; Kuang, H. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells. Int. Immunopharmacol. 2014, 19, 275–282. [Google Scholar] [CrossRef]
- Jang, E.; Ryu, R.; Park, H.; Chung, S.; Teruya, Y.; Han, J.; Woo, T.; Kim, H. Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-κB, AP-1 and p38. Int. Immunopharmacol. 2013, 17, 502–507. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Park, S.; Jang, E.; Kim, H.; Kim, S. Anti-inflammatory and antioxidant mechanism of tangeretin in activated microglia. J. Neuroimmune Pharmacol. 2016, 11, 294–305. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, L.; Zhao, H. Potential role of nobiletin in Alzheimer’s disease. J. Food Bioact. 2023, 24, 29–39. [Google Scholar] [CrossRef]
- Murata, T.; Ishiwa, S.; Lin, X.; Nakazawa, Y.; Tago, K.; Funakoshi-Tago, M. The citrus flavonoid, nobiletin inhibits neuronal inflammation by preventing the activation of NF-ΚB. Neurochem. Int. 2023, 171, 105613. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Tominari, T.; Matsumoto, C.; Hirata, M.; Takita, M.; Inada, M.; Miyaura, C. Nobiletin, a polymethoxy flavonoid, suppresses bone resorption by inhibiting NFκB-dependent prostaglandin E synthesis in osteoblasts and prevents bone loss due to estrogen deficiency. J. Pharmacol. Sci. 2011, 115, 89–93. [Google Scholar] [CrossRef]
- Kou, G.; Li, Z.; Wu, C.; Liu, Y.; Hu, Y.; Guo, L.; Xu, X.; Zhou, Z. Citrus tangeretin improves skeletal muscle mitochondrial biogenesis via activating the AMPK-PGC1-α pathway in vitro and in vivo: A possible mechanism for its beneficial effect on physical performance. J. Agric. Food Chem. 2018, 66, 11917–11925. [Google Scholar] [CrossRef]
- Jeon, E.J.; Lee, D.H.; Kim, Y.J.; Ahn, J.; Kim, M.J.; Hwang, J.T.; Hur, J.; Kim, M.; Jang, Y.J.; Ha, T.Y.; et al. Effects of yuja peel extract and its flavanones on osteopenia in ovariectomized rats and osteoblast differentiation. Mol. Nutr. Food Res. 2016, 60, 2587–2601. [Google Scholar] [CrossRef]
- Shi, X.; Niu, L.; Zhao, L.; Wang, B.; Jin, Y.; Li, X. The antiallergic activity of flavonoids extracted from Citri Reticulatae Pericarpium. J. Food Process. Preserv. 2018, 42, 13588. [Google Scholar] [CrossRef]
- Martincorena, I.; Campbell, P.J. Somatic mutation in cancer and normal cells. Science 2015, 349, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhang, X.; Zhang, R.; Chen, X.; Liu, S.; Sun, Q. Modular characteristics and the mechanism of Chinese medicine’s treatment of gastric cancer: A data mining and pharmacology-based identification. Ann. Transl. Med. 2021, 9, 1777. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Tao, Y.; Yu, Q.; Huang, Y.; Liu, R.; Zhang, X.; Wu, T.; Pan, S.; Xu, X. Identification of crucial polymethoxyflavones tangeretin and 3,5,6,7,8,3′,4′-heptamethoxyflavone and evaluation of their contribution to anticancer effects of pericarpium citri reticulatae ‘chachi’ during storage. Antioxidants 2022, 11, 1922. [Google Scholar] [CrossRef]
- Kamaraj, S.; Ramakrishnan, G.; Anandakumar, P.; Jagan, S.; Devaki, T. Antioxidant and anticancer efficacy of hesperidin in benzo(a)pyrene induced lung carcinogenesis in mice. Investig. New Drugs 2008, 27, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Yu, Z.; Li, X.; Tang, K.; Tu, C.; Qi, P.; Liao, Q.; Chen, P.; Zeng, Z.; Li, G.; et al. Genome-wide analysis of Epstein-Barr virus (EBV) integration and strain in C666-1 and Raji Cells. J. Cancer 2016, 7, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Luo, H.; Hu, P.; Yang, Y.; Wu, B.; Zheng, G. Evaluation of chemical components in Citri Reticulatae Pericarpium of different cultivars collected from different regions by GC–MS and HPLC. Food Sci. Nutr. 2017, 6, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Cantó, C.; Sauve, A.A.; Bai, P. Crosstalk between poly (ADP-ribose) polymerase and sirtuin enzymes. Mol. Asp. Med. 2013, 34, 1168–1201. [Google Scholar] [CrossRef]
