Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (888)

Search Parameters:
Keywords = cinnamic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1767 KB  
Article
Aromatic Ester Bioplastics from Wood and Cellulose: Cinnamates as Greener Alternatives to Benzoates
by Luke Froment, Jacqueline Lease, Prabu Satria Sejati, Firmin Obounou Akong, Christine Gérardin Charbonnier, Yoshito Andou and Philippe Gérardin
Materials 2026, 19(3), 574; https://doi.org/10.3390/ma19030574 - 2 Feb 2026
Abstract
To address the environmental impact of petroleum-derived plastics, lignocellulose esters provide a promising renewable alternative. However, research has primarily focused on linear cellulose esters, leaving raw biomass aromatic derivatives largely overlooked. Herein, we report a one-pot, room-temperature synthesis of cinnamate and benzoate esters [...] Read more.
To address the environmental impact of petroleum-derived plastics, lignocellulose esters provide a promising renewable alternative. However, research has primarily focused on linear cellulose esters, leaving raw biomass aromatic derivatives largely overlooked. Herein, we report a one-pot, room-temperature synthesis of cinnamate and benzoate esters from microcrystalline cellulose (MCC) and raw pine sawdust. A breakthrough finding reveals that pine esters consistently outperform pure MCC, achieving tensile strengths of 5–8 MPa (vs. 1–3 MPa for MCC) possibly due to a lignin-driven synergistic effect facilitating π–π stacking. The resulting films are hydrophobic (contact angles 80–100°) and fully thermoplastic. Cinnamates emerge as a technically superior and “greener” alternative to benzoates, paving the way for the direct upcycling of wood waste into sustainable packaging materials within a circular economy. Full article
Show Figures

Graphical abstract

23 pages, 3554 KB  
Article
Probiotic Lactic Acid Bacteria Fermentation Modulates the Bioactive Properties of Sprouted and Unsprouted Amaranth Seed
by Mihaela Aida Vasile, Nicoleta Balan, Leontina Grigore-Gurgu, Gabriela Elena Bahrim and Mihaela Cotârleț
Microorganisms 2026, 14(2), 340; https://doi.org/10.3390/microorganisms14020340 - 2 Feb 2026
Abstract
This study aims to investigate the functional and biochemical characteristics of sprouted and unsprouted red and black amaranth flours by fermentation with four probiotic strains (Lactiplantibacillus plantarum MIUG BL21, Lactiplantibacillus pentosus MIUG BL24, Lacticaseibacillus rhamnosus MIUG BL38, and Lactiplantibacillus paraplantarum MIUG BL74). [...] Read more.
This study aims to investigate the functional and biochemical characteristics of sprouted and unsprouted red and black amaranth flours by fermentation with four probiotic strains (Lactiplantibacillus plantarum MIUG BL21, Lactiplantibacillus pentosus MIUG BL24, Lacticaseibacillus rhamnosus MIUG BL38, and Lactiplantibacillus paraplantarum MIUG BL74). Aqueous extracts from freeze-dried fermented products derived from sprouted and raw seed of two Amaranthus species (Amaranthus cruentus—red amaranth and Amaranthus hypochondriacus—black amaranth) were characterised for their acidification and phytochemical profiles by titrimetric, spectrophotometric and chromatographic methods, and their antioxidant activities by ABTS and DPPH assays. Water-soluble proteins were evaluated by SDS-PAGE analysis. Nine phenolic acids (gallic acid, protocathechic acid, syringic acid, ellagic acid, ferulic acid, cinnamic acid, caffeic acid, p-coumaric acid, and chlorogenic acid) and twelve flavonoids (epicatechin gallate, hesperitin, quercetin, apigenin, luteolin, naringenin, quercetin 3-glucoside, isorhamnetin, peonidin 3-O rutinoside, epicatechin, keracyanin, and rutin trihydrate) were identified in the extracts of amaranth samples. The titratable acidity ranged from 0.59 to 5.50 mL of 0.1 N NaOH. Total flavonoid content (TFC) varied from 1.09 to 4.67 mg CE/g DW; whereas, total phenolic content (TPC) fluctuated from 1.99 to 5.76 mg GAE/g DW. The spectrum of ABTS and DPPH values was from 17.49 to 56.82% and 0.60 to 35.50%, respectively. More biologically active compounds were found in red amaranth-based samples, both sprouted and unsprouted, compared to black amaranth-based samples. There was a moderate correlation between the TPC and the antioxidant activity. The fermentation of red amaranth with L. rhamnosus MIUG BL38 led to a global increase in the protein background intensity, consistent with protein hydrolysis. Overall, sprouting and probiotics fermentation improved the fermentative performance of the amaranth seeds, enabling their effective use as a nutritive food with potential health-promoting properties. Full article
(This article belongs to the Special Issue Microbial Safety and Beneficial Microorganisms in Foods)
Show Figures

