Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = cinnamon soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2018 KiB  
Article
Optimizing Maize Production and Soil Microbiome Structure Through Reduced Chemical Nitrogen Supplemented with Organic Fertilizer
by Jian Zhang, Yaoyao Li, Jiawei Yuan, Lu Wang, Guoying Wei and Zhejun Liang
Plants 2025, 14(15), 2275; https://doi.org/10.3390/plants14152275 - 24 Jul 2025
Viewed by 257
Abstract
This study investigated the effects of reduced nitrogen combined with an organic fertilizer on maize yield, soil microbial communities, and enzyme activities to optimize fertilization strategies. A field experiment on cinnamon soil in Yuncheng, Shanxi, was conducted and included six treatments: no fertilizer [...] Read more.
This study investigated the effects of reduced nitrogen combined with an organic fertilizer on maize yield, soil microbial communities, and enzyme activities to optimize fertilization strategies. A field experiment on cinnamon soil in Yuncheng, Shanxi, was conducted and included six treatments: no fertilizer (CK), conventional N (NC0, 180 kg N/ha), sole organic fertilizer (CN0, 3000 kg/ha), and reduced-N + organic fertilizer (CN1: 90 kg N/ha + 3000 kg/ha; CN2: 135 kg N/ha + 3000 kg/ha; and CN3: 180 kg N/ha + 3000 kg/ha). We analyzed yield components, soil nutrients, urease and invertase activities, and bacterial community structure (16S rRNA sequencing). The key results are as follows: CN1 achieved the highest yield (9764.87 kg/ha), which was 46.8% higher than CK. CN2 maintained comparable yields while delivering higher enzyme activities and microbial abundance, positioning this strategy as suitable for soil remediation. Co-application enriched two beneficial phyla, Proteobacteria and Planctomycetota (19% in CN2), with Proteobacteria positively correlating with urease activity and alkali-hydrolyzable N (p < 0.05), while Verrucomicrobiota negatively correlated with urease activity. In conclusion, 25–50% N reduction with an organic fertilizer (3000 kg/ha) synergistically enhances yield, soil enzymes, and beneficial microbiota, supporting sustainable high-yield agriculture with improved soil fertility. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

21 pages, 2030 KiB  
Article
Effect of Compost Addition on Carbon Mineralization and Kinetic Characteristics in Three Typical Agricultural Soils
by Shanglong Zhang, Xianni Chen, Aoxue Shi, Minggang Xu, Fenggang Zhang, Lu Zhang, Jiaojiao Zang, Xiaofeng Xu and Jiakai Gao
Agronomy 2025, 15(7), 1559; https://doi.org/10.3390/agronomy15071559 - 26 Jun 2025
Viewed by 319
Abstract
Soil carbon is a crucial component of the global carbon cycle, and carbon mineralization is influenced by various factors. However, there is a lack of systematic analyses on the responses of carbon mineralization in different soil types to the addition of exogenous organic [...] Read more.
Soil carbon is a crucial component of the global carbon cycle, and carbon mineralization is influenced by various factors. However, there is a lack of systematic analyses on the responses of carbon mineralization in different soil types to the addition of exogenous organic matter. This study investigates the effects of compost addition on the mineralization and kinetic characteristics of soil carbon across three typical agricultural soils: paddy soil, black soil, and cinnamon soil. A 210-day incubation study was conducted with four treatments: Control (un-amended soil), R (soil + straw), R1M (soil + straw + low compost application rate), R2M (soil + straw + high compost application rate). The results showed that the CO2 emission rates of the three soils were higher during the early stage (1–37 days) and decreased afterward. The CO2 emission rates of the paddy soil and the black soil were significantly higher than those of the cinnamon soil. The addition of compost significantly increased both the CO2 emission rate and the cumulative release of CO2, especially in the R2M treatment. At the end of the incubation, the SOC contents were higher in the R2M treatment than in the Control for all three soils (p < 0.05), with the most notable increase in the cinnamon soil (60.93%). Compost addition significantly enhanced the active carbon pool (Ca), slow carbon pool (Cs), and potentially mineralizable carbon pool (Cp), while decreasing the mineralization rate (ka) of the Ca, but the effect on the mineralization rate (ks) of the Cs and mineralization entropy (Cm) varied by soil types. The ks of the paddy soil was significantly reduced by 23.08% under the R1M and R2M treatments compared with the Control and R treatment. The ks of the black soil was significantly increased by 59.52% under the R2M treatment compared with the Control. The ks of the cinnamon soil was elevated considerably by 79.31% under the R2M treatment compared with the Control, R, and R1M treatments (averaging 0.29 × 10−2 d), and the ks of the paddy soil and black soil were significantly higher than those of the cinnamon soil under the R2M treatment. The Cm was significantly higher in the organic material added treatments than in the Control for the black soil and the paddy soil, but showed a higher value in the R treatment than in the R2M and Control for the cinnamon soil. In conclusion, compost addition stimulated soil carbon mineralization and improved the SOC content, especially in the cinnamon soil, while reducing the mineralization rate of the active carbon pool across the three soils. The mineralization rate of the slow carbon pool and the changes in mineralization entropy were dependent on soil types, primarily related to the initial soil nutrient contents, pH, and particle compositions. These findings offer valuable insights for managing the soil carbon pool in agricultural ecosystems. Full article
Show Figures

Figure 1

23 pages, 6736 KiB  
Article
Parameter Calibration and Experimental Study of a Discrete Element Simulation Model for Yellow Cinnamon Soil in Henan, China
by Huiling Ding, Mengyang Wang, Qiaofeng Wang, Han Lin, Chao Zhang and Xin Jin
Agriculture 2025, 15(13), 1365; https://doi.org/10.3390/agriculture15131365 - 25 Jun 2025
Cited by 1 | Viewed by 374
Abstract
To investigate the interaction mechanism between agricultural tillage machinery and soil, this study established a precise simulation model by integrating physical and numerical experiments using typical yellow cinnamon soil collected from western Henan Province, China. The discrete element parameters for soils with varying [...] Read more.
To investigate the interaction mechanism between agricultural tillage machinery and soil, this study established a precise simulation model by integrating physical and numerical experiments using typical yellow cinnamon soil collected from western Henan Province, China. The discrete element parameters for soils with varying moisture contents were calibrated based on the Hertz–Mindlin (no slip) contact model. Through Plackett–Burman screening, steepest ascent optimization, and Box–Behnken response surface methodology, a predictive model correlating moisture content, parameters, and repose angle was developed, yielding the optimal contact parameter combination: interparticle static friction coefficient (0.6), soil–65Mn static friction coefficient (0.69), and interparticle rolling friction coefficient (0.358). For the Bonding model, orthogonal experiments coupled with NSGA-II multi-objective optimization determined the optimal cohesive parameters targeting maximum load (673.845 N) and displacement (9.765 mm): normal stiffness per unit area (8.8 × 107 N/m3), tangential stiffness per unit area (6.85 × 107 N/m3), critical normal stress (6 × 104 Pa), critical tangential stress (3.15 × 104 Pa), and bonding radius (5.2 mm). Field validation using rotary tillers and power harrows demonstrated less than 6% deviation in soil fragmentation rates between simulations and actual operations, confirming parameter reliability and providing theoretical foundations for constructing soil-tillage machinery interaction models. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 3252 KiB  
Review
Plant- and Microbial-Based Organic Disease Management for Grapevines: A Review
by Mereke Alimzhanova, Nurkanat Meirbekov, Yerkanat Syrgabek, Rebeca López-Serna and Saltanat Yegemova
Agriculture 2025, 15(9), 963; https://doi.org/10.3390/agriculture15090963 - 29 Apr 2025
Cited by 2 | Viewed by 1049
Abstract
This review compares 32 studies (2000–2024) on plant- and microbial-based organic disease management to control grapevine pests and diseases. A systematic literature search provided 24 studies on microbial agents and 8 on plant treatments. Their effectiveness against key pathogens, including downy mildew, powdery [...] Read more.
This review compares 32 studies (2000–2024) on plant- and microbial-based organic disease management to control grapevine pests and diseases. A systematic literature search provided 24 studies on microbial agents and 8 on plant treatments. Their effectiveness against key pathogens, including downy mildew, powdery mildew, and gray mold, was compared. Microbial agents such as Candida sake inhibited Botrytis cinerea by up to 80% in the lab and Pseudomonas sp. dramatically reduced grapevine lesion lengths by 32–52% in field conditions, while Bacillus subtilis reduced powdery mildew by 96% in greenhouse conditions and A. pullulans reduced Ochratoxin A infection by 99% in field conditions. In laboratory conditions, C. guilliermondii A42 reduced grape rot to 8–22% and A. cephalosporium B11 reduced it to 16–82%, confirming A42’s greater efficacy. Plant-derived agents and essential oils, including lavender and cinnamon, suppressed 100% of pathogens in vitro, whereas copper coupled with plant-derived agents reduced disease incidence by up to 92% under field conditions. While promising, plant-derived agents are plagued by formulation instability, which affects shelf life and effectiveness, while microbial agents must be kept under stringent storage conditions and can be variable under different vineyard conditions. These limitations identify the requirement for a stronger formulation strategy and large field validations. Organic disease management offers several important benefits, such as environmental safety, biodegradability, compatibility with organic cultivation, and low pesticide dependence. The application of these agents in pest management systems is ecologically balanced, improves soil health, and enables sustainable vineyard management. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

17 pages, 284 KiB  
Article
Organo-Mineral Fertilizer Improves Ocimum basilicum Yield and Essential Oil
by Roberta Camargos de Oliveira, Mércia Freitas Alves, José Magno Queiroz Luz, Arie Fitzgerald Blank, Daniela Aparecida de Castro Nizio, Paulo César de Lima Nogueira, Sérgio Macedo Silva and Renata Castoldi
Plants 2025, 14(7), 997; https://doi.org/10.3390/plants14070997 - 22 Mar 2025
Viewed by 650
Abstract
The production of Ocimum basilicum (basil) crop depends upon the availability of all nutrients in the soil solution. There is a lack of information about its performance, at tropical conditions, using new fertilizer formulations, such as organo-mineral fertilizers, mainly under protected cultivation. These [...] Read more.
The production of Ocimum basilicum (basil) crop depends upon the availability of all nutrients in the soil solution. There is a lack of information about its performance, at tropical conditions, using new fertilizer formulations, such as organo-mineral fertilizers, mainly under protected cultivation. These types of fertilizers combine benefits of the main fertilizers used in agriculture (organic and chemical). Therefore, organo-mineral fertilizers enhance soil health, provide a balanced nutrient supply, improve crop yields and quality. and promote environmental sustainability, making them a cost-effective and eco-friendly solution for sustainable crop production. This work aimed to evaluate the biomass and essential oil of basil varieties, with organo-mineral fertilization in different agricultural systems. Each experiment was conducted in a randomized block design, with three replications in a 2 × 4 factorial scheme, being two varieties of basil (“Sweet Dani” and “Cinnamon”) and four fertilizers: organo-mineral source, mineral source, organic source and the natural fertility of the soil. The evaluated characteristics were plant height, fresh biomass of plants, content, yield and the chemical composition of the essential oil. The organo-mineral sources of fertilizer provide better values for fresh biomass (average of 1175.90 and 1032.83 g per plant via greenhouse cultivation and field cultivation, respectively), essential oil yield (14.57 and 11.89 g per plant via greenhouse cultivation and field cultivation, respectively) and the dominant compounds for both cultivars of O. basilicum. Protected cultivation is the better environmental condition for obtaining the highest performance of O. basilicum cultivars about biomass and essential oil. The content of essential oil is not affected by the agricultural systems (greenhouse and field). The major compounds of essential oil under Brazilian crop conditions are Linalol and (E)-mehyl cinnamate in “Cinnamon” and neral and geranial (citral) in “Sweet Dani”. Full article
16 pages, 1660 KiB  
Article
The Long-Term Effect of Biochar Amendment on Soil Biochemistry and Phosphorus Availability of Calcareous Soils
by Qingsong Yuan, Ya Gao, Guozhen Ma, Haizhong Wu, Qingsong Li, Yali Zhang, Shiliang Liu, Xiaolei Jie, Dengxiao Zhang and Daichang Wang
Agriculture 2025, 15(5), 458; https://doi.org/10.3390/agriculture15050458 - 20 Feb 2025
Cited by 4 | Viewed by 1209
Abstract
Biochar soil amendment has proven to be beneficial for soil fertility regulation, while the long-term mechanisms under different soil conditions remain largely unexplored. This study was based on two long-term field experiments in calcareous soils to explore the effect of biochar on fertility [...] Read more.
Biochar soil amendment has proven to be beneficial for soil fertility regulation, while the long-term mechanisms under different soil conditions remain largely unexplored. This study was based on two long-term field experiments in calcareous soils to explore the effect of biochar on fertility and phosphorus availability, as well as potential mechanisms. Experiments were conducted on Fluvo-aquic soil (6 years) and Cinnamon soil (5 years), respectively. Biochar was applied once at 20 t/ha level and mixed with the topsoil. We evaluated soil fertility and phosphorus fractions with and without biochar amendment and analyzed the related extracellular enzyme activity and functional gene abundance. The results indicate a persistent increase in crop yield by 10.8–24.3% in calcareous soils after 5–6 years of treatment. Biochar enhanced soil fertility, including increased SOC, available phosphorus, and potassium content. Moreover, it boosted the activity of extracellular enzymes related to soil carbon, nitrogen, and phosphorus cycling. This effect may be associated with the stability of morphological features and mineral element regulation on biochar surfaces. Biochar soil amendment led to a long-term increase in phosphorus availability, of which available phosphorus increased by 13.1–49.1%. Potential mechanisms included an increase in labile phosphorus forms and biological mechanisms of raising alkaline phosphatase activities and increasing the copy numbers of the phosphatase genes (phoD, phoX, and nifH). In conclusion, biochar soil amendment resulted in sustained improvement in soil fertility in calcareous soils and consistently increased phosphorus availability via biochemical mechanisms. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

26 pages, 19399 KiB  
Article
The Status of Wild Grapevine (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) Populations in Georgia (South Caucasus)
by Gabriele Cola, Gabriella De Lorenzis, Osvaldo Failla, Nikoloz Kvaliashvili, Shengeli Kikilashvili, Maia Kikvadze, Londa Mamasakhlisashvili, Irma Mdinaradze, Ramaz Chipashvili and David Maghradze
Plants 2025, 14(2), 232; https://doi.org/10.3390/plants14020232 - 15 Jan 2025
Cited by 1 | Viewed by 1445
Abstract
Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) across 127 different sites, with 45% of these sites containing only a single vine [...] Read more.
Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) across 127 different sites, with 45% of these sites containing only a single vine and only 7% more than 9 vines. A total of 70 accessions were propagated in a germplasm collection, 41 of them were descripted from the ampelographic point of view and 32 from the phenological one. The geographical and ecological analysis confirmed that wild grapevines primarily grow in humid environments with warm and fully humid climates, often near rivers. They favor deep, fertile, and evolved soils, mainly alluvial and cinnamonic types (80%), with a marginal presence on strongly eroded soils. Their main natural vegetations are forests and open woodlands, with some individuals in the Southeast found in steppes. The altitudinal range spans from 0 to 1200 m, with 80% of vines distributed between 400 and 900 m. The phenological analysis revealed significant differences among the accessions but no difference among populations, with only a slight variation in bud-break timing, indicating a high level of synchronicity overall. Flowering timing proved to be the most uniform stage, suggesting minimal environmental pressure on genetic adaptation. The mature leaf morphology exhibited significant polymorphism, though leaves were generally three- or five-lobed, weak-wrinkling, and -blistering, with a low density of hairs. Bunch and berry morphology were more uniform. Bunches were consistently very small, cylindrical, and never dense or winged. Berries were also very small, mostly globular, always blue-black in color, and non-aromatic. A striking feature was the frequency of red flesh coloration, which ranged from weak to strong, with uncolored flesh being rare. The Georgian population of wild grapevines was found to be fragmented, often consisting of scattered single individuals or small groups. Therefore, we believe it is urgent for Georgia to implement specific protection measures to preserve this vital genetic resource. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

15 pages, 4263 KiB  
Article
Matching Phosphorus Fertilizer Types with Soil Type in Rice Cultivation Optimizes Yield, Soil Phosphorus Availability, and Phosphorus Fertilizer Use Efficiency
by Shiyu Peng, Xinyao Zhang, Le Sun, Rushan Chai, Chaochun Zhang, Xiaohui Chen, Laichao Luo and Kadambot H. M. Siddique
Agriculture 2025, 15(2), 172; https://doi.org/10.3390/agriculture15020172 - 14 Jan 2025
Viewed by 1145
Abstract
Inefficient phosphorus (P) fertilizer application often accumulates soil P, wasting valuable phosphate resources and contributing to environmental pollution. Given the suboptimal P fertilizer use efficiency (PUE), understanding soil P dynamics and selecting appropriate fertilizers is crucial. Fluvo-aquic soil and yellow-cinnamon soils were used [...] Read more.
Inefficient phosphorus (P) fertilizer application often accumulates soil P, wasting valuable phosphate resources and contributing to environmental pollution. Given the suboptimal P fertilizer use efficiency (PUE), understanding soil P dynamics and selecting appropriate fertilizers is crucial. Fluvo-aquic soil and yellow-cinnamon soils were used in a rice pot trial to compare five P fertilizer types: single superphosphate (SSP), diammonium phosphate (DAP), calcium magnesium phosphate (CMP), triple superphosphate (TSP), and ammonium polyphosphate (APP), alongside a no P, control (CK). In fluvo-aquic soil, TSP and APP significantly increased rhizosphere P availability at anthesis, while SSP increased yield and shoot P accumulation at maturity. In yellow-cinnamon soil, DAP had the highest rhizosphere P availability at anthesis, while APP significantly increased shoot P accumulation at anthesis and shoot P accumulation and grain yield at maturity. Moreover, PUE was highest with SSP and CMP in fluvo-aquic soil and APP and TSP in yellow-cinnamon soil. Throughout the experiment, increased soil alkaline phosphatase activity promoted NaOH-Po conversion to NaHCO3-Pi, increasing rice shoot P uptake, yield, and PUE in both soils. Based on the above findings, it is recommended to apply SSP and TSP to fluvo-aquic soil and APP and TSP to yellow-cinnamon soil to achieve higher yield and PUE, which can be further confirmed by subsequent field-scale studies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

12 pages, 3262 KiB  
Article
Study on Soil Fertility Characteristics of Walnut Orchards with Different Parent Materials and Soil Types in Gyaca County, Tibet
by Ruyu Yan, Fengyun Xiang, Yaqiong Li, Xuxun Li, Yuhao Zhang and Jifu Li
Agronomy 2024, 14(7), 1496; https://doi.org/10.3390/agronomy14071496 - 10 Jul 2024
Viewed by 1396
Abstract
Walnut trees on the Tibetan Plateau have sustainable and nutritious characteristics. They grow naturally without the use of any chemical fertilizers and pesticides. Therefore, the soil fertility of walnut orchards is a key factor influencing walnut yield and quality. This experiment measured and [...] Read more.
Walnut trees on the Tibetan Plateau have sustainable and nutritious characteristics. They grow naturally without the use of any chemical fertilizers and pesticides. Therefore, the soil fertility of walnut orchards is a key factor influencing walnut yield and quality. This experiment measured and analyzed the basic soil nutrient content, microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP), and leaf nutrient indicators in five types of representative walnut orchard soil parent materials in Gyaca County to clarify the fertility characteristics of different soil types and their correlations with walnut nutrients, providing a basis for the sustainable development of the plateau walnut industry. The results showed that there were significant differences in soil organic matter (SOM), total nitrogen (TN), available nutrient contents, and microbial activity among soil types with different parent materials. The comprehensive representation of available nutrient levels in the soils is as follows: gray-cinnamon soil and calcareous alluvial soil > mountain meadow soil > plateau prairie soil and brush prairie soil. The average MBC, MBN, and MBP contents in the five soils were 368.8 mg/kg, 28.4 mg/kg, and 23.6 mg/kg, respectively, and the content in the topsoil (0–20 cm) was higher than that of the subsoil (20–40 cm). The total nitrogen (PN), total phosphorus (PP), and total potassium (PK) contents in walnut leaves were found to be closely related to the soil physicochemical properties and microbial activity, among which five indicators, including soil TN, available nitrogen (AN), SOM, MBC, and slowly available potassium (SAK), had the greatest impact on leaf nutrient levels. These findings are valuable for the future management and development of walnut orchards. Therefore, for different soil parent materials and soil types, improving the soil fertility and actively applying nitrogen-rich organic fertilizers should be prioritized to improve the yield and quality of Tibetan Plateau walnuts. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 12801 KiB  
Article
Differences in Soil Microbial Communities across Soil Types in China’s Temperate Forests
by Yuxiang Yuan, Xueying Li, Fengqin Liu, Xiangyu Tian, Yizhen Shao, Zhiliang Yuan and Yun Chen
Forests 2024, 15(7), 1110; https://doi.org/10.3390/f15071110 - 27 Jun 2024
Cited by 4 | Viewed by 1447
Abstract
Soil microorganisms are a crucial component of forest ecosystems because of their involvement in the decomposition of organic matter and nutrient cycling and their influence on plant growth and development. Soil type is a fundamental characteristic of soil. In the transitional forest regions [...] Read more.
Soil microorganisms are a crucial component of forest ecosystems because of their involvement in the decomposition of organic matter and nutrient cycling and their influence on plant growth and development. Soil type is a fundamental characteristic of soil. In the transitional forest regions from subtropical to temperate zones in China, various soil types can be found, including yellow-brown soils, brown soils, and cinnamon soils. However, the composition and distribution patterns of soil bacterial and fungal communities in different soil types remain uncertain. This study selected a 4.8-hectare plot in Baiyun Mountain Forest National Park, China. To explore the spatial distribution and ecological processes of soil microbial communities across three different soil types, Illumina sequencing was conducted. Results showed that the composition and assembly of bacterial and fungal communities varied substantially among different soil types. Bacteria were more influenced by environmental factors than fungi. Fungal communities consistently demonstrated greater stability compared to bacterial communities across the three soil types. Light was the main environmental factor driving the variation in the assembly of microbial communities among different soil types. This study demonstrates that there are differences in the composition and structure of soil microbial communities among different soil types, providing important insights into the management and sustainable development of soil microorganisms in temperate forests. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 2434 KiB  
Article
Nighttime Warming Reduced Copper Concentration and Accumulation in Wheat Grown in Copper-Contaminated Soil by Affecting Physiological Traits
by Xianghan Cheng, Feifei Liu, Peng Song, Xiaolei Liu, Qin Liu and Taiji Kou
Agronomy 2024, 14(6), 1302; https://doi.org/10.3390/agronomy14061302 - 16 Jun 2024
Cited by 5 | Viewed by 991
Abstract
The changes in biomass (including yield), copper (Cu) concentration, and the accumulation of wheat (Triticum aestivum. L) in response to soil Cu pollution under nighttime warming had still not been explored. Hence, this study was carried out, and these variations were [...] Read more.
The changes in biomass (including yield), copper (Cu) concentration, and the accumulation of wheat (Triticum aestivum. L) in response to soil Cu pollution under nighttime warming had still not been explored. Hence, this study was carried out, and these variations were analyzed from a physiological perspective. Pot trials were performed at two levels of ambient temperatures (no-warming (NT) and average nighttime warming of 0.28 °C (WT)) and two levels of soil Cu concentrations (control check without Cu application (CK) and 100 mg/kg Cu application (Cu)). Soil was collected from the carbonate cinnamon soil region of central China. The warming effects of the passive nighttime warming system were prominent, and the average increment was 0.28 °C. Antioxidant enzyme activities were promoted by warming (p < 0.05) and Cu. The highest yield was achieved in NT-Cu, mainly attributed to relatively strong root activity and photosynthesis caused by supplemental Cu, but the Cu concentration in its grains was close to the threshold (10 mg/kg) for Cu concentration in foodstuff and could present a potential food safety risk. Though nighttime warming did not increase the total biomass and yield of wheat, it decreased the Cu accumulation of wheat grown in Cu-contaminated soil, especially in grains. Moreover, WT-CK and WT-Cu increased the Cu concentration in the roots and glumes and reduced the Cu concentration in grains by 13.09% and 55.84%, respectively, probably because of a lower transpiration rate. Among them, the Cu concentration of grains in WT-Cu was the lowest and significantly lower than other applications. Our findings reveal that nighttime warming has the potential to reduce the Cu risk of grains in wheat grown in the Cu-contaminated carbonate cinnamon soil region of central China and could then provide a theoretical reference for risk assessment of food quality for wheat subjected to dual stress from nighttime warming and Cu pollution. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

15 pages, 6132 KiB  
Article
Evaluation of Soil Quality of Pingliang City Based on Fuzzy Mathematics and Cluster Analysis
by Zhenhua Zhao, Yifei Yang, Bo Dong, Rui Zhang, Guangrong Chen, Zhandong Pan and Dandan Du
Agronomy 2024, 14(6), 1205; https://doi.org/10.3390/agronomy14061205 - 2 Jun 2024
Cited by 4 | Viewed by 1313
Abstract
Pingliang City has a complex topography and diverse soil types. To realize the improvement of soil according to local conditions and the reasonable and sustainable use of soil resources, an evaluation of soil quality in Pingliang City was carried out, based on the [...] Read more.
Pingliang City has a complex topography and diverse soil types. To realize the improvement of soil according to local conditions and the reasonable and sustainable use of soil resources, an evaluation of soil quality in Pingliang City was carried out, based on the soil distribution situation in Pingliang City, adopting a method combining fuzzy mathematics and cluster analysis of the main evaluation factors, such as soil organic matter, topsoil depth, soil erosion intensity, soil moisture regime, effective soil thickness, soil texture, soil profile structure, soil nutrient status and topographical parts, to carry out a comprehensive evaluation. A comprehensive evaluation of soil quality was conducted in seven counties under the jurisdiction of Pingliang City, and the evaluation results were compared and analyzed against the national standard, “Cultivated land quality grade”, to provide a basis for the selection of scientific soil improvement methods. The results of the arable land quality grades indicate that the quality of farmland in Pingliang City is divided into three to ten grades, and the average quality grade of farmland is 6.83, which is in the middle–lower level, and the overall grade distribution shows the characteristics of low in the middle and high in the east and west. The results of fuzzy mathematics combined with cluster analysis indicated the following trends in soil quality for the 12 soil genera: Chuan black gunny soil > yellow moist soil > sandy soil > silt soil > mulching helilu soil> loessal soil> loamy soil > slope loessal soil > arenosol > tillage leaching gray cinnamon soil > calcareous gray cinnamon soil > red clay soil. The results of the combination of fuzzy mathematics and clustering were significantly correlated with the results of the evaluation of the soil quality of arable land; the correlation coefficient was 0.884. This indicates that the method can accurately and objectively review the advantages and disadvantages of arable land soil and can be effectively applied to the evaluation of the soil quality of agricultural soils in other regions. It is a complement to the existing evaluation of the soil quality of arable land and at the same time provides a reference for the improvement of soil quality in agricultural regions. Full article
(This article belongs to the Special Issue Soil Evolution, Management, and Sustainable Utilization)
Show Figures

Figure 1

15 pages, 5122 KiB  
Article
Effect of Exogenous Organic Matter on Phosphorus Forms in Middle-High Fertility Cinnamon Soil
by Xiaodi Shi, Duanyin Gu, Haotian Yang, Yun Li, Yaqun Jiang, Nanbiao Zhan and Xiumin Cui
Plants 2024, 13(10), 1313; https://doi.org/10.3390/plants13101313 - 10 May 2024
Cited by 3 | Viewed by 1402
Abstract
Objectives: To slow down the chemical fixation of phosphate fertilizer, reduce the risk of active phosphorus leaching, stimulate the inherent phosphorus resource activity of soil, and improve phosphorus supply capacity. Methods: This study utilized a combination of field experiments and indoor chemical analysis. [...] Read more.
Objectives: To slow down the chemical fixation of phosphate fertilizer, reduce the risk of active phosphorus leaching, stimulate the inherent phosphorus resource activity of soil, and improve phosphorus supply capacity. Methods: This study utilized a combination of field experiments and indoor chemical analysis. Six types of exogenous organic matter (fulvic acid, biochar, compound microbial fertilizer, high-energy microbial inoculum, pig manure-vermicompost, cow manure-vermicompost) were added based on conventional fertilization. The experiment was conducted under the wheat-maize rotation system in the Huang-Huai-Hai region. Results: Compared with control (CK) without exogenous organic matter (EOM), all the other treatments with EOM had an enhancing effect on the available phosphorus of the cultivated soil. During the maize harvest, the combined application of biochar, pig manure-vermicompost and cow manure-vermicompost treatment significantly increased the content of available phosphorus in 0–20 cm soil by 45.87–56.59% compared with CK. The combined application of fulvic acid, biochar, pig manure-vermicompost and cow manure-vermicompost treatment significantly increased the content of Ca2-P in 0–20 cm soil by 34.04–65.14%. The content of Ca10-P in each treatment with EOM exhibited a lower level compared to CK. EOM could slow down the fixation of phosphorus to some degree. Correlation analysis revealed significant associations between Ca2-P, Ca8-P, Al-P, Fe-P, neutral phosphatase activity, acid phosphatase activity, and the available phosphorus content in the soil. The combined application of fulvic acid, biochar, and cow manure-vermicompost could enhance the activity of neutral and acid phosphatase in topsoil to a certain extent, thereby facilitating the conversion of phosphorus into highly available Ca2-P. EOM could enhance the soil phosphorus availability and decelerate the conversion of soil phosphorus into O-P and Ca10-P forms with low availability. Among all treatments, biochar exhibited the most pronounced efficiency in mitigating phosphorus leaching downward. Conclusions: All the EOMs had the potential to enhance the conversion of phosphorus into soluble phosphorus (Ca2-P), thereby mitigating the chemical fixation of soil phosphorus and ameliorating non-point source pollution caused by phosphorus. EOM enhanced the activity of neutral and acid phosphatase, which was beneficial to the conversion of organic phosphorus to inorganic phosphorus and increasing the content of available phosphorus. All EOMs had good effects on the retention of soil effective phosphorus, among which biochar had the best effect on retaining effective phosphorus in the tillage layer and blocking phosphorus leaching downward. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers)
Show Figures

Figure 1

13 pages, 3710 KiB  
Article
Effects of Long-Term Fertilizer Application on Crop Yield Stability and Water Use Efficiency in Diversified Planting Systems
by Nana Li, Tao Li, Jianfu Xue, Gaimei Liang and Xuefang Huang
Agronomy 2024, 14(5), 1007; https://doi.org/10.3390/agronomy14051007 - 10 May 2024
Cited by 3 | Viewed by 2746
Abstract
Exploring crop yield stability and the relationship between the water–fertilizer effect and annual precipitation type in a broomcorn millet–potato–spring corn rotation system under long-term fertilization on chestnut cinnamon soil in loess tableland can provide a scientific basis for rational fertilization in the northwest [...] Read more.
Exploring crop yield stability and the relationship between the water–fertilizer effect and annual precipitation type in a broomcorn millet–potato–spring corn rotation system under long-term fertilization on chestnut cinnamon soil in loess tableland can provide a scientific basis for rational fertilization in the northwest Shanxi region in years with different precipitation. This study was based on a 33-year long-term fertilizer experiment, using four fertilizer treatments: no fertilizer as control (CT), single fertilizer nitrogen (N), single organic fertilizer (M), and nitrogen fertilizer with organic fertilizer (NM). The results showed that broomcorn millet and maize had the highest yield in wet years, while potatoes had the highest yield in normal years and the yield under NM treatment was the highest. The sustainable yield index (SYI) values for potato and maize were higher than the SYI for the broomcorn millet during years with different precipitation and the SYI for the NM treatment was the highest. The water use efficiency of NM treatment was the highest. The yield of broomcorn millet and maize was affected by nitrogen fertilizer, organic fertilizer, and precipitation during the growth period, while the potato yield was mainly affected by nitrogen fertilizer and organic fertilizer. Therefore, the rotation of potato–maize and the rational allocation of organic and inorganic fertilizer (NM) is the best planting system in this region. Full article
Show Figures

Figure 1

12 pages, 1332 KiB  
Article
Soil Respiration and Related Abiotic and Remotely Sensed Variables in Different Overstories and Understories in a High-Elevation Southern Appalachian Forest
by Rachel L. Hammer, John R. Seiler, John A. Peterson and Valerie A. Thomas
Forests 2023, 14(8), 1645; https://doi.org/10.3390/f14081645 - 15 Aug 2023
Cited by 1 | Viewed by 1572
Abstract
Accurately predicting soil respiration (Rs) has received considerable attention recently due to its importance as a significant carbon flux back to the atmosphere. Even small changes in Rs can have a significant impact on the net ecosystem productivity of forests. [...] Read more.
Accurately predicting soil respiration (Rs) has received considerable attention recently due to its importance as a significant carbon flux back to the atmosphere. Even small changes in Rs can have a significant impact on the net ecosystem productivity of forests. Variations in Rs have been related to both spatial and temporal variation due to changes in both abiotic and biotic factors. This study focused on soil temperature and moisture and changes in the species composition of the overstory and understory and how these variables impact Rs. Sample plots consisted of four vegetation types: eastern hemlock (Tsuga canadensis L. Carriere)-dominated overstory, mountain laurel (Kalmia latifolia L.)-dominated understory, hardwood-dominated overstory, and cinnamon fern (Osmundastrum cinnamomeum (L.) C. Presl)-dominated understory, with four replications of each. Remotely sensed data collected for each plot, light detection and ranging, and hyperspectral data, were compiled from the National Ecological Observatory Network (NEON) to determine if they could improve predictions of Rs. Soil temperature and soil moisture explained 82% of the variation in Rs. There were no statistically significant differences between the average annual Rs rates among the vegetation types. However, when looking at monthly Rs, cinnamon fern plots had statistically higher rates in the summer when it was abundant and hemlock had significantly higher rates in the dormant months. At the same soil temperature, the vegetation types’ Rs rates were not statistically different. However, the cinnamon fern plots showed the most sensitivity to soil moisture changes and were the wettest sites. Normalized Difference Lignin Index (NDLI) was the only vegetation index (VI) to vary between the vegetation types. It also correlated with Rs for the months of August and September. Photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), and normalized difference nitrogen index (NDNI) also correlated with September’s Rs. In the future, further research into the accuracy and the spatial scale of VIs could provide us with more information on the capability of VIs to estimate Rs at these fine scales. The differences we found in monthly Rs rates among the vegetation types might have been driven by varying litter quality and quantity, litter decomposition rates, and root respiration rates. Future efforts to understand carbon dynamics on a broader scale should consider the temporal and finer-scale differences we observed. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

Back to TopTop