- Jubin, T.; Kadam, A.; Jariwala, M.; Bhatt, S.; Sutariya, S.; Gani, A.R.; Gautam, S.; Begum, R. The PARP family: Insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif. 2016, 49, 421–437. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.; Shaw, R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol. Cell 2017, 66, 789–800. [Google Scholar] [CrossRef]
- Pinton, G.; Manente, A.G.; Murer, B.; De Marino, E.; Mutti, L.; Moro, L. PARP1 inhibition affects pleural mesothelioma cell viability and uncouples AKT/mtor axis via SIRT1. J. Cell. Mol. Med. 2013, 17, 233–241. [Google Scholar] [CrossRef]
- Moon, J.; Cho, S. Nobiletin Induces Protective Autophagy Accompanied by ER-Stress Mediated Apoptosis in Human Gastric Cancer SNU-16 Cells. Molecules 2016, 21, 914. [Google Scholar] [CrossRef]
- Lee, H.; Yeh, H.; Kao, T.; Hung, M.; Liu, J.; Huang, Y.; Yeh, C. The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappab in human hepatocellular carcinoma cells. Toxicol. Lett. 2010, 194, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of Human Breast Cancer Cell Lines. Cancer Sci. 2014, 105, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Regitz, Z.V.; Kararigas, G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol. Rev. 2017, 97, 1–37. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial effects of citrus flavonoids on cardiovascular and Metabolic Health. Oxidative Med. Cell. Longev. 2019, 2019, 5484138. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Wang, J.; Ye, W.; Lu, J.; Li, C.; Zhang, D.; Ye, W.; Xu, S.; Chen, C.; Liu, P.; et al. Citri Reticulatae Pericarpium (Chenpi): A multi-efficacy pericarp in treating cardiovascular diseases. Biomed. Pharmacother. 2022, 154, 113626. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, X.; Ni, G.; Wang, S.; Peng, W.; Zhang, H.; Gao, J.; Li, X. Citri Reticulatae Pericarpium protects against isoproterenol-induced chronic heart failure via activation of PPARΓ. Ann. Transl. Med. 2020, 8, 1396. [Google Scholar] [CrossRef]
- Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Molecular mechanisms behind the biological effects of Hesperidin and Hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015, 124, 64–74. [Google Scholar] [CrossRef]
- Parkar, N.A.; Bhatt, L.K.; Addepalli, V. Efficacy of nobiletin, a citrus flavonoid, in the treatment of the cardiovascular dysfunction of diabetes in rats. Food Funct. 2016, 7, 3121–3129. [Google Scholar] [CrossRef]
- Yuan, S.; Jin, J.; Chen, L.; Hou, Y.; Wang, H. Naoxintong/PPAR. Evid.-Based Complement. Altern. Med. 2017, 2017, 3801976. [Google Scholar]
- Zheng, Y.; Zeng, X.; Chen, P.; Chen, T.; Peng, W.; Su, W. Integrating pharmacology and gut microbiota analysis to explore the mechanism of Citri Reticulatae Pericarpium against reserpine-induced spleen deficiency in rats. Front. Pharmacol. 2020, 11, 586350. [Google Scholar] [CrossRef]
- Wang, R.; Peng, Y.; Meng, H.; Li, X. Protective effect of polysaccharides fractions from Sijunzi decoction in reserpine-induced spleen deficiency rats. RSC Adv. 2016, 6, 60657–60665. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, W.; Guo, Y.; Jia, H.; Zha, Q.; Liu, Z.; Xu, S.; Lu, A. Effects on neuroendocrinoimmune network of Lizhong Pill in the reserpine induced rats with spleen deficiency in traditional Chinese medicine. J. Ethnopharmacol. 2011, 133, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Protective effects of orange (Citrus sinensis L.) peel aqueous extract and hesperidin on oxidative stress and peptic ulcer induced by alcohol in rat. Lipids Health Dis. 2017, 16, 152. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Yu, J.; Chang, X.; Wang, M.; An, L. Prevalence and correlates of metabolic syndrome in Chinese children: The China Health and Nutrition Survey. Nutrients 2017, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Tait, A.R.; Kitts, D.D. Flavonoid composition of Orange Peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017, 218, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, D.; Yu, C.; Lv, B.; Peng, J.; Wang, J.; Lin, Y. Citrus nobiletin ameliorates experimental colitis by reducing inflammation and restoring impaired intestinal barrier function. Mol. Nutr. Food Res. 2015, 59, 829–842. [Google Scholar] [CrossRef]
- Su, S.; Shyu, T.; Chien, J. Antioxidant activities of citrus herbal product extracts. Food Chem. 2008, 111, 892–896. [Google Scholar] [CrossRef]
- Nakajima, A.; Ohizumi, Y. Potential benefits of nobiletin, a citrus flavonoid, against alzheimer’s disease and parkinson’s disease. Int. J. Mol. Sci. 2019, 20, 3380. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, Y.; Ham, H.; Park, Y.; Jeong, S.; Lee, J. Nobiletin suppresses adipogenesis by regulating the expression of adipogenic transcription factors and the activation of AMP-activated protein kinase (AMPK). J. Agric. Food Chem. 2011, 59, 12843–12849. [Google Scholar] [CrossRef]
- Wei, M.; Chen, L.; Liu, J.; Zhao, J.; Liu, W.; Feng, F. Protective effects of a Chotosan Fraction and its active components on β-amyloid-induced neurotoxicity. Neurosci. Lett. 2016, 617, 143–149. [Google Scholar] [CrossRef]
- Jahan, S.; Ansari, U.A.; Siddiqui, A.J.; Iqbal, D.; Khan, J.; Banawas, S.; Alshehri, B.; Alshahrani, M.M.; Alsagaby, S.A.; Redhu, N.S.; et al. Nobiletin ameliorates cellular damage and stress response and restores neuronal identity altered by sodium arsenate exposure in human ipscs-derived hnpcs. Pharmaceuticals 2022, 15, 593. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Aoyama, Y.; Nguyen, T.L.; Shin, E.J.; Kim, H.C.; Yamada, S.; Nakai, T.; Nagai, T.; Yokosuka, A.; Mimaki, Y.; et al. Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Behav. Brain Res. 2013, 250, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Neba, G.N.; Breda, C.; Bhambra, A.S.; Arroo, R.R. Effect of the citrus flavone nobiletin on circadian rhythms and metabolic syndrome. Molecules 2022, 27, 7727. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Shimizu, M.; Yamauchi, Y.; Sato, R. Polymethoxyflavones in orange peel extract prevent skeletal muscle damage induced by eccentric exercise in rats. Biosci. Biotechnol. Biochem. 2020, 85, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Lee, Y.; Kim, Y. Preventive effects of citrus unshiu peel extracts on bone and lipid metabolism in OVX Rats. Molecules 2014, 19, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Breiteneder, H.; Ebner, C. Molecular and biochemical classification of plant-derived food allergens. J. Allergy Clin. Immunol. 2000, 106, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H. Epidemiology of Food Allergy. J. Allergy Clin. Immunol. 2011, 127, 594–602. [Google Scholar] [CrossRef] [PubMed]
- de Benedictis, F.M.; Bush, A. Corticosteroids in respiratory diseases in children. Am. J. Respir. Crit. Care Med. 2012, 185, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Ayseli, M.T.; İpek Ayseli, Y. Flavors of the future: Health benefits of flavor precursors and volatile compounds in plant foods. Trends Food Sci. Technol. 2016, 48, 69–77. [Google Scholar] [CrossRef]
- Guichard, E.; Barba, C.; Thomas-Danguin, T.; Tromelin, A. Multivariate statistical analysis and odor–taste network to reveal odor–taste associations. J. Agric. Food Chem. 2019, 68, 10318–10328. [Google Scholar] [CrossRef]
- Barnett, S.M.; Sablani, S.S.; Tang, J.; Ross, C.F. Utilizing herbs and microwave-assisted thermal sterilization to enhance saltiness perception in a chicken pasta meal. J. Food Sci. 2019, 84, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Abdurrahman Isa, A.; Samsuri, S.; Aini Amran, N. Integration of Maceration and Freeze Concentration for Recovery of Vitamin C from Orange Peel Waste. IOP Conf. Ser. Earth Environ. Sci. 2019, 268, 12101. [Google Scholar] [CrossRef]
- Elkhatim, K.A.; Elagib, R.A.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.; Santos, B.A.d.; Nunes, G.; Soares, J.M.; Amaral, L.A.d.; Souza, G.H.O.d.; Resende, J.T.V.d.; Menegassi, B.; Rafacho, B.P.M.; Schwarz, K.; et al. Addition of Orange Peel in Orange Jam: Evaluation of Sensory, Physicochemical, and Nutritional Characteristics. Molecules 2020, 25, 1670. [Google Scholar] [CrossRef] [PubMed]
- Monsen, E.R. Dietary reference intakes for the antioxidant nutrients: Vitamin C, vitamin E, selenium, and carotenoids. J. Am. Diet. Assoc. 2000, 100, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, Y.; Konishi, T.; Tako, M. Isolation and characterization of pectin from peel of Citrus tankan. Biosci. Biotechnol. Biochem. 2008, 72, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Tani, Y.; Kato, N. Biotechnological application of cellular functions of the methylotrophic yeast. J. Mol. Catal. B Enzym. 1999, 6, 161–173. [Google Scholar] [CrossRef]
- Peng, M.; Gao, Z.; Liao, Y.; Guo, J.; Shan, Y. Development of functional kiwifruit jelly with Chenpi (FKJ) by 3D food printing technology and its anti-obesity and antioxidant potentials. Foods 2022, 11, 1894. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Long, Y.; Li, H.; Zeng, X.; Zeng, Z.; Mo, X.; Wu, D.; Liao, Y.; Huang, Y.; et al. Short-term steaming during processing impacts the quality of Citri Reticulatae “Chachi” peel. Food Chem. 2024, 447, 138964. [Google Scholar] [CrossRef]
- Wang, J.; Hao, J.; Miao, D.; Xiao, P.; Jiang, X.; Hu, L. Compound Chenpi tea consumption reduces obesity-related metabolic disorders by modulating gut microbiota and serum metabolites in mice. J. Sci. Food Agric. 2023, 104, 431–442. [Google Scholar] [CrossRef]
- Zeng, L.; Li, Z.; Xiao, T.; Cai, Y.; Chu, C.; Chen, Z.; Li, P.; Li, J.; Liu, H. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Sci. Adv. 2020, 6, 6208. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zeng, X.; Chen, T.; Peng, W.; Su, W. Chemical profile, antioxidative, and gut microbiota modulatory properties of Ganpu tea: A derivative of Pu-erh tea. Nutrients 2020, 12, 224. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhang, Y.; Lin, Z.; Liang, Y. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Luo, Y.; Zeng, W.; Huang, E.; Li, X.; Chen, W.; Yu, Q.; Ke, H. Discrimination of Citrus reticulata Blanco and Citrus reticulata ‘Chachi’ as well as the Citrus reticulata ‘Chachi’ within different storage years using ultra high-performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach. J. Pharm. Biomed. Anal. 2019, 171, 218–231. [Google Scholar] [PubMed]
- Duan, L.; Guo, L.; Dou, L.; Zhou, L.; Xu, G.; Zheng, D.; Li, P.; Liu, H. Discrimination of citrus reticulata Blanco and Citrus reticulata ‘chachi’ by gas chromatograph-mass spectrometry based metabolomics approach. Food Chem. 2016, 212, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Giatropoulos, A.; Papachristos, D.P.; Kimbaris, A.; Koliopoulos, G.; Polissiou, M.G.; Emmanouel, N.; Michaelakis, A. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol. Res. 2012, 111, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Ali, M.; Alam, P. Phytochemical investigation of the fruit peels of Citrus reticulata Blanco. Nat. Prod. Res. 2010, 24, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Kim, J.; Lee, A.; Kim, T.; Paik, D. Antimicrobial activity of acid-hydrolyzed Citrus unshiu peel extract in milk. J. Dairy Sci. 2014, 97, 1955–1960. [Google Scholar] [CrossRef]
- He, Q.; Xiao, K. The effects of tangerine peel (Citri reticulatae pericarpium) essential oils as glazing layer on freshness preservation of bream (Megalobrama amblycephala) during superchilling storage. Food Control. 2016, 69, 339–345. [Google Scholar] [CrossRef]
- Commission, Chinese Pharmacopoeia, and State Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Press: Beijing, China, 2015. [Google Scholar]
- Li, M.; Zhou, W.; Trevillyan, J.; Hearps, A.; Zhang, L.; Jaworowski, A. Effects and safety of Chinese herbal medicine on inflammatory biomarkers in cardiovascular diseases: A systematic review and meta-analysis of randomized controlled trials. Front. Cardiovasc. Med. 2022, 9, 922497. [Google Scholar] [CrossRef]
- Wagner, H.; Bauer, R.; Xiao, P.; Staudinger, A. Pericarpium Citri Reticulatae—Chenpi Pericarpium Citri Reticulatae Viride—Qingpi. Chromatogr. Fingerpr. Anal. Herb. Med. 2011, 1, 647–663. [Google Scholar]
- Xing, Y.; Tong, L.; Chen, N.; Yu, Z.; Zhao, Y. Simultaneous determination of four aflatoxins in Citrus reticulatablanco by ultra performance liquid chromatography coupled with immunomagnetic beads for enrichment and purification. Chin. J. Chromatogr. 2015, 33, 1320. [Google Scholar] [CrossRef] [PubMed]
- Palou, L.; Valencia, S.A.; Pérez, M.B. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef]
- Palou, L. Penicillium digitatum, Penicillium italicum (Green Mold, Blue Mold). Postharvest Decay 2014, 145, 45–102. [Google Scholar]
Diseases | Components | Health Benefits | Mechanisms | Experimental Models | Dosages | References |
---|---|---|---|---|---|---|
Lung Cancer | Hesperidin | Inhibited nicotine toxicity smoking-induced lung cancer | Reduced MMP expression and enhanced antioxidant capacity | Male albino wistar rats | 25 mg/kg/day for 22 weeks | [23] |
Inhibited cancer cell growth and induce apoptosis | Inhibited NSCLC cell proliferation and promotes apoptosis via the miR-132/ZEB2 pathway | Adult Sprague-Dawley (SD) male rats (weight, 328–365 g) | 60 mg/kg/day | [24] | ||
Developed for the treatment of non-small cell lung cancer | Induced apoptosis via the mitochondrial pathway | A549 human NSCLC cell line and BEAS-2B human normal lung epithelial cell line | / | [25] | ||
Reduced the risk of COPD progressing to lung cancer | Regulated AKT1, IL6, VEGFA, MMP9 and TP53 | Seven-week-old female ICR mice with body weight of 23 ± 2 g (n = 90) | (25, 50, 100 mg/kg/day) | [26] | ||
Naringin | Reduced mucus production and inhibited tumor progression | Inhibited the synergistic activity of MAPKs/AP-1 and IKKs/IκB/NF-κB signal-ing pathways | A549 cells (human lung adenocarcinoma cell line) | / | [27] | |
Inhibited the proliferation and apoptosis of small cell lung cancer cells | Inhibited PI3K/AKT/mTOR and NF-κB pathways | Human H69AR SCLC cell line | / | [28] | ||
Tangeretin | Inhibited the growth of cancer cells | Induced G1 arrest or apoptosis in human non-small cell lung cancer cells | / | / | [29] | |
Tangeretin derivatives | Inhibited the growth of CL1-5 lung cancer cells | Induced G2/M cell cycle arrest, autophagy, and apoptosis | CL1-5 lung cancer cells | / | [30] | |
Nasopharyngeal Cancer | Nobiletin | Inhibited the growth of nasopharyngeal cancer cells | Induced C666-1 cells apoptosis | C666-1 cells | / | [30] |
Liver cancer | Hesperidin | Inhibited the invasiveness of HCC cells | Inhibited NF-κB and AP-1 activities | HepG2 cells, a human hepatocellular carcinoma cell line | / | [31] |
Tangeretin | Decreased proliferation and migration of HepG2 cells | Activated the JNK pathway, reduced Bcl-2 phosphorylation | HepG2 cells, a human hepatocellular carcinoma cell line | 90 μg/mL/day | [30] | |
Naringin | Inhibited the growth of hepatocellular carcinoma cells | Reduced cell proliferation and induced apoptosis in liver cancer | Male Wistar rat model | (40 mg/kg BW) for 16 weeks | [32] | |
Hesperidin/naringin | Induced HepG2 cells apoptosis | Inhibited NF-κB and AP-1 activities through downregulating MMP-9 expression in HCC cells | HepG2 | / | [33] | |
Breast Cancer | Nobiletin | Inhibited tumor growth | Inhibited ERK1/2 and PI3K/AKT pathways | MDA-MB-468 cell line | / | [34] |
Tangeretin | Inhibited breast cancer cell metastasis | Targeted TP53, PTGS2, MMP9 and PIK3CA and modulated the PI3K/AKT pathway | / | / | [35] | |
Hesperidin | Treated BCSCs exhibited reduced proliferation | Targeted BCSCs by inhibited the Stat3/Sox2 signaling pathway | Breast cancer cell lines MCF-7 and MDA-MB-231 | 2.5 mg/kg 4 times | [36] | |
The combination of hesperidin and chlorogenic acid | Treated DMBA-induced breast cancer with cell transplantation | Reduced DMBA-induced oxidative stress and renal DNA damage | Seven-week-old virgin female Wistar rats | 50 mg/kg for four weeks | [37] | |
Naringin | Induced apoptosis and caused DNA damage | Enhanced concentration-dependent cytotoxicity against human breast cancer cell line MCF-7 | MCF-7 cell line | / | [38] | |
Treated drug-resistant cancer cells | Inhibited activity of hesperidin on the proliferation of MCF-7-GFP-Tubulin cells | MCF-7-GFP-Tubulin Cells | / | [39] | ||
Inhibited the breast cancer cell metastasis | Induced the protein kinase C-α translocation to the cell membrane by chlorogenic acid | Breast cancer cell MCF-7 | 100–600 µM/72 h | [40] | ||
Improved cell migration of MDA-MB 231 cells | Inhibited the cell proliferation, with increased p21 and decreased inhibitor | MDA-MB-231, MDA-MB-468, and BT-549 cells/Severe Combined Immunodeficiency (SCID) hairless female mice | 100 mg/kg body weight | [41] | ||
Cardiovascular diseases effects | Hesperidin | Inhibited cardiomyocyte apoptosis and reduced oxidative stress damage | Upregulated PPARγ expression | Male Wistar albino rats of either sex weighing 180–200 g | 100 mg/kg/day | [42] |
Nobiletin | Alleviated myocardial dysfunction and attenuated myocardial ischemia and reperfusion injury | Induced activation and overexpressed of MMP-2 and MMP-9 | Male wistar rats | 10 mg kg−1, and 25 mg kg−1 for four weeks | [41] | |
Naringenin | Exerted anti-ischemic effects | Achieved this through the activation of mitochondrial BK channels | Male wistar rats | / | [43] | |
Naringin | Attenuated myocardial strain and inflammatory responses in sepsis-induced myocardial dysfunction | Regulated PI3K/AKT/NF-κB pathway | Adult male Sprague-Dawley (SD) rats (weight: 300 ± 5 g, age: 8 w–9 w) | 50 and 100 mg/kg for 7 days | [44] | |
Extract of Citri reticulatae Pericarpium (CRP) | Protected the angiotensin II (Ang II)-induced pathologic cardiac hypertrophy | Involved the activation of PPARγ, with Peroxisome Proliferator-Activated Re-ceptors (PPARs) | Eight-week-old C57BL/6J male mice | 0.5 g/kg/d for 4 weeks | [45] | |
Improved cardiac function induced by Ang II infusion | Decreased in collagen I protein levels | Wild type mice | / | [45] | ||
Effect on the Digestive System | Hesperidin | Showed synergism in anti-ulcer activity | Regulated intestinal flora and inhibits intestinal smooth muscle contractions | Thirty Wistar albino rats of either sex weighing 200–250 g | 100 mg/kg | [46] |
Promoted gastrointestinal motility | Increased levels of acetylcholine (ACh) and motilin (MTL), and decreased levels of Substance P (SP) and vasoactive intestinal peptide (VIP) | / | / | [46] | ||
Ethyl acetate | Demonstrated the ability to enhance gastrointestinal motility | / | / | / | [46] | |
Antioxidant and Anti-inflammatory Effects | Nobiletin | Inhibited anti-inflammatory activity | Used a lipopolysaccharide (LPS)-activated BV2 microglia culture system | The BV2 microglial cells | 25–100 μM | [47] |
Inhibited anti-inflammatory activity | Inhibited NO production in lipopolysaccha-ride (LPS)-activated Raw 264.7 murine macrophage cells | BV-2 microglial cells | / | [48] | ||
Tangeretin | Suppressed itching caused by allergies | Inhibited the action of histamine and the activation of nuclear factor-κB (NF-κB), activator protein (AP)-1 | Male ICR mice (5 weeks old, 20–25 g) and male Hartley guinea pigs (270–330 g) | nobiletin 5 mg/kg, tangeretin 10 mg/kg | [49] | |
Regulated inflammatory responses by modulated the activity of NF-κB via various signaling pathways | Inhibited LPS-induced phosphorylation of MAPKs and Akt in BV2 cells | BV2 cells | / | [50] | ||
Alzheimer’s disease (AD) | Nobiletin | Prevented cerebrovascular lesions | Reduced the abnormal accumulation of neurotoxic amyloid-beta peptides | Mice | / | [11] |
Exerted neuroprotective effects | Improved cognitive impairment and pathological features in animal models of AD | APP-SL 7–5 Tg mice, olfactory bulbectomized mice and 3XTg-AD mice | / | [51] | ||
Suppressed neurasthenia | Achieved neuroprotection through anti-inflammatory, neurotrophic, and cholinergic effects | APP-SL 7–5 Tg mice, olfactory bulbectomized mice and 3XTg-AD mice | / | [51] | ||
Prevented neuroinflammation | Prevented the mRNA expression of inducible NO synthase (iNOS) and cy-clooxygenase-2 (COX-2), respectively | BV-2 cells | / | [52] | ||
Prevented neuroinflammation | Inhibited the LPS-induced mRNA expression of CCL2, CXCL1, IL-6, and TNFα | BV-2 cells | nobiletin (50, 100 μM) | [52] | ||
Tangeretin | Prevented cerebrovascular lesions | Reversed N-methyl- D-aspartate (NMDA) receptor hypofunction | Mice | / | [11] | |
The protective effect on the skeleton | Nobiletin | Restored bone mass and benefit bone health | Inhibited the NF-κB pathway | OVX mice | nobiletin (60 μM) | [53] |
Tangeretin | Improved exercise performance | Activated mitochondrial biogenesis signaling pathway | C2C12 myoblasts/Male Kunming mice | 100 mg/kg tangeretin | [54] | |
Improved exercise performance | Enhanced mitochondrial biogenesis via activating the AMPK-PGC1-α pathway | C2C12 myoblasts/Male Kunming mice | / | [55] | ||
Other effects (Food allergy and so on) | Hesperidin and Narirutin | Decreased the levels of TH2-like cytokines responsible for IgE synthesis | Reduced releases of antigen-induced beta-hexosaminidase degranulation | RBL-2H3 cell line/Female BALB/c mice (6–8 weeks old, 20–25 g) | 232.0325 and 98.7946 mg/g | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Guo, Q.; Xiao, Z.; Sarengaowa; Xiao, Y.; Feng, K. Recent Advances in the Health Benefits and Application of Tangerine Peel (Citri Reticulatae Pericarpium): A Review. Foods 2024, 13, 1978. https://doi.org/10.3390/foods13131978
Shi M, Guo Q, Xiao Z, Sarengaowa, Xiao Y, Feng K. Recent Advances in the Health Benefits and Application of Tangerine Peel (Citri Reticulatae Pericarpium): A Review. Foods. 2024; 13(13):1978. https://doi.org/10.3390/foods13131978
Chicago/Turabian StyleShi, Minke, Qihan Guo, Zhewen Xiao, Sarengaowa, Ying Xiao, and Ke Feng. 2024. "Recent Advances in the Health Benefits and Application of Tangerine Peel (Citri Reticulatae Pericarpium): A Review" Foods 13, no. 13: 1978. https://doi.org/10.3390/foods13131978
APA StyleShi, M., Guo, Q., Xiao, Z., Sarengaowa, Xiao, Y., & Feng, K. (2024). Recent Advances in the Health Benefits and Application of Tangerine Peel (Citri Reticulatae Pericarpium): A Review. Foods, 13(13), 1978. https://doi.org/10.3390/foods13131978