Figure 1

18 pages, 5402 KB  
Article
Biocompatible Dipeptide-Based Nanogels Incorporating Cinnamic Acid for Applications in Skin Disorder Therapy
by Jülide Secerli, Burcu Karayavuz, Hakan Erdoğan and Merve Güdül Bacanlı
Pharmaceutics 2026, 18(2), 173; https://doi.org/10.3390/pharmaceutics18020173 - 28 Jan 2026
Viewed by 145
Abstract
Background/Objectives: Skin-related disorders such as melanoma, premature aging, and chronic wounds significantly impact individuals’ quality of life and psychological well-being. Melanoma, due to its high metastatic potential and poor response to conventional chemotherapeutic agents, remains a major clinical challenge. Additionally, skin aging and [...] Read more.
Background/Objectives: Skin-related disorders such as melanoma, premature aging, and chronic wounds significantly impact individuals’ quality of life and psychological well-being. Melanoma, due to its high metastatic potential and poor response to conventional chemotherapeutic agents, remains a major clinical challenge. Additionally, skin aging and impaired wound healing continue to drive the demand for novel therapeutic strategies and bioactive formulations. Methods: In this study, cinnamic acid (CA), a naturally occurring compound with known anti-inflammatory and antioxidant properties, was incorporated into biocompatible Fmoc-FF dipeptide-based nanogels to improve its stability and therapeutic efficacy. The antitumor effects of CA and CA-loaded nanogels were evaluated using human melanoma (SK-MEL-30) cells, while wound healing activity was assessed on human keratinocyte (HaCaT) cells. Results: The results demonstrated that CA exhibited significant activity against melanoma cells and promoted wound healing, with enhanced effects observed when delivered via Fmoc-FF nanogels. Conclusions: These findings suggest that CA-loaded peptide nanogels represent a promising platform for multifunctional treatment approaches targeting various skin disorders. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

15 pages, 1328 KB  
Article
Molecular Docking and Structure–Activity Relationship Study of Polyphenols with Antibacterial and Antibiotic-Modulating Properties
by Hayat Trabsa, Imane Krache, Naouel Boussoualim, Anfal Kara, Nadhir Saouli, Mohammad Raish, Byong-Hun Jeon, Hyun-Jo Ahn and Yacine Benguerba
Microorganisms 2026, 14(2), 281; https://doi.org/10.3390/microorganisms14020281 - 25 Jan 2026
Viewed by 356
Abstract
The antibacterial activity of 18 phenolic compounds, including flavonoids and phenolic acids, against organisms of Escherichia coli, Klebsiella pneumoniae, and Proteus vulgaris that are resistant to several drugs was assessed in this study using the agar diffusion method. The strain’s strong [...] Read more.
The antibacterial activity of 18 phenolic compounds, including flavonoids and phenolic acids, against organisms of Escherichia coli, Klebsiella pneumoniae, and Proteus vulgaris that are resistant to several drugs was assessed in this study using the agar diffusion method. The strain’s strong resistance was confirmed by antibiotic susceptibility testing, which used fourteen drugs and only found inhibition zones for five of them. Out of the polyphenols, four compounds were effective against P. vulgaris, five against K. pneumoniae, and twelve against E. coli bacteria. The greatest inhibitory zone (18.75 ± 0.25 mm) against E. coli was shown by propyl gallate, an ester of gallic acid. Activity was significantly impacted by structural changes. Propyl substitution increased antibacterial activities across all strains, while methoxy substitution decreased them. The antibacterial effectiveness was reduced by the hydroxylation of flavonoids and the C3–C4 dihydroxylation of cinnamic acid. Propyl gallate primarily had antagonistic effects, while combination experiments demonstrated additive, synergistic, and antagonistic interactions. Propyl gallate (ΔG = −7.5 kcal/mol) exhibited substantial binding affinities with TEM-1 and NDM-1 β-lactamases via hydrogen and hydrophobic interactions, according to molecular docking. These results demonstrate propyl gallate as a viable antibacterial adjuvant option and validate the structure–activity relationship of phenolic compounds. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Graphical abstract

18 pages, 1943 KB  
Article
Thymol Derivatives as Antimalarial Agents: Synthesis, Activity Against Plasmodium falciparum, ADMET Profiling, and Molecular Docking Insights
by Amatul Hamizah Ali, Rini Retnosari, Siti Nur Hidayah Jamil, Nur Aqilah Zahirah Norazmi, Nabel Darwish Zuhaidi, Su Datt Lam, Sylvia Chieng, Hani Kartini Agustar, Kuhan Chandru, Nurhezreen Md Iqbal, Lau Yee Ling and Jalifah Latip
Biomedicines 2026, 14(1), 123; https://doi.org/10.3390/biomedicines14010123 - 8 Jan 2026
Viewed by 384
Abstract
Background: Thymol, a natural phenol with antimicrobial and antioxidant activities, and its derivatives offer promising scaffolds for antimalarial drug development, potentially helping overcome resistance. Materials and Methods: In this study, thymol derivatives were synthesized and assessed as antiplasmodial agents against both resistant and [...] Read more.
Background: Thymol, a natural phenol with antimicrobial and antioxidant activities, and its derivatives offer promising scaffolds for antimalarial drug development, potentially helping overcome resistance. Materials and Methods: In this study, thymol derivatives were synthesized and assessed as antiplasmodial agents against both resistant and sensitive strains of P. falciparum, as well as Plasmodium knowlesi. The ligand molecules were assessed with Plasmodium falciparum chloroquine resistance transporter (PfCRT)’s potential using in silico molecular docking and ADMET analysis. The parent compound, thymol, was chemically modified through esterification and conjugation with hydroxybenzoic acid and cinnamic acid derivatives to generate analogs with varied substitution patterns. Results: The findings showed that among seven successfully synthesized thymol derivatives, compounds 4 and 6 exhibited notable potency against Plasmodium falciparum 3D7 (EC50 = 6.01 ± 1.7 µM and 6.8 ± 1.1 µM, respectively) with high SI values (16.5 and 14.6, respectively), indicating improved selectivity relative to thymol. The cytotoxicity evaluation against HCF mammalian cells revealed that most thymol derivatives were non-toxic, with CC50 values greater than 99 µM, except for compound 3 (CC50 = 71.4 ± 4.5 µM) and compound 1 (CC50 = 58.4 ± 2.3 µM), which exhibited moderate cytotoxic effects. The molecular docking results showed that compounds 3 (−8.4 kcal/mol), 4 (−8.3 kcal/mol), and 6 (−8.3 kcal/mol) exhibited strong binding affinities toward the PfCRT protein. Conclusions: Therefore, thymol derivative compounds 4 and 6 exhibited stronger antiplasmodial activity in vitro against P. falciparum and P. knowlesi with safety profiles against mammalian cells, targeting PfCRT, highlighting their potential as lead antimalarial candidates. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

15 pages, 2938 KB  
Article
Investigating the Antioxidant Potential of Mango Seed Kernel Polyphenols: Extraction and Optimization Strategies
by Poonam Choudhary, Sandeep P. Dawange, Thingujam Bidyalakshmi, Ramesh Chand Kasana, Kairam Narsaiah and Bhupendra M. Ghodki
Foods 2026, 15(1), 173; https://doi.org/10.3390/foods15010173 - 4 Jan 2026
Viewed by 484
Abstract
Mango seed kernels, an underutilized by-product of the mango pulping industries, are a rich supplier of metabolites, specifically phenolic and flavonoid compounds. These compounds have potential health benefits. The present study aims to optimize the solvent-assisted conditions for polyphenol extraction from mango seed [...] Read more.
Mango seed kernels, an underutilized by-product of the mango pulping industries, are a rich supplier of metabolites, specifically phenolic and flavonoid compounds. These compounds have potential health benefits. The present study aims to optimize the solvent-assisted conditions for polyphenol extraction from mango seed kernels by using the Box–Behnken design (BBD) and response surface methodology (RSM). Moreover, the effect of the solvent-to-solid ratio (5:1 to 25:1, mL/g), extraction temperature (30–70 °C), and extraction time (60–120 min) on the polyphenol yield was investigated. The optimal conditions of a solvent-to-solid ratio of 12 (mL/g), extraction temperature of 53 °C, and extraction time of 97 min showed the maximum yield of dried extract. In optimal conditions, the extract contained a total phenolic content of 110.02 ± 0.50 mg gallic acid equivalent (GAE)/g, total flavonoids of 24.58 ± 0.09 mg quercetin equivalent (QE)/g, 64.21 ± 0.12% inhibition of DPPH, and 53.25 ± 0.23% ABTS radical scavenging. Moreover, the extract at 500 mg/mL concentration showed the highest anti-bacterial activity against pathogenic bacteria of Escherichia coli and Staphylococcus aureus. Gallic acid, mangiferin, rutin, ferulic acid, cinnamic acid, and quercetin were noted in mango seed kernel extract obtained at optimal extraction conditions. Overall, a rapid and optimal methodology is reported for extracting, identifying, and quantifying polyphenols from mango seed kernels. Full article
Show Figures

Figure 1

18 pages, 2219 KB  
Article
Supplementary Light Intensity and Harvest Date Affect Midrib Oxidative Pinking and Related Metabolites in Two Romaine Lettuce Cultivars with Contrasting Discolouration Sensitivities
by Muhamad Hazwan Yahya, Martin Chadwick and Carol Wagstaff
Horticulturae 2026, 12(1), 57; https://doi.org/10.3390/horticulturae12010057 - 1 Jan 2026
Viewed by 226
Abstract
This study elucidates the variations in phenolic acids, soluble sugars, and pinking development of midribs of two cultivars of Romaine lettuce (Keona—high pinking and Icarus—low pinking) under two light intensities (high L1—558 and low L2—244 µmol m−2 s−1) harvested at [...] Read more.
This study elucidates the variations in phenolic acids, soluble sugars, and pinking development of midribs of two cultivars of Romaine lettuce (Keona—high pinking and Icarus—low pinking) under two light intensities (high L1—558 and low L2—244 µmol m−2 s−1) harvested at two harvest dates (M1—42 and M2—49 days after transplanting, DAT). The pinking index of Keona was higher than that of Icarus on 8 days of storage (5 °C). The concentrations of cinnamic acid were reduced in most treatments for both cultivars during storage, except for Keona grown in L2 with M2 harvest. Upon storage, the concentrations of coumaric acid in Keona were similar regardless of light intensities and harvest dates. Coumaric acid and caffeic acid concentrations in Icarus in L1 harvested at M2 were the highest. Low light intensity with M1 harvest enhanced the concentration of chlorogenic acid in Keona, but a similar situation reduced its content in Icarus during storage. Icarus contained higher initial concentrations of glucose under both light intensities, regardless of harvest dates, compared to Keona. In conclusion, high pinking was associated with high phenolic acids except for cinnamic acid. High light intensities and more advanced harvests increased the pinking of Keona but not of the Icarus. Full article
(This article belongs to the Special Issue Horticultural Crops Responses to LED Lighting)
Show Figures

Figure 1

21 pages, 1974 KB  
Article
Low-Temperature Stress-Induced Changes in Cucumber Plants—A Near-Infrared Spectroscopy and Aquaphotomics Approach for Investigation
by Daniela Moyankova, Petya Stoykova, Petya Veleva, Nikolai K. Christov, Antoniya Petrova, Krasimir Rusanov and Stefka Atanassova
Sensors 2025, 25(24), 7602; https://doi.org/10.3390/s25247602 - 15 Dec 2025
Cited by 1 | Viewed by 453
Abstract
Low temperatures have a significant impact on the growth, development, and productivity of cucumber plants. The potential of near-infrared spectroscopy and the aquaphotomics approach for investigating chilling stress was studied in Voreas F1 and Gergana cultivars. Changes in the spectral patterns of cucumber [...] Read more.
Low temperatures have a significant impact on the growth, development, and productivity of cucumber plants. The potential of near-infrared spectroscopy and the aquaphotomics approach for investigating chilling stress was studied in Voreas F1 and Gergana cultivars. Changes in the spectral patterns of cucumber plants were compared with physiological and metabolic data. Voreas plants were unable to survive seven days of low-temperature stress due to a drastic increase in electrolyte leakage and a decrease in the net photosynthesis rate, stomatal conductance, and transpiration rate. Gergana plants survived chilling by preserving cell membrane integrity and photosynthesis efficiency. During chilling treatment, the content of most metabolites in both cultivars was reduced compared to the controls, yet it was much more pronounced in Voreas. We observed an increased accumulation of cinnamic acid on the seventh day only in the Gergana cultivar. A MicroNIR spectrometer was used for in vivo spectral measurements of cotyledons and the first two leaves. Differences in absorption spectra were observed among control, stressed, and recovered plants, across different days of stress, and between the studied cultivars. The most significant differences were in the 1300–1600 nm range, much smaller for Gergana than Voreas. Aquagrams of the two cultivars also reveal differences in their responses to low temperatures and changes in water molecular structure in the leaves. The errors of prediction for the days of chilling by using PLS models were from 0.96 to 1.14 days for independent validation, depending on the spectral data of different leaves used. Near-infrared spectroscopy and aquaphotomics can be used as additional tools for early detection of stress and investigation of low-temperature tolerance in cucumber cultivars. Full article
(This article belongs to the Special Issue Spectroscopy and Sensing Technologies for Smart Agriculture)
Show Figures

Figure 1

14 pages, 1454 KB  
Article
Slight Water Loss Combined with Methyl Jasmonate Treatment Improves Actinidia arguta Resistance to Gray Mold by Modulating Reactive Oxygen Species and Phenylpropanoid Metabolism
by Xinqi Liu, Qingxuan Wang, Feiyang Wang, Baodong Wei, Qian Zhou, Shunchang Cheng and Yang Sun
Foods 2025, 14(24), 4311; https://doi.org/10.3390/foods14244311 - 14 Dec 2025
Viewed by 324
Abstract
In this study, we aimed to elucidate the mechanism through which treatment with slight water loss combined with methyl jasmonate (MeJA) regulates gray mold development in Actinidia arguta, focusing on reactive oxygen species (ROS) and phenylpropanoid metabolism. The results showed that water [...] Read more.
In this study, we aimed to elucidate the mechanism through which treatment with slight water loss combined with methyl jasmonate (MeJA) regulates gray mold development in Actinidia arguta, focusing on reactive oxygen species (ROS) and phenylpropanoid metabolism. The results showed that water loss alone, MeJA alone, and their combination each reduced the incidence of disease, with the combined treatment showing the greatest efficacy. At the end of the storage period, the combined treatment enhanced the activities of superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL). It also increased the accumulation of defense-related substances (total phenol and lignin contents) and up-regulated AaPAL, Aa4CL, AaC4H, and AaC3′H gene expression. Furthermore, the combined treatment reduced the disease severity index from 60% to 16% and delayed onset by 2 d. In conclusion, slight water loss combined with MeJA treatment effectively suppressed gray mold. This effect may be attributed to activation of ROS metabolism, induction of phenylpropanoid metabolism, and up-regulation of related genes, which enhanced the resistance of the fruit to gray mold. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

24 pages, 1671 KB  
Review
Authentication of Propolis: Integrating Chemical Profiling, Data Analysis and International Standardization—A Review
by Kristian Pastor, Slobodan Dolašević and Nataša Nastić
Foods 2025, 14(24), 4259; https://doi.org/10.3390/foods14244259 - 10 Dec 2025
Viewed by 741
Abstract
Propolis is an apicultural product known for its antioxidant, antimicrobial and anti-inflammatory properties. However, its composition varies with botanical sources, geography, season and bee species, complicating quality control and creating opportunities for adulteration, such as the addition of poplar bud extracts or non-propolis [...] Read more.
Propolis is an apicultural product known for its antioxidant, antimicrobial and anti-inflammatory properties. However, its composition varies with botanical sources, geography, season and bee species, complicating quality control and creating opportunities for adulteration, such as the addition of poplar bud extracts or non-propolis resins. This review synthesizes the latest primary studies and reviews addressing chemical markers identified through analytical platforms, such as TLC, HPTLC, HPLC, LC-MS, GC-MS, NMR, FTIR and ICP, often integrated with chemometrics and machine learning for authentication and standardization. Marker panels are linked to regional chemotypes, including poplar-type, Brazilian green, red and brown, Cuban variants, and stingless bee propolis. Fraud detection strategies using marker-based screening and spectral pattern recognition are also summarized. Multi-marker and chemometric approaches consistently differentiate botanical types, origins and commercial extracts. Common marker families include flavonoids (pinocembrin, chrysin, galangin), phenolic esters (CAPE, benzyl/allyl caffeates), prenylated cinnamates like artepillin C, lignans, and volatile terpenoids or benzenoids. Rapid screening by ATR-FTIR and NMR is often complemented with LC-MS for confirmatory quantitation. Propolis quality control is moving toward harmonized workflows combining FTIR/NMR/HPTLC screening with LC-MS verification and optional elemental or volatile profiling, paving the way for shared marker sets and international standards similar to those for honey. Full article
Show Figures

Figure 1

17 pages, 4495 KB  
Article
Ecotoxicological Evaluation of Simple Xanthone, Cinnamic Acid, and Chalcone Derivatives Using the Microtox Assay for Sustainable Synthetic Design of Biologically Active Molecules
by Dorota Żelaszczyk, Agnieszka Gunia-Krzyżak, Justyna Popiół and Karolina Słoczyńska
Appl. Sci. 2025, 15(24), 12998; https://doi.org/10.3390/app152412998 - 10 Dec 2025
Viewed by 321
Abstract
The increasing emphasis on green chemistry and environmentally responsible organic synthesis highlights the need to evaluate not only the biological activity but also the ecological safety of bioactive molecules. Xanthone, cinnamic acid, and chalcone scaffolds are widely explored in pharmaceutical and cosmetic research, [...] Read more.
The increasing emphasis on green chemistry and environmentally responsible organic synthesis highlights the need to evaluate not only the biological activity but also the ecological safety of bioactive molecules. Xanthone, cinnamic acid, and chalcone scaffolds are widely explored in pharmaceutical and cosmetic research, yet their environmental profiles remain insufficiently characterized. This study assessed the ecotoxicity of simple derivatives from these three structural classes using the Microtox assay with the bioluminescent bacteria Aliivibrio fischeri. Test compounds were synthesized or obtained commercially, dissolved in dimethyl sulfoxide (DMSO), and evaluated at two exposure times (5 and 15 min), with half maximal effective concentration (EC50) values calculated based on luminescence inhibition. The results revealed substantial differences between the investigated groups: chalcone derivatives exhibited uniformly high ecotoxicity, whereas cinnamic acid derivatives showed the most favorable environmental profile with low variability in EC50 values. Xanthone derivatives displayed the widest ecotoxicity range, with toxicity strongly dependent on substituent type and substitution position. Notably, chloro-substitution in cinnamic acid derivatives correlated with lower toxicity, while positional effects were critical in the xanthone series. A comparison with in silico predictions generated using the ADMETlab platform showed poor correlation with the experimental outcomes. The predictive model did not distinguish the differing ecotoxicological behavior of α,β-unsaturated systems in chalcones versus cinnamic acids and systematically flagged halogenation as a toxicity-driving feature, contrary to several of our in vitro observations. Together, these findings provide new insights into structure–ecotoxicity relationships and underscore the need to complement computational predictions with validated experimental assays when designing bioactive compounds with improved environmental safety. Full article
Show Figures

Figure 1

21 pages, 1046 KB  
Article
Aqueous Leaf Extracts of Bauhinia cheilantha (Bong.) Steud.: Phytochemical Profile, Antioxidant Activity and In Vitro Safety Evaluation
by Palloma Lima de Oliveira, José Rafael da Silva Araújo, Camila Marinho da Silva, Kyria Cilene de Andrade Bortoleti, Silvany de Sousa Araújo, Márcia Vanusa da Silva, Dráulio Costa da Silva, Marcos dos Santos Lima, Ana Paula de Oliveira and Ana Christina Brasileiro-Vidal
Drugs Drug Candidates 2025, 4(4), 54; https://doi.org/10.3390/ddc4040054 - 8 Dec 2025
Cited by 1 | Viewed by 298
Abstract
Background/Objectives: Bauhinia cheilantha Bong. Steud. (Leguminosae; “pata-de-vaca”) is traditionally used in folk medicine for its antidiabetic, anti-inflammatory, and sedative properties. This study aimed to evaluate aqueous leaf extracts of B. cheilantha, non-delipidated and delipidated, regarding their phytochemical composition, phenolic profile, antioxidant potential, [...] Read more.
Background/Objectives: Bauhinia cheilantha Bong. Steud. (Leguminosae; “pata-de-vaca”) is traditionally used in folk medicine for its antidiabetic, anti-inflammatory, and sedative properties. This study aimed to evaluate aqueous leaf extracts of B. cheilantha, non-delipidated and delipidated, regarding their phytochemical composition, phenolic profile, antioxidant potential, and cytotoxic, genotoxic, and antigenotoxic effects. Methods: Phytochemical screening was performed by TLC, and phenolic compounds were determined by HPLC. Antioxidant activity was assessed using DPPH, ABTS, and phosphomolybdenum assays. Cytotoxicity, genotoxicity, and antigenotoxicity were evaluated in L929 murine fibroblast cells using MTT and cytokinesis-block micronucleus (CBMN) assays. Results: Both extracts contained anthocyanins, phenolics, lignans, saponins, and hydrolyzable tannins. The delipidated extract showed higher total phenolic content (17.54 mg/kg) than the non-delipidated (13.76 mg/kg). Major constituents included kaempferol 3-glucoside, quercetin, hesperidin, naringenin, and t-cinnamic acid. Antioxidant assays revealed EC50 values of 25.84, 13.60, and 66.09 µg/mL for the non-delipidated extract, and 26.19, 16.34, and 52.78 µg/mL for the delipidated extract in the DPPH, ABTS, and phosphomolybdenum assays, respectively. No cytotoxicity was observed, except at 1600 µg/mL for the non-delipidated extract and 800–1600 µg/mL for the delipidated extract. Genotoxicity occurred only at 400 µg/mL. Antigenotoxic evaluation showed that the non-delipidated extract (100 µg/mL) reduced methyl methanesulfonate-induced chromosomal damage in simultaneous and post-treatment conditions, while the delipidated extract was only effective for post-treatment. Conclusions: Aqueous extracts of B. cheilantha exhibit antioxidant and antigenotoxic properties. At active concentrations, they were non-cytotoxic and non-genotoxic. The non-delipidated extract, in particular, showed the strongest genome-protective potential, supporting its traditional use and highlighting its relevance in the development of natural therapeutic agents. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

14 pages, 3138 KB  
Article
Identification of Sulfonamide-Vinyl Sulfone/Chalcone and Berberine-Cinnamic Acid Hybrids as Potent DENV and ZIKV NS2B/NS3 Allosteric Inhibitors
by Panupong Mahalapbutr, Kowit Hengphasatporn, Wachirapol Manimont, Ladawan Vajarintarangoon, Yasuteru Shigeta, Nayana Bhat, Thitinan Aiebchun, Bodee Nutho, Supot Hannongbua and Thanyada Rungrotmongkol
Int. J. Mol. Sci. 2025, 26(23), 11762; https://doi.org/10.3390/ijms262311762 - 4 Dec 2025
Viewed by 603
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted by Aedes spp. mosquitoes, causing a spectrum of symptoms ranging from mild fevers and joint pain to severe damage to vital organs, including the kidneys, brain, and liver. Unfortunately, there are currently no [...] Read more.
Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted by Aedes spp. mosquitoes, causing a spectrum of symptoms ranging from mild fevers and joint pain to severe damage to vital organs, including the kidneys, brain, and liver. Unfortunately, there are currently no specific treatments for these viruses. The NS2B/NS3 serine protease has been recognized as a crucial therapeutic target due to its pivotal role in viral replication. Herein, several molecular modeling techniques were employed to search for novel allosteric inhibitors against DENV and ZIKV NS2B/NS3 proteases from a set of 545 in-house compounds. Virtual screening based on molecular docking and MM/GBSA-based free energy calculations indicated that, among 545 derivatives, four compounds demonstrated high binding affinity against both targets, including two sulfonamide-vinyl sulfone hybrids (cpd48_e and cpd50_e), one sulfonamide-chalcone analog (cpd48), and one berberine-cinnamic acid derivative (DN071_f). Their molecular complexation was driven mainly by van der Waals forces rather than electrostatic attraction. Several residues at the enzyme allosteric site, particularly K74, L149, and N152 (DENV) and L76, I123, N152, and V155 (ZIKV), were identified as binding hotspots for the screened compounds. Drug-likeness predictions based on Lipinski’s rule of five further supported their potential as drug candidates. Overall, these findings provide valuable insights for the future design and development of novel antiviral drugs targeting the DENV and ZIKV NS2B/NS3 proteases. Full article
Show Figures

Figure 1

16 pages, 1719 KB  
Article
Rediscovering Olive Mill Wastewater: New Chemical Insights Through Untargeted UHPLC-QTOF-MS Data-Dependent Analysis Approach
by Laura Alessandroni, Massimo Ricciutelli, Simone Angeloni, Giovanni Caprioli and Gianni Sagratini
Foods 2025, 14(23), 4128; https://doi.org/10.3390/foods14234128 - 2 Dec 2025
Viewed by 415
Abstract
With the advent of new analytical technologies and the urgent environmental problem, reopening investigations into polluting waste matrices becomes a priority. Olive mill wastewater is a pollutant and phytotoxic by-product of olive oil production. An untargeted UHPLC-QTOF analysis of three olive mill wastewaters [...] Read more.
With the advent of new analytical technologies and the urgent environmental problem, reopening investigations into polluting waste matrices becomes a priority. Olive mill wastewater is a pollutant and phytotoxic by-product of olive oil production. An untargeted UHPLC-QTOF analysis of three olive mill wastewaters from three different olive cultivars was performed, and modern informatic platforms were involved to characterize the chemical components in-depth. Data elaboration and statistical analysis confirmed the differences between samples and revealed a total of 364 annotated compounds, including iridoids, phenolic compounds, flavonoids, lignans, cinnamic acid derivatives, and pyrrolidine derivatives. Many of these metabolites, including compounds with known antioxidant and bioactive potential, are scarcely reported in olive products and by-products. The outcomes of this work could be useful for rethinking olive mill wastewater as a source of bioactive compounds to develop and optimize new detoxification strategies. Full article
Show Figures

Figure 1

36 pages, 3683 KB  
Article
Design, Synthesis, Biological Evaluation, and In Silico Studies of Novel Multitarget Cinnamic Acid Hybrids
by Ioanna-Chrysoula Tsopka, Eleni Pontiki, Ioanna Sigala, Eleni Nikolakaki, Kyriakos C. Prousis and Dimitra Hadjipavlou-Litina
Molecules 2025, 30(23), 4582; https://doi.org/10.3390/molecules30234582 - 28 Nov 2025
Viewed by 600
Abstract
Chronic inflammation is implicated in the development of various multifactorial diseases, including cancer, diabetes, arthritis, cardiovascular disorders, Alzheimer’s disease, and autoimmune diseases. The enzymes that play a key role in the onset of the inflammation are cyclooxygenases (COXs) and lipoxygenases (LOXs). In recent [...] Read more.
Chronic inflammation is implicated in the development of various multifactorial diseases, including cancer, diabetes, arthritis, cardiovascular disorders, Alzheimer’s disease, and autoimmune diseases. The enzymes that play a key role in the onset of the inflammation are cyclooxygenases (COXs) and lipoxygenases (LOXs). In recent years, cinnamic acid hybrid molecules, particularly those incorporating a nitric oxide (NO) donor moiety, have attracted considerable attention as potential pharmacological agents for the treatment of multifactorial diseases. In the present study, novel cinnamic acid–nitric oxide (NO) donor hybrids were synthesized as multitarget agents and evaluated for their antioxidant, anti-inflammatory, and cytotoxic properties. In particular, hybrids 5ai, 6ai, 9ai, and 11 were synthesized and evaluated as lipid peroxidation and LOX inhibitors, while selected molecules were further tested as COX-1 and COX-2 inhibitors. Hybrids 6ai, 9ai, and 11 that contain a NO donor moiety, were additionally tested as albumin denaturation inhibitors and for their ability to release NO. The results indicated that compound 9a is a promising multitarget agent, exhibiting the lowest IC50 for LOX inhibition, significant antioxidant activity, and the highest NO donor potency. Furthermore, compound 9e demonstrated significant inhibitory activity against both COX-2 and LOX, suggesting its potential as a dual COX–LOX inhibitor. Additionally, compound 6i exhibited the strongest cytotoxic activity among the tested compounds, with EC50 values ranging from 36 to 45 μM across multiple cancer cell lines. All synthesized compounds were also evaluated through in silico studies. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop