Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = chromosome aneuploidy disorder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 498 KiB  
Article
Outcomes of Pregnancies with Absent or Hypoplastic Fetal Nasal Bone: A Retrospective Analysis of Prenatal Findings and Perinatal Outcomes
by Eva Karner, Lara Krepler, Petra Pateisky, Agnes Grill, Paul Dremsek, Guelen Yerlikaya-Schatten and Stephanie Springer
Life 2025, 15(8), 1215; https://doi.org/10.3390/life15081215 - 1 Aug 2025
Viewed by 244
Abstract
Hypoplastic or absent fetal nasal bone (NB) is a significant soft marker in the risk assessment for aneuploidies. This study aimed to evaluate prenatal findings and perinatal outcomes in fetuses with absent or hypoplastic NB managed at our center. This retrospective analysis was [...] Read more.
Hypoplastic or absent fetal nasal bone (NB) is a significant soft marker in the risk assessment for aneuploidies. This study aimed to evaluate prenatal findings and perinatal outcomes in fetuses with absent or hypoplastic NB managed at our center. This retrospective analysis was conducted at the Department of Obstetrics at the Medical University of Vienna and including all cases with an absent or hypoplastic fetal NB between 2004 and 2022. Clinical data were extracted and analyzed using descriptive statistics. A total of 149 cases were included. Of these, 51% had chromosomal abnormalities, with trisomy 21 present in 30.9%. Malformations were identified in 55% of cases, most commonly congenital heart defects (34.9%) and facial dysmorphism (28.9%). Eighteen fetuses (12.1%) had structural anomalies without genetic disorders. In 32.9% (n = 49), the NB anomaly was isolated. Our findings show that only half of the cases had chromosomal abnormalities, and over half of the pregnancies resulted in live births with generally favorable perinatal outcomes. However, the presence of additional ultrasound abnormalities significantly increased the risk of adverse outcomes. Therefore, detection of a fetal NB anomaly should prompt comprehensive ultrasound evaluation and genetic testing. Full article
(This article belongs to the Special Issue Advanced Research in Obstetrics and Gynecology)
Show Figures

Figure 1

31 pages, 500 KiB  
Systematic Review
Oxidative Stress and Down Syndrome: A Systematic Review
by Goran Slivšek, Sandra Mijač, Ivan Dolanc, Marija Fabijanec, Silvija Petković, Renato Mautner, Karmen Lončarek, Josip Kranjčić, Alenka Boban Blagaić, Marin Marinović, Ksenija Vitale, Donatella Verbanac, Miran Čoklo and Jadranka Vraneković
Antioxidants 2025, 14(7), 816; https://doi.org/10.3390/antiox14070816 - 2 Jul 2025
Viewed by 524
Abstract
Down syndrome (DS), the most common human aneuploidy, is associated with oxidative stress, which contributes to morphological abnormalities, immune dysfunction, cognitive impairment and accelerated ageing. This article aims to provide an overview of the studies on oxidative stress in DS, in particular the [...] Read more.
Down syndrome (DS), the most common human aneuploidy, is associated with oxidative stress, which contributes to morphological abnormalities, immune dysfunction, cognitive impairment and accelerated ageing. This article aims to provide an overview of the studies on oxidative stress in DS, in particular the investigation of endogenous and exogenous antioxidants, with a focus on endogenous systems. A literature search in MEDLINE and Scopus based on the PRISMA 2020 criteria revealed 41 relevant studies that mainly analysed blood samples (plasma or serum) and occasionally saliva or urine. The findings suggest that oxidative stress in DS is multifactorial and results from an imbalance of superoxide dismutase activity, overexpression of genes on chromosome 21, mitochondrial dysfunction and inflammation. Despite extensive studies over the decades, new sources and mechanisms for oxidative stress in DS continue to emerge, further highlighting the complexity of DS. The recognition that oxidative stress is a hallmark of DS emphasises the need to develop more sensitive and specific methods to detect it and to investigate the associated metabolic pathways in DS in more detail. The expansion of in vivo studies could facilitate the development of targeted interventions aimed at mitigating oxidative damage and ultimately improving outcomes for individuals with DS. Full article
Show Figures

Figure 1

21 pages, 3363 KiB  
Article
Two Cases of Chromosome 27 Trisomy in Horses Detected Using Illumina BeadChip Genotyping
by Cliona A. Ryan, Donagh P. Berry, Monika Bugno-Poniewierska, Mary-Kate Burke, Terje Raudsepp, Sonja Egan and Jennifer L. Doyle
Animals 2025, 15(13), 1842; https://doi.org/10.3390/ani15131842 - 22 Jun 2025
Viewed by 594
Abstract
Autosomal trisomy, a genetic disorder characterized by the presence of an extra autosome, is a rare but important chromosomal abnormality in horses, often associated with infertility, developmental abnormalities, and reduced life expectancy. This study represents the largest population-level screening for autosomal trisomy in [...] Read more.
Autosomal trisomy, a genetic disorder characterized by the presence of an extra autosome, is a rare but important chromosomal abnormality in horses, often associated with infertility, developmental abnormalities, and reduced life expectancy. This study represents the largest population-level screening for autosomal trisomy in horses; the analysis used single nucleotide polymorphism (SNP) panel genotype intensity data from 17,078 horses, 6601 of which were juveniles (i.e., ≤12 months of age) when genotyped. Using methodologies adapted from similar screening studies in cattle, the only aneuploidy detected was trisomy 27 in two juvenile male Irish Sport Horses (ISH) (0.03% prevalence among juveniles or 0.01% prevalence in the overall population). One ISH colt was cytogenetically confirmed and displayed no overt external phenotypic abnormalities, while cytogenetics was not undertaken on the other ISH colt, nor was it phenotypically assessed. Parentage analysis revealed that one ISH colt inherited two different copies of chr27 from the sire, demonstrating heterodisomy, likely due to a nondisjunction event during meiosis I in the sire. The other ISH colt inherited two different copies of chr27 from the dam, also indicating heterodisomy; the dam was 23 years of age when the colt was born. Based on the observed prevalence of autosomal trisomy, it can be estimated that at least 3 foals per 10,000 live births are likely to have autosomal trisomy. Though, given that only 74 (i.e., 0.004%) of horses were genotyped within a month of birth, this is likely an underestimate. The economic consequence of undiagnosed trisomy in high-value breeding horses that are potentially infertile could be substantial. As horse genotyping for parentage verification and discovery is transitioning to medium-density single nucleotide polymorphism panels, routine genomic screening for autosomal aneuploidy could be readily undertaken and potentially should form a standard screening prerequisite along with other genetic defects at horse sales. Currently, thoroughbred horses registered for racing are not genotyped, and only a limited number of sport horse studbooks are using SNP genotyping. This highlights an opportunity for those already genotyping to expand their support for breeders through low-cost, high-value chromosomal screening at the time of registration rather than incurring additional costs over the horse’s life cycle to determine the root cause of certain phenotypes owing to the undiagnosed trisomy. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

21 pages, 1417 KiB  
Review
Non-Invasive Preimplantation Genetic Testing
by Daniela N. Bakalova, Luis Navarro-Sánchez and Carmen Rubio
Genes 2025, 16(5), 552; https://doi.org/10.3390/genes16050552 - 30 Apr 2025
Viewed by 2086
Abstract
To minimise the influence of chromosomal abnormalities during IVF treatment, embryos can be screened before transfer using preimplantation genetic testing. This typically involves an invasive trophectoderm biopsy at the blastocyst stage, where 4–8 cells are collected and analysed. However, emerging evidence indicates that, [...] Read more.
To minimise the influence of chromosomal abnormalities during IVF treatment, embryos can be screened before transfer using preimplantation genetic testing. This typically involves an invasive trophectoderm biopsy at the blastocyst stage, where 4–8 cells are collected and analysed. However, emerging evidence indicates that, as embryos develop in vitro in culture media, they release cell-free DNA into the media, providing an alternative source of genetic material that can be accessed non-invasively. Spent blastocyst media samples that contain embryo cell-free DNA demonstrate high informativity rates and ploidy concordance when compared with the corresponding trophectoderm, inner cell mass, or whole blastocyst results. However, optimising this non-invasive approach requires several changes to embryo culture protocols, including additional embryo washes to tackle contamination and extending embryo culture time to maximise the amount of cell-free DNA released into the culture media. In this review, we discuss this novel non-invasive approach for aneuploidy detection and embryo prioritisation, as well as the current data and future prospects for utilising cell-free DNA analysis to identify structural rearrangements and single gene disorders. Full article
Show Figures

Figure 1

13 pages, 264 KiB  
Article
A Decade of Non-Invasive Prenatal Testing (NIPT) for Chromosomal Abnormalities in Croatia: First National Monocentric Study to Inform Country’s Future Prenatal Care Strategy
by Petra Podobnik, Tomislav Meštrović, Aida Đorđević, Kristian Kurdija, Dženis Jelčić, Nina Ogrin, Ivan Bertović-Žunec, Beata Gebauer-Vuković, Grega Hočevar, Igor Lončar, Zlata Srebreniković, Petra Trobina, Marko Bitenc and Ivo Dumić-Čule
Genes 2024, 15(12), 1590; https://doi.org/10.3390/genes15121590 - 11 Dec 2024
Viewed by 2136
Abstract
Background: Chromosomal numerical and structural alterations are significant causes of various developmental disorders in foetuses. Non-invasive prenatal testing (NIPT) has emerged as an effective screening tool for detecting common aneuploidies, aiding in the identification of individuals who may require further diagnostic work-up. Methods: [...] Read more.
Background: Chromosomal numerical and structural alterations are significant causes of various developmental disorders in foetuses. Non-invasive prenatal testing (NIPT) has emerged as an effective screening tool for detecting common aneuploidies, aiding in the identification of individuals who may require further diagnostic work-up. Methods: This retrospective, monocentric observational study evaluates the usage patterns, test choices, turnaround times (TAT), and outcomes of NIPT between 2013 and 2023 on a sample of 2431 pregnant women at a special hospital offering outpatient services and comprehensive gynaecological/obstetric inpatient care. We analysed the trends in NIPT usage, high-risk results, prior screening procedures, as well as factors such as age, gestational age and in vitro fertilisation (IVF) status. NIPT was performed using cell-free foetal DNA (cffDNA) extracted from maternal plasma, followed by library construction, sequencing and result analysis. The sequencing results were aligned with reference genomes, and z-scores were calculated to assess the likelihood of aneuploidy. Statistical significance was set at p < 0.05. Results: The average age of women undergoing NIPT decreased from 36.1 years in 2013 to 33.01 years in 2023 (p = 0.0287), and mean TAT dropped from 12.44 days in 2013 to 7.08 days in 2023 (p = 0.0121), with the most substantial reduction occurring between 2013 and 2019. The study identified a stable rate of women who underwent IVF seeking prenatal testing, with no statistically significant difference between the first half and the second half of the analysed period (p = 0.2659). Among high-risk results, there were 39 chromosomal abnormalities detected, most of them belonging to trisomy 21 (59%). Conclusions: Our findings demonstrate the increasing efficiency and accessibility of NIPT in prenatal care in Croatia, while the significant reduction in TAT and the decreasing age of women undergoing NIPT reflect enhanced operational practices and broader acceptance. Introducing NIPT into the public healthcare system in the Republic of Croatia could improve equitable access to advanced prenatal care and enhance pregnancy outcomes. Future advancements in technology and genetic counselling will further enhance its role, requiring careful attention to ethical and regulatory considerations. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
12 pages, 2210 KiB  
Article
Clinical and Cytogenetic Impact of Maternal Balanced Double Translocation: A Familial Case of 15q11.2 Microduplication and Microdeletion Syndromes with Genetic Counselling Implications
by Daniela Koeller R. Vieira, Ingrid Bendas Feres Lima, Carla Rosenberg, Carlos Roberto da Fonseca, Leonardo Henrique Ferreira Gomes, Letícia da Cunha Guida, Patrícia Camacho Mazzonetto, Juan Llerena and Elenice Ferreira Bastos
Genes 2024, 15(12), 1546; https://doi.org/10.3390/genes15121546 - 29 Nov 2024
Viewed by 1710
Abstract
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births. While most carriers are phenotypically normal, they are at risk of generating unbalanced gametes during meiosis, leading to genetic anomalies such as aneuploidies, deletions, duplications, and gene disruptions. These anomalies [...] Read more.
Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births. While most carriers are phenotypically normal, they are at risk of generating unbalanced gametes during meiosis, leading to genetic anomalies such as aneuploidies, deletions, duplications, and gene disruptions. These anomalies can result in spontaneous abortions or congenital anomalies, including neurodevelopmental disorders. Complex chromosomal rearrangements (CCRs) involving more than two chromosomes are rare but further increase the probability of producing unbalanced gametes. Neurodevelopmental disorders such as Angelman syndrome (AS) and duplication 15q11q13 syndrome (Dup15q) are associated with such chromosomal abnormalities. Methods: This study describes a family with a de novo maternal balanced double translocation involving chromosomes 13, 19, and 15, resulting in two offspring with unbalanced chromosomal abnormalities. Cytogenetic evaluations were performed using GTG banding, fluorescence in situ hybridization (FISH), and low-pass whole-genome sequencing (LP-WGS). Methylation analysis was conducted using methylation-sensitive high-resolution melting (MS-HRM) to diagnose Angelman syndrome. Results: The cytogenetic and molecular analyses identified an 8.9 Mb duplication in 15q11.2q13.3 in one child, and an 8.9 Mb deletion in the same region in the second child. Both abnormalities affected critical neurodevelopmental genes, such as SNRPN. FISH and MS-HRM confirmed the chromosomal imbalances and the diagnosis of Angelman syndrome in the second child. The maternal balanced translocation was found to be cryptic, contributing to the complex inheritance pattern. Conclusion: This case highlights the importance of using multiple genetic platforms to uncover complex chromosomal rearrangements and their impact on neurodevelopmental disorders. The findings underscore the need for thorough genetic counseling, especially in families with such rare chromosomal alterations, to manage reproductive outcomes and neurodevelopmental risks. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

13 pages, 481 KiB  
Review
Comparative Analysis of Fluorescence In Situ Hybridization and Next-Generation Sequencing in Sperm Evaluation: Implications for Preimplantation Genetic Testing and Male Infertility
by Efthalia Moustakli, Antonios Gkountis, Stefanos Dafopoulos, Athanasios Zikopoulos, Sotirios Sotiriou, Athanasios Zachariou and Konstantinos Dafopoulos
Int. J. Mol. Sci. 2024, 25(20), 11296; https://doi.org/10.3390/ijms252011296 - 21 Oct 2024
Cited by 2 | Viewed by 2865
Abstract
Pre-implantation genetic testing (PGT) is a crucial process for selecting embryos created through assisted reproductive technology (ART). Couples with chromosomal rearrangements, infertility, recurrent miscarriages, advanced maternal age, known single-gene disorders, a family history of genetic conditions, previously affected pregnancies, poor embryo quality, or [...] Read more.
Pre-implantation genetic testing (PGT) is a crucial process for selecting embryos created through assisted reproductive technology (ART). Couples with chromosomal rearrangements, infertility, recurrent miscarriages, advanced maternal age, known single-gene disorders, a family history of genetic conditions, previously affected pregnancies, poor embryo quality, or congenital anomalies may be candidates for PGT. Preimplantation genetic testing for aneuploidies (PGT-A) enables the selection and transfer of euploid embryos, significantly enhancing implantation rates in assisted reproduction. Fluorescence in situ hybridization (FISH) is the preferred method for analyzing biopsied cells to identify these abnormalities. While FISH is a well-established method for identifying sperm aneuploidy, NGS offers a more comprehensive assessment of genetic material, potentially enhancing our understanding of male infertility. Chromosomal abnormalities, arising during meiosis, can lead to aneuploid sperm, which may hinder embryo implantation and increase miscarriage rates. This review provides a comparative analysis of fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) in sperm evaluations, focusing on their implications for preimplantation genetic testing. This analysis explores the strengths and limitations of FISH and NGS, aiming to elucidate their roles in improving ART outcomes and reducing the risk of genetic disorders in offspring. Ultimately, the findings will inform best practices in sperm evaluations and preimplantation genetic testing strategies. Full article
(This article belongs to the Special Issue A Molecular Perspective on Reproductive Health, 2nd Edition)
Show Figures

Figure 1

14 pages, 1376 KiB  
Review
Chromosome Division in Early Embryos—Is Everything under Control? And Is the Cell Size Important?
by Adela Horakova, Marketa Konecna and Martin Anger
Int. J. Mol. Sci. 2024, 25(4), 2101; https://doi.org/10.3390/ijms25042101 - 9 Feb 2024
Cited by 2 | Viewed by 3219
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the [...] Read more.
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

7 pages, 221 KiB  
Article
Prenatal Exome Sequencing Analysis in Fetuses with Various Ultrasound Findings
by Antoni Borrell, Elena Ordoñez, Montse Pauta, Juan Otaño, Fernanda Paz-y-Miño, Mafalda de Almeida, Miriam León and Vincenzo Cirigliano
J. Clin. Med. 2024, 13(1), 181; https://doi.org/10.3390/jcm13010181 - 28 Dec 2023
Cited by 1 | Viewed by 1710
Abstract
Objectives: To evaluate the use of Exome Sequencing (ES) for the detection of genome-wide Copy Number Variants (CNVs) and the frequency of SNVs-InDels in selected genes related to developmental disorders in a cohort of consecutive pregnancies undergoing invasive diagnostic procedures for minor or [...] Read more.
Objectives: To evaluate the use of Exome Sequencing (ES) for the detection of genome-wide Copy Number Variants (CNVs) and the frequency of SNVs-InDels in selected genes related to developmental disorders in a cohort of consecutive pregnancies undergoing invasive diagnostic procedures for minor or simple ultrasound findings with no indication of ES. Methods: Women undergoing invasive diagnostic testing (chorionic villus sampling or amniocentesis) for QF-PCR and chromosomal microarray analysis (CMA) due to prenatal ultrasound findings without an indication for ES were selected over a five-month period (May–September 2021). ES was performed to compare the efficiency of genome-wide CNV detection against CMA analysis and to detect monogenic disorders. Virtual gene panels were selected to target genes related to ultrasound findings and bioinformatic analysis was performed, prioritizing variants based on the corresponding HPO terms. The broad Fetal Gene panel for developmental disorders developed by the PAGE group was also included in the analysis. Results: A total of 59 out of 61 women consented to participate in this study. There were 36 isolated major fetal anomalies, 11 aneuploidy markers, 6 minor fetal anomalies, 4 multiple anomalies, and 2 other ultrasound signs. Following QF-PCR analysis, two uncultured samples were excluded from this study, and six (10%) common chromosome aneuploidies were detected. In the remaining 51 cases, no pathogenic CNVs were detected at CMA, nor were any pathogenic variants observed in gene panels only targeting the ultrasound indications. Two (3.9%) monogenic diseases, apparently unrelated to the fetal phenotype, were detected: blepharo-cheilo-odontic syndrome (spina bifida) and Duchenne muscular dystrophy (pyelocaliceal dilation). Conclusions: In our series of pregnancies with ultrasound findings, common aneuploidies were the only chromosomal abnormalities present, which were detected in 10% of cases. ES CNV analysis was concordant with CMA results in all cases. No additional findings were provided by only targeting selected genes based on ultrasound findings. Broadening the analysis to a larger number of genes involved in fetal developmental disorders revealed monogenic diseases in 3.9% of cases, which, although apparently not directly related to the indications, were clinically relevant. Full article
(This article belongs to the Special Issue Update on Prenatal Diagnosis and Maternal Fetal Medicine: 2nd Edition)
Show Figures

Graphical abstract

10 pages, 1346 KiB  
Case Report
Unusual Trisomy X Phenotype Associated with a Concurrent Heterozygous 16p11.2 Deletion: Importance of an Integral Approach for Proper Diagnosis
by Ariadna González-del Angel, Miguel Angel Alcántara-Ortigoza, Sandra Ramos, Carolina Algara-Ramírez, Marco Antonio Hernández-Hernández and Lorenza Saenger-Rivas
Int. J. Mol. Sci. 2023, 24(19), 14643; https://doi.org/10.3390/ijms241914643 - 27 Sep 2023
Cited by 1 | Viewed by 2714
Abstract
Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, [...] Read more.
Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, it has been proposed that the clinical spectrum is not yet fully delimited, and additional uncommon or atypical clinical manifestations could be related to this entity. The present report describes a female carrying trisomy X but presenting atypical manifestations, including severe intellectual disability, short stature, thymus hypoplasia, and congenital hypothyroidism (CH). These clinical findings were initially attributed to trisomy X. However, chromosome microarray analysis (CMA) subsequently revealed that the patient also bears a heterozygous 304-kb deletion at 16p11.2. This pathogenic copy-number variant (CNV) encompasses 13 genes, including TUFM. Some authors recommend that when a phenotype differs from that described for an identified microdeletion, the presence of pathogenic variants in the non-deleted allele should be considered to assess for an autosomal recessive disorder; thus, we used a panel of 697 genes to rule out a pathogenic variant in the non-deleted TUFM allele. We discuss the possible phenotypic modifications that might be related to an additional CNV in individuals with sex chromosome aneuploidy (SCA), as seen in our patient. The presence of karyotype-demonstrated trisomy X and CMA-identified 16p11.2 deletion highlights the importance of always correlating a patient’s clinical phenotype with the results of genetic studies. When the phenotype includes unusual manifestations and/or exhibits discrepancies with that described in the literature, as exemplified by our patient, a more extensive analysis should be undertaken to enable a correct diagnosis that will support proper management, genetic counseling, and medical follow-up. Full article
(This article belongs to the Special Issue Advances in Human Hereditary Diseases: Genetics and Genomics Research)
Show Figures

Figure 1

13 pages, 2067 KiB  
Review
Compromised Mitotic Fidelity in Human Pluripotent Stem Cells
by Inês Milagre, Carolina Pereira and Raquel A. Oliveira
Int. J. Mol. Sci. 2023, 24(15), 11933; https://doi.org/10.3390/ijms241511933 - 25 Jul 2023
Cited by 3 | Viewed by 2537
Abstract
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in [...] Read more.
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in the discovery of new drugs. PSCs also hold great potential in regenerative medicine to treat or diminish the effects of certain debilitating diseases, such as degenerative disorders. However, some concerns have recently been raised over their safety for use in regenerative medicine. One of the major concerns is the fact that PSCs are prone to errors in passing the correct number of chromosomes to daughter cells, resulting in aneuploid cells. Aneuploidy, characterised by an imbalance in chromosome number, elicits the upregulation of different stress pathways that are deleterious to cell homeostasis, impair proper embryo development and potentiate cancer development. In this review, we will summarize known molecular mechanisms recently revealed to impair mitotic fidelity in human PSCs and the consequences of the decreased mitotic fidelity of these cells. We will finish with speculative views on how the physiological characteristics of PSCs can affect the mitotic machinery and how their suboptimal mitotic fidelity may be circumvented. Full article
Show Figures

Figure 1

19 pages, 7088 KiB  
Article
REST Targets JAK–STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells
by Tan Huang, Sharida Fakurazi, Pike-See Cheah and King-Hwa Ling
Int. J. Mol. Sci. 2023, 24(12), 9980; https://doi.org/10.3390/ijms24129980 - 10 Jun 2023
Cited by 10 | Viewed by 2615
Abstract
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal [...] Read more.
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK–STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain. Full article
(This article belongs to the Special Issue Molecular Mechanisms of mRNA Transcriptional Regulation)
Show Figures

Figure 1

16 pages, 4361 KiB  
Review
Holoprosencephaly: Review of Embryology, Clinical Phenotypes, Etiology and Management
by Maísa Malta, Rowim AlMutiri, Christine Saint Martin and Myriam Srour
Children 2023, 10(4), 647; https://doi.org/10.3390/children10040647 - 30 Mar 2023
Cited by 16 | Viewed by 12733
Abstract
Holoprosencephaly (HPE) is the most common malformation of the prosencephalon in humans. It is characterized by a continuum of structural brain anomalies resulting from the failure of midline cleavage of the prosencephalon. The three classic subtypes of HPE are alobar, semilobar and lobar, [...] Read more.
Holoprosencephaly (HPE) is the most common malformation of the prosencephalon in humans. It is characterized by a continuum of structural brain anomalies resulting from the failure of midline cleavage of the prosencephalon. The three classic subtypes of HPE are alobar, semilobar and lobar, although a few additional categories have been added to this original classification. The severity of the clinical phenotype is broad and usually mirrors the radiologic and associated facial features. The etiology of HPE includes both environmental and genetic factors. Disruption of sonic hedgehog (SHH) signaling is the main pathophysiologic mechanism underlying HPE. Aneuploidies, chromosomal copy number variants and monogenic disorders are identified in a large proportion of HPE patients. Despite the high postnatal mortality and the invariable presence of developmental delay, recent advances in diagnostic methods and improvements in patient management over the years have helped to increase survival rates. In this review, we provide an overview of the current knowledge related to HPE, and discuss the classification, clinical features, genetic and environmental etiologies and management. Full article
(This article belongs to the Special Issue Genetic Diagnosis in Children with Developmental Delay)
Show Figures

Figure 1

10 pages, 2975 KiB  
Case Report
Congenital Proximal Radioulnar Synostosis in an Elite Athlete–Case Report
by Ilja Chandoga, Róbert Petrovič, Ivan Varga, Boris Šteňo and Emὄke Šteňová
Medicina 2023, 59(3), 531; https://doi.org/10.3390/medicina59030531 - 8 Mar 2023
Cited by 6 | Viewed by 3750
Abstract
Background and Objectives: Proximal radioulnar synostosis (PRUS) is the most frequent congenital forearm disorder, although the prevalence in the general population is rare with a few hundred cases reported. Pfeiffer, Poland, Holt–Oram, and other serious congenital syndromes contain this abnormality. Non-syndromic cases [...] Read more.
Background and Objectives: Proximal radioulnar synostosis (PRUS) is the most frequent congenital forearm disorder, although the prevalence in the general population is rare with a few hundred cases reported. Pfeiffer, Poland, Holt–Oram, and other serious congenital syndromes contain this abnormality. Non-syndromic cases with isolated PRUS very often exhibit as SMAD6, NOG genes variants, or sex chromosome aneuploidy. A subgroup of patients with haematological abnormalities presents with HOXA11 or MECOM genes variants. Case report: We present a non-syndromic adult elite ice-hockey player with unilateral proximal radioulnar synostosis of the left forearm. In early childhood he was able to handle the hockey stick only as a right-handed player and the diagnosis was set later at the age of 8 years due to lack of supination. Cleary–Omer Type III PRUS was found on x-ray with radial head hypoplasia and mild osteophytic degenerative changes of humeroulnar joint. Since the condition had minimal impact on sports activities, surgical intervention was not considered. The player continued his ice-hockey career at the top level and joined a national team for top tournaments. Upper extremity function assessment with questionnaires and physical testing resulted in minimal impairment. The most compromised tool was the Failla score with 10 points from a total of 15. Genetic testing with Sanger sequencing revealed no significant pathogenic variant in SMAD6, NOG, and GDP5 genes. No potentially pathogenic copy number variants were detected by array-based comparative genomic hybridization. Conclusions: In the reported case, the ability of an athlete to deal with an anatomic variant limiting the forearm supination is demonstrated. Nowadays, a comprehensive approach to rule out more complex musculoskeletal impairment and family burden is made possible by evolving genetics. Full article
Show Figures

Figure 1

23 pages, 1197 KiB  
Review
Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring
by Aris Kaltsas, Efthalia Moustakli, Athanasios Zikopoulos, Ioannis Georgiou, Fotios Dimitriadis, Evangelos N. Symeonidis, Eleftheria Markou, Theologos M. Michaelidis, Dung Mai Ba Tien, Ioannis Giannakis, Eleni Maria Ioannidou, Athanasios Papatsoris, Panagiota Tsounapi, Atsushi Takenaka, Nikolaos Sofikitis and Athanasios Zachariou
Genes 2023, 14(2), 486; https://doi.org/10.3390/genes14020486 - 14 Feb 2023
Cited by 77 | Viewed by 25252
Abstract
The average age of fathers at first pregnancy has risen significantly over the last decade owing to various variables, including a longer life expectancy, more access to contraception, later marriage, and other factors. As has been proven in several studies, women over 35 [...] Read more.
The average age of fathers at first pregnancy has risen significantly over the last decade owing to various variables, including a longer life expectancy, more access to contraception, later marriage, and other factors. As has been proven in several studies, women over 35 years of age have an increased risk of infertility, pregnancy problems, spontaneous abortion, congenital malformations, and postnatal issues. There are varying opinions on whether a father’s age affects the quality of his sperm or his ability to father a child. First, there is no single accepted definition of old age in a father. Second, much research has reported contradictory findings in the literature, particularly concerning the most frequently examined criteria. Increasing evidence suggests that the father’s age contributes to his offspring’s higher vulnerability to inheritable diseases. Our comprehensive literature evaluation shows a direct correlation between paternal age and decreased sperm quality and testicular function. Genetic abnormalities, such as DNA mutations and chromosomal aneuploidies, and epigenetic modifications, such as the silencing of essential genes, have all been linked to the father’s advancing years. Paternal age has been shown to affect reproductive and fertility outcomes, such as the success rate of in vitro fertilisation (IVF), intracytoplasmic sperm injection (ICSI), and premature birth rate. Several diseases, including autism, schizophrenia, bipolar disorders, and paediatric leukaemia, have been linked to the father’s advanced years. Therefore, informing infertile couples of the alarming correlations between older fathers and a rise in their offspring’s diseases is crucial, so that they can be effectively guided through their reproductive years. Full article
(This article belongs to the Special Issue Male Infertility: From Genes to Genomes 2022)
Show Figures

Figure 1

Back to TopTop