Oxidative Stress and Down Syndrome: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Enzymatic Antioxidants
3.2. Non-Enzymatic Antioxidants
3.3. Biomarkers of Oxidative Damage
3.4. Inflammatory and Neurological Biomarkers Associated with Oxidative Stress
3.5. Metabolic Mediators of Oxidative Stress
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations, Acronyms and Initialisms
% | percentage |
/ | slash |
+ | plus |
< | less than |
= | equal to |
> | greater than |
± | plus-minus |
× | multiplication |
·OH | hydroxyl radical |
15-F2t-IsoP | isoprostane |
2,3-dinor-iPF2α-III | 2,3-dinor-8-iso-prostaglandin F2α-III |
25(OH)D | 25-hydroxyvitamin D |
4-HNE | 4-hydroxynonenal |
8-OHdG | 8-hydroxy-2’-deoxyguanosine |
α | alpha |
β | beta |
A1AT | alpha-1-antitrypsin |
ACLY | ATP-citrate lyase |
ACP1 | acid phosphatase |
ADA | adenosine deaminase |
ADP | adenosine monophosphate |
ADSP | aged Down syndrome patients |
AF | amniotic fluid |
AGEs | advanced glycation end products |
Ala | alanine |
Alla | allantoin |
AMP | adenosine monophosphate |
AnonDSP | aged non-Down syndrome patients |
APP | amyloid precursor protein |
Arg | arginine |
Asn | asparagine |
Asp | aspartate |
AT | Republic of Austria |
ATP | adenosine triphosphate |
BDNF | brain-derived neurotrophic factor |
CAT | catalase |
CBS | cystathionine beta-synthase |
CC | creative commons |
CHDs | congenital heart defects |
CIC | citrate carrier |
Cit | citrulline |
Cr | creatinine |
Cu | copper (lat. cuprum) |
Cys | cysteine |
diTyr | dityrosine |
DNA | deoxyribonucleic acid |
DNs | dopaminergic neurons |
DOI | digital object identifier |
DS | Down syndrome |
e.g., | for example (lat. exempli gratia) |
et al. | and others (lat. et alia) |
etc. | and other similar things (lat. et cetera) |
F | female |
F2-dihomo-IsoPs | F2-dihomo-isoprostanes |
F2-isoPs | F2-isoprostane |
F4-NeuroPs | F4-neuroprostanes |
FORD | free oxygen radical defence test |
FORT | free oxygen radicals |
FRAP | ferric reducing ability of plasma |
FRM | free radical metabolism |
fT4 | free thyroxine |
G6PDH | glucose-6-phosphate dehydrogenase |
Gln | glutamine |
Glu | glutamate |
Glx | glyoxal |
Gly | glycine |
GPx | glutathione peroxidase |
GPxs | glutathione peroxidases |
GR | glutathione reductase |
GSH | reduced glutathione |
GS-Hb | glutathionyl-haemoglobin |
GSHf | free glutathione |
GSHt | total glutathione |
GSSG | glutathione disulfide |
GST | glutathione S-transferase |
H2O2 | hydrogen peroxide |
HDL | high-density lipoprotein |
His | histidine |
HX | hypoxanthine |
i.e., | that is (lat. id est) |
IE-NPBI | intraerythrocyte non-protein bound iron |
IL-10 | interleukin-10 |
IL-12 | interleukin-12 |
IL-1α | interleukin-1 alpha |
IL-2 | interleukin-2 |
IL-6 | interleukin-6 |
Ile | isoleucine |
IMA | ischemia-modified albumin |
iNOS | inducible nitric oxide synthase |
IP | isoprostane |
lat. | Latin |
LDL | low-density lipoprotein |
Leu | leucine |
LMWA | enzymatic low molecular weight antioxidants |
Lys | lysine |
M | male |
MCP1 | monocyte chemoattractant protein-1 |
MDA | malondialdehyde |
MDPI | Multidisciplinary Digital Publishing Institute |
MEDLINE | Medical Literature Analysis and Retrieval System Online |
Met | methionine |
MGlx | methylglyoxal |
MHR | methemoglobin reductase |
mRNA | messenger ribonucleic acid |
n | sample size |
N | total sample size |
N.S. | not significant |
N/A | not applicable |
NADPH | reduced nicotinamide adenine dinucleotide phosphate |
NGF | tumour necrosis factor |
NO | nitric oxide |
non-DS | non-Down syndrome |
NOS | nitric oxide synthase |
O2•− | superoxide anion |
OMIM | Online Mendelian Inheritance in Man |
ONOO− | peroxynitrite |
Orn | ornithine |
OSDP | DNA/RNA oxidative stress damage products |
PCO | protein carbonylation |
PCs | protein carbonyls |
Phe | phenylalanine |
P-NPBI | plasma nonprotein-bound iron |
PRISMA 2020 | Preferred Reporting Items for Systematic Reviews and Meta-analyses |
PROSPERO | International Systematic Review Registry |
p-value | probability value |
R | ratio |
RNA | ribonucleic acid |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
SA | sialic acid |
SAH | S-adenosyl homocysteine |
SAM | S-adenosylhomocysteine |
Ser | serine |
SOD | superoxide dismutase |
SOD1 | copper-zinc superoxide dismutase |
SOD2 | superoxide dismutase-2 |
STI | serum total iron |
T3 | triiodothyronine |
TAOC | total antioxidant capacity of saliva |
TAS | total antioxidant status |
Tau | taurine |
TBA | thiobarbituric acid |
TBARS | thiobarbituric acid-reacting substances |
TBG | thyroxine-binding globulin |
TGF-β | transforming growth factor beta |
TGs | triglycerides |
th | ordinal indicator |
tHcy | total homocysteine |
Thr | threonine |
TIBC | total iron binding capacity |
TMR | transmembrane reductase |
TNF-α | tumour necrosis factor alpha |
tNOx | total nitrite and nitrate |
TP | total protein |
Trp | tryptophan |
Trx | thioredoxin |
Ts21 | trisomy 21 |
TSH | thyroid stimulating hormone |
tT4 | total thyroxine |
Tyr | tyrosine |
UA | uric acid |
UK | United Kingdom of Great Britain and Northern Ireland |
Val | valine |
X | xanthine |
XO | xanthine oxidase |
YDSP | younger Down syndrome patients |
YnonDSP | younger non-Down syndrome |
Zn | zinc (lat. zincum) |
References
- Pallardó, F.V.; Degan, P.; D’Ischia, M.; Kelly, F.J.; Zatterale, A.; Calzone, R.; Castello, G.; Fernandez-Delgado, R.; Dunster, C.; Lloret, A.; et al. Multiple Evidence for An Early Age Pro-Oxidant State in Down Syndrome Patients. Biogerontology 2006, 7, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, S.E.; Skotko, B.G.; Rafii, M.S.; Strydom, A.; Pape, S.E.; Bianchi, D.W.; Sherman, S.L.; Reeves, R.H. Down Syndrome. Nat. Rev. Dis. Primers 2020, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Carfì, A.; Romano, A.; Zaccaria, G.; Villani, E.R.; Manes Gravina, E.; Vetrano, D.L.; Bernabei, R.; Onder, G. The Burden of Chronic Disease, Multimorbidity, and Polypharmacy in Adults with Down Syndrome. Am. J. Med. Genet. Part A 2020, 182, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Rueda Revilla, N.; Martínez-Cué, C. Antioxidants in Down Syndrome: From Preclinical Studies to Clinical Trials. Antioxidants 2020, 9, 692. [Google Scholar] [CrossRef]
- Tarani, L.; Carito, V.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Messina, M.P.; Rasio, D.; De Luca, E.; Putotto, C.; et al. Neuroinflammatory Markers in the Serum of Prepubertal Children with Down Syndrome. J. Immunol. Res. 2020, 2020, 6937154. [Google Scholar] [CrossRef]
- Vraneković, J.; Slivšek, G.; Majstorović, D. Methyltetrahydrofolate-Homocysteine Methyltransferase Reductase Gene and Congenital Heart Defects in Down Syndrome. Genet. Appl. 2020, 4, 12–17. [Google Scholar] [CrossRef]
- Muchová, J.; Žitňanová, I.; Ďuračková, Z. Oxidative Stress and Down Syndrome. Do Antioxidants Play a Role in Therapy? Physiol. Res. 2014, 63, 535–542. [Google Scholar] [CrossRef]
- Kuhn, E.; Natacci, F.; Corbo, M.; Pisani, L.; Ferrero, S.; Bulfamante, G.; Gambini, D. The Contribution of Oxidative Stress to NF1-Altered Tumors. Antioxidants 2023, 12, 1557. [Google Scholar] [CrossRef]
- Mladenov, M.; Lubomirov, L.; Grisk, O.; Avtanski, D.; Mitrokhin, V.; Sazdova, I.; Keremidarska-Markova, M.; Danailova, Y.; Nikolaev, G.; Konakchieva, R.; et al. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants 2023, 12, 1126. [Google Scholar] [CrossRef]
- Di Carlo, E.; Sorrentino, C. Oxidative Stress and Age-Related Tumors. Antioxidants 2024, 13, 1109. [Google Scholar] [CrossRef]
- Du, Y.; Chai, Y.; Zheng, X.; Zheng, Y. Theoretical Study on the Multiple Free Radical Scavenging Reactions of Pyranoanthocyanins. Antioxidants 2023, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.P. Radical-Free Biology of Oxidative Stress. Am. J. Physiol. Physiol. 2008, 295, C849–C868. [Google Scholar] [CrossRef]
- Plascencia-Villa, G.; Perry, G. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer’s Disease. Antioxidants 2023, 12, 1628. [Google Scholar] [CrossRef]
- Zana, M.; Janka, Z.; Kálmán, J. Oxidative Stress: A Bridge between Down’s Syndrome and Alzheimer’s Disease. Neurobiol. Aging 2007, 28, 648–676. [Google Scholar] [CrossRef]
- Zamponi, E.; Zamponi, N.; Coskun, P.; Quassollo, G.; Lorenzo, A.; Cannas, S.A.; Pigino, G.; Chialvo, D.R.; Gardiner, K.; Busciglio, J.; et al. Nrf2 Stabilization Prevents Critical Oxidative Damage in Down Syndrome Cells. Aging Cell 2018, 17, e12812. [Google Scholar] [CrossRef]
- Kura, B.; Bagchi, A.K.; Singal, P.K.; Barancik, M.; LeBaron, T.W.; Valachova, K.; Šoltés, L.; Slezák, J. Molecular Hydrogen: Potential in Mitigating Oxidative-Stress-Induced Radiation Injury. Can. J. Physiol. Pharmacol. 2019, 97, 287–292. [Google Scholar] [CrossRef]
- Buczyńska, A.; Sidorkiewicz, I.; Krętowski, A.J.; Zbucka-Krętowska, M. The Role of Oxidative Stress in Trisomy 21 Phenotype. Cell. Mol. Neurobiol. 2023, 43, 3943–3963. [Google Scholar] [CrossRef]
- Berdún, R.; Obis, È.; Mota-Martorell, N.; Bassols, A.; Valent, D.; Serrano, J.C.E.; Martín-Garí, M.; Rodríguez-Palmero, M.; Moreno-Muñoz, J.A.; Tibau, J.; et al. High-Fat Diet-Induced Obesity Increases Brain Mitochondrial Complex I and Lipoxidation-Derived Protein Damage. Antioxidants 2024, 13, 161. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef] [PubMed]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Kang, P.M. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants 2024, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Radi, R. Oxygen Radicals, Nitric Oxide, and Peroxynitrite: Redox Pathways in Molecular Medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef]
- Hur, J.; Sullivan, K.A.; Schuyler, A.D.; Hong, Y.; Pande, M.; States, D.J.; Jagadish, H.V.; Feldman, E.L. Literature-Based Discovery of Diabetes- and ROS-Related Targets. BMC Med. Genom. 2010, 3, 49. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive Oxygen Species—Sources, Functions, Oxidative Damage. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2020, 48, 124–127. [Google Scholar]
- Vigneron, A.; Vousden, K.H. P53, ROS and Senescence in the Control of Aging. Aging 2010, 2, 471–474. [Google Scholar] [CrossRef]
- Wu, Z.; Du, Y.; Xue, H.; Wu, Y.; Zhou, B. Aluminum Induces Neurodegeneration and Its Toxicity Arises from Increased Iron Accumulation and Reactive Oxygen Species (ROS) Production. Neurobiol. Aging 2012, 33, 199.e1–199.e12. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Matschke, V.; Theiss, C.; Matschke, J. Oxidative Stress: The Lowest Common Denominator of Multiple Diseases. Neural Regen. Res. 2019, 14, 238–241. [Google Scholar] [CrossRef]
- Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal Prospects of Antioxidants: A Review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef]
- Cheeseman, K.H.; Slater, T.F. An Introduction to Free Radical Biochemistry. Br. Med. Bull. 1993, 49, 481–493. [Google Scholar] [CrossRef]
- Morales-Gonzalez, J.A.; Morales-Gonzalez, A.; Madrigal-Santillan, E.O. (Eds.) A Master Regulator of Oxidative Stress—The Transcription Factor Nrf2; InTech: London, UK, 2016. [Google Scholar]
- Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N.V.R. Role of Antioxidants in Prophylaxis and Therapy: A Pharmaceutical Perspective. J. Control. Release 2006, 113, 189–207. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid. Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef]
- Juranek, J.K.; Daffu, G.K.; Wojtkiewicz, J.; Lacomis, D.; Kofler, J.; Schmidt, A.M. Receptor for Advanced Glycation End Products and Its Inflammatory Ligands Are Upregulated in Amyotrophic Lateral Sclerosis. Front. Cell. Neurosci. 2015, 9, 485. [Google Scholar] [CrossRef]
- Ozbay, I.; Kucur, C.; Koçak, F.E.; Savran, B.; Oghan, F. Advanced Oxidation Protein Product Levels as a Marker of Oxidative Stress in Paediatric Patients with Chronic Tonsillitis. Acta Otorhinolaryngol. Ital. 2016, 36, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.H.; Tischfield, J.; Ruddle, F.H. The Linkage of Genes for the Human Interferon-Induced Antiviral Protein and Indophenol Oxidase-B Traits to Chromosome G-21. J. Exp. Med. 1973, 137, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Pallardó, F.V.; Lloret, A.; Lebel, M.; D’Ischia, M.; Cogger, V.C.; Le Couteur, D.G.; Gadaleta, M.N.; Castello, G.; Pagano, G. Mitochondrial Dysfunction in Some Oxidative Stress-Related Genetic Diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology 2010, 11, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Garlet, T.R.; Parisotto, E.B.; de Medeiros, G.D.S.; Pereira, L.C.R.; Moreira, E.A.D.M.; Dalmarco, E.M.; Dalmarco, J.B.; Wilhelm Filho, D. Systemic Oxidative Stress in Children and Teenagers with Down Syndrome. Life Sci. 2013, 93, 558–563. [Google Scholar] [CrossRef]
- Bahsi, S.; Bakır, A.; Topçu, V.; Bahsi, T.; Ergüder, B.İ. Evaluation of Oxidant/Antioxidant System, IL-6 and IL-10 Parameters and SOD-Enzyme Activity in Pregnancy with Down Syndrome in Amnion Fluid Analysis. Gazi Med. J. 2022, 33, 53–57. [Google Scholar] [CrossRef]
- Gulesserian, T.; Seidl, R.; Hardmeier, R.; Cairns, N.; Lubec, G. Superoxide Dismutase SOD1, Encoded on Chromosome 21, but Not SOD2 Is Overexpressed in Brains of Patients with down Syndrome. J. Investig. Med. 2001, 49, 41–46. [Google Scholar] [CrossRef]
- Lee, M.; Hyun, D.; Jenner, P.; Halliwell, B. Effect of Overexpression of Wild-type and Mutant Cu/Zn-Superoxide Dismutases on Oxidative Damage and Antioxidant Defences: Relevance to Down’s Syndrome and Familial Amyotrophic Lateral Sclerosis. J. Neurochem. 2001, 76, 957–965. [Google Scholar] [CrossRef]
- Lubec, G. (Ed.) Advances in Down Syndrome Research; Springer: Vienna, Austria, 2003. [Google Scholar]
- Mazza, M.; Pomponi, M.; Janiri, L.; Bria, P.; Mazza, S. Omega-3 Fatty Acids and Antioxidants in Neurological and Psychiatric Diseases: An Overview. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2007, 31, 12–26. [Google Scholar] [CrossRef]
- Ferreira, M.; Rodrigues, R.; Motta, E.; Debom, G.; Soares, F.; de Mattos, B.D.S.; Machado, C.; Stefanello, F.M.; da Silva, T.M.; Martins, C.C.; et al. Evaluation of Extracellular Adenine Nucleotides Hydrolysis in Platelets and Biomarkers of Oxidative Stress in Down Syndrome Individuals. Biomed. Pharmacother. 2015, 74, 200–205. [Google Scholar] [CrossRef]
- Perluigi, M.; Butterfield, D.A. Oxidative Stress and Down Syndrome: A Route toward Alzheimer-like Dementia. Curr. Gerontol. Geriatr. Res. 2012, 2012, 724904. [Google Scholar] [CrossRef]
- Izzo, A.; Manco, R.; Cristofaro, T.; de Bonfiglio, F.; Cicatiello, R.; Mollo, N.; Martino, M.D.; Genesio, R.; Zannini, M.; Conti, A.; et al. Overexpression of Chromosome 21 MiRNAs May Affect Mitochondrial Function in the Hearts of Down Syndrome Fetuses. Int. J. Genom. 2017, 2017, 8737649. [Google Scholar] [CrossRef] [PubMed]
- Zamponi, E.; Helguera, P.R. The Shape of Mitochondrial Dysfunction in Down Syndrome. Dev. Neurobiol. 2019, 79, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Br. Med. J. 2021, 372, 1–9. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpst, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2019. [Google Scholar]
- Pieper, D.; Rombey, T. Where to Prospectively Register a Systematic Review. Syst. Rev. 2022, 11, 8. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, 1–9. [Google Scholar] [CrossRef]
- Drucker, A.M.; Fleming, P.; Chan, A.-W. Research Techniques Made Simple: Assessing Risk of Bias in Systematic Reviews. J. Investig. Dermatol. 2016, 136, 109–114. [Google Scholar] [CrossRef]
- Convertini, P.; Menga, A.; Andria, G.; Scala, I.; Santarsiero, A.; Castiglione Morelli, M.A.; Iacobazzi, V.; Infantino, V. The Contribution of the Citrate Pathway to Oxidative Stress in Down Syndrome. Immunology 2016, 149, 423–431. [Google Scholar] [CrossRef]
- Sadiq, M.F.; Hunaiti, A.A.; Alkaraki, A.K. The Association between Anti—Oxidant/Redox Status and Sister Chromatid Exchanges in down Syndrome Individuals. Jordan J. Biol. Sci. 2015, 8, 11–15. [Google Scholar] [CrossRef]
- Sulthana, S.M.; Kumar, S.N.; Sridhar, M.G.; Bhat, B.V.; Rao, K.R. Levels of Non Enzymatic Antioxidants in Down Syndrome. Indian J. Pediatr. 2012, 79, 1473–1476. [Google Scholar] [CrossRef]
- Sulthana, S.M.; Kumar, S.N.; Sridhar, M.G.; Bhat, B.V.; Rao, K.R. Antioxidant Enzyme Activity in Children with Down Syndrome. Curr. Pediatr. Res. 2012, 16, 43–47. [Google Scholar]
- Casado, Á.; López-Fernández, M.E.; Ruíz, R. Lipid Peroxidation in Down Syndrome Caused by Regular Trisomy 21, Trisomy 21 by Robertsonian Translocation and Mosaic Trisomy 21. Clin. Chem. Lab. Med. 2007, 45, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, F.; Rosety-Plaza, M.; Rosety-Rodriguez, M. Glucose-6-Phosphate-Dehydrogenase Is Also Increased in Erythrocytes from Adolescents with Down Syndrome. Down Syndr. Res. Pract. 2006, 11, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Garcez, M.E.; Peres, W.; Salvador, M. Oxidative Stress and Hematologic and Biochemical Parameters in Individuals with Down Syndrome. Mayo Clin. Proc. 2005, 80, 1607–1611. [Google Scholar] [CrossRef]
- Garaiová, I.; Muchová, J.; Šustrová, M.; Blažíček, P.; Sivoňová, M.; Kvasnička, P.; Pueschel, S.; Ďuračková, Z. The Relationship between Antioxidant Systems and Some Markers of Oxidative Stress in Persons with Down Syndrome. Biologia 2004, 59, 787–794. [Google Scholar]
- Žitňanová, I.; Korytár, P.; Aruoma, O.I.; Sustrová, M.; Garaiová, I.; Muchová, J.; Kalnovicová, T.; Pueschel, S.; Duracková, Z. Uric Acid and Allantoin Levels in Down Syndrome: Antioxidant and Oxidative Stress Mechanisms? Clin. Chim. Acta 2004, 341, 139–146. [Google Scholar] [CrossRef]
- Pastore, A.; Tozzi, G.; Gaeta, L.M.; Giannotti, A.; Bertini, E.; Federici, G.; Digilio, M.C.; Piemonte, F. Glutathione Metabolism and Antioxidant Enzymes in Children with Down Syndrome. J. Pediatr. 2003, 142, 583–585. [Google Scholar] [CrossRef]
- Pogribna, M.; Melnyk, S.; Pogribny, I.; Chango, A.; Yi, P.; James, S.J. Homocysteine Metabolism in Children with Down Syndrome: In Vitro Modulation. Am. J. Hum. Genet. 2001, 69, 88–95. [Google Scholar] [CrossRef]
- Kanavin, Ø.J.; Aaseth, J.; Birketvedt, G.S. Thyroid Hypofunction in Down’s Syndrome: Is It Related to Oxidative Stress? Biol. Trace Elem. Res. 2000, 78, 35–42. [Google Scholar] [CrossRef]
- Brugge, K.; Nichols, S.; Saitoh, T.; Trauner, D. Correlations of Glutathione Peroxidase Activity with Memory Impairment in Adults with Down Syndrome. Biol. Psychiatry 1999, 46, 1682–1689. [Google Scholar] [CrossRef]
- Pastor, M.-C.; Sierra, C.; Doladé, M.; Navarro, E.; Brandi, N.; Cabré, E.; Mira, A.; Serés, A. Antioxidant Enzymes and Fatty Acid Status in Erythrocytes of Down Syndrome Patients. Clin. Chem. 1998, 44, 924–929. [Google Scholar] [CrossRef]
- Gerli, G.; Zenoni, L.; Locatelli, G.F.; Mongiat, R.; Piattoni, F.; Orsini, G.B.; Montagnani, A.; Gueli, M.R.; Gualandri, V. Erythrocyte Antioxidant System in Down Syndrome. Am. J. Med. Genet. Suppl. 1990, 7, 272–273. [Google Scholar] [CrossRef] [PubMed]
- Brás, A.; Monteiro, C.; Rueff, J. Oxidative Stress in Trisomy 21: A Possible Role in Cataractogenesis. Ophthalmic Paediatr. Genet. 1989, 10, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Lazzarino, G.; Amorini, A.M.; Mangione, R.; Saab, M.W.; Di Stasio, E.; Di Rosa, M.; Tavazzi, B.; Lazzarino, G.; Onder, G.; Carfì, A. Biochemical Discrimination of the Down Syndrome-Related Metabolic and Oxidative/Nitrosative Stress Alterations from the Physiologic Age-Related Changes through the Targeted Metabolomic Analysis of Serum. Antioxidants 2022, 11, 1208. [Google Scholar] [CrossRef] [PubMed]
- Manna, C.; Officioso, A.; Trojsi, F.; Tedeschi, G.; Leoncini, S.; Signorini, C.; Ciccoli, L.; De Felice, C. Increased Non-Protein Bound Iron in Down Syndrome: Contribution to Lipid Peroxidation and Cognitive Decline. Free Radic. Res. 2016, 50, 1422–1431. [Google Scholar] [CrossRef]
- Buczyńska, A.; Sidorkiewicz, I.; Ławicki, S.; Krętowski, A.J.; Zbucka-Krętowska, M. Prenatal Screening of Trisomy 21: Could Oxidative Stress Markers Play a Role? J. Clin. Med. 2021, 10, 2382. [Google Scholar] [CrossRef]
- Žitňanová, I.; Korytár, P.; Sobotová, H.; Horáková, L.; Šustrová, M.; Pueschel, S.; Ďuračková, Z. Markers of Oxidative Stress in Children with Down Syndrome. Clin. Chem. Lab. Med. 2006, 44, 306–310. [Google Scholar] [CrossRef]
- Pinto, M.; Neves, J.; Palha, M.; Bicho, M. Oxidative Stress in Portuguese Children with Down Syndrome. Down Syndr. Res. Pract. 2002, 8, 79–82. [Google Scholar] [CrossRef]
- Domingues, N.B.; Mariusso, M.R.; Tanaka, M.H.; Scarel-Caminaga, R.M.; Mayer, M.P.A.; Brighenti, F.L.; Zuanon, Â.C.C.; Ibuki, F.K.; Nogueira, F.N.; Giro, E.M.A. Reduced Salivary Flow Rate and High Levels of Oxidative Stress in Whole Saliva of Children with Down Syndrome. Spec. Care Dent. 2017, 37, 269–276. [Google Scholar] [CrossRef]
- de Sousa, M.C.; Vieira, R.B.; dos Santos, D.S.; Carvalho, C.A.T.; Camargo, S.E.A.; Mancini, M.N.G.; de Oliveira, L.D. Antioxidants and Biomarkers of Oxidative Damage in the Saliva of Patients with Down’s Syndrome. Arch. Oral Biol. 2015, 60, 600–605. [Google Scholar] [CrossRef]
- Subramaniam, P.; Girish Babu, K.; Mohan Das, L. Assessment of Salivary Total Antioxidant Levels and Oral Health Status in Children with Down Syndrome. Spec. Care Dent. 2014, 34, 193–200. [Google Scholar] [CrossRef]
- Komatsu, T.; Duckyoung, Y.; Ito, A.; Kurosawa, K.; Maehata, Y.; Kubodera, T.; Ikeda, M.; Lee, M.-C. Increased Oxidative Stress Biomarkers in the Saliva of Down Syndrome Patients. Arch. Oral Biol. 2013, 58, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Tolun, A.A.; Scarbrough, P.M.; Zhang, H.; McKillop, J.-A.; Wang, F.; Kishnani, P.S.; Millington, D.S.; Young, S.P.; Il’yasova, D. Systemic Oxidative Stress, as Measured by Urinary Allantoin and F(2)-Isoprostanes, Is Not Increased in Down Syndrome. Ann. Epidemiol. 2012, 22, 892–894. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.; Guzmán, R.; López-Fernández, E.; Casado, Á. Evaluation of Urinary Biomarkers of Oxidative/Nitrosative Stress in Children with Down Syndrome. Life Sci. 2011, 89, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.; Guzmán, R.; López-Fernández, E.; Casado, Á. Evaluation of Urinary Biomarkers of Oxidative/Nitrosative Stress in Adolescents and Adults with Down Syndrome. Biochim. Biophys. Acta 2011, 1812, 760–768. [Google Scholar] [CrossRef]
- Campos, C.; Guzmán, R.; López-Fernández, E.; Casado, Á. Urinary Uric Acid and Antioxidant Capacity in Children and Adults with Down Syndrome. Clin. Biochem. 2010, 43, 228–233. [Google Scholar] [CrossRef]
- Jovanovic, S.V.; Clements, D.; MacLeod, K. Biomarkers of Oxidative Stress Are Significantly Elevated in Down Syndrome. Free Radic. Biol. Med. 1998, 25, 1044–1048. [Google Scholar] [CrossRef]
- Perluigi, M.; di Domenico, F.; Fiorini, A.; Cocciolo, A.; Giorgi, A.; Foppoli, C.; Butterfield, D.A.; Giorlandino, M.; Giorlandino, C.; Eugenia Schininà, M.; et al. Oxidative Stress Occurs Early in Down Syndrome Pregnancy: A Redox Proteomics Analysis of Amniotic Fluid. Proteom. Clin. Appl. 2011, 5, 167–178. [Google Scholar] [CrossRef]
- Perrone, S.; Longini, M.; Bellieni, C.V.; Centini, G.; Kenanidis, A.; De Marco, L.; Petraglia, F.; Buonocore, G. Early Oxidative Stress in Amniotic Fluid of Pregnancies with Down Syndrome. Clin. Biochem. 2007, 40, 177–180. [Google Scholar] [CrossRef]
- Sun, X.; Kato, H.; Sato, H.; Han, X.; Hirofuji, Y.; Kato, T.A.; Sakai, Y.; Ohga, S.; Fukumoto, S.; Masuda, K. Dopamine-Related Oxidative Stress and Mitochondrial Dysfunction in Dopaminergic Neurons Differentiated from Deciduous Teeth-Derived Stem Cells of Children with Down Syndrome. FASEB BioAdv. 2022, 4, 454–467. [Google Scholar] [CrossRef]
- Rodríguez-Sureda, V.; Vilches, Á.; Sánchez, O.; Audí, L.; Domínguez, C. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21. Oxid. Med. Cell. Longev. 2015, 2015, 509241. [Google Scholar] [CrossRef]
- Odetti, P.; Angelini, G.; Dapino, D.; Zaccheo, D.; Garibaldi, S.; Dagna-Bricarelli, F.; Piombo, G.; Perry, G.; Smith, M.; Traverso, N.; et al. Early Glycoxidation Damage in Brains from Down’s Syndrome. Biochem. Biophys. Res. Commun. 1998, 243, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Ani, C.; Grantham-McGregor, S.; Muller, D. Nutritional Supplementation in Down Syndrome: Theoretical Considerations and Current Status. Dev. Med. Child Neurol. 2000, 42, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, S.M.L.; Goulart, M.O.F.; Moura, J.B.D.F.; Manfredini, V.; Benfato, M.D.S.; Kubota, L.T. Espécies Reativas de Oxigênio e de Nitrogênio, Antioxidantes e Marcadores de Dano Oxidativo Em Sangue Humano: Principais Métodos Analíticos Para Sua Determinação. Quim. Nova 2007, 30, 1323–1338. [Google Scholar] [CrossRef]
- Michelson, A.M.; McCord, J.M.; Fridovich, I. (Eds.) Superoxide and Superoxide Dismutases; Academic Press: London, UK, 1977. [Google Scholar]
- Sinet, P.-M.; Lejeune, J.; Jerome, H. Trisomy 21 (Down’s Syndrome) Glutathione Peroxidase, Hexose Monophosphate Shunt and I.Q. Life Sci. 1979, 24, 29–33. [Google Scholar] [CrossRef]
- Muchova, J.; Garaiova, I.; Sustrova, M.; Liptakova, A.; Blazicek, P.; Kvasnicka, P.; Durackova, Z. The Redox State of Glutathione in Erythrocytes of Individuals with Down Syndrome. Bratisl. Lek. Listy 2007, 108, 70–74. [Google Scholar]
- Rejc, B.; Karas-Kuželički, N.; Osredkar, J.; Geršak, K. Correlation between Markers of DNA and Lipid Oxidative Damage in Maternal and Fetoplacental Compartment in the Mid-Trimester of Pregnancy. J. Perinat. Med. 2017, 45, 413–419. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several Lines of Antioxidant Defense against Oxidative Stress: Antioxidant Enzymes, Nanomaterials with Multiple Enzyme-Mimicking Activities, and Low-Molecular-Weight Antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Muchová, J.; Sustrová, M.; Garaiová, I.; Liptáková, A.; Blazícek, P.; Kvasnicka, P.; Pueschel, S.; Duracková, Z. Influence of Age on Activities of Antioxidant Enzymes and Lipid Peroxidation Products in Erythrocytes and Neutrophils of Down Syndrome Patients. Free Radic. Biol. Med. 2001, 31, 499–508. [Google Scholar] [CrossRef]
- Brooksbank, B.W.L.; Balazs, R. Superoxide Dismutase, Glutathione Peroxidase and Lipoperoxidation in Down’s Syndrome Fetal Brain. Brain Res. 1984, 318, 37–44. [Google Scholar] [CrossRef]
- Kauffman, L.D.; Sokol, R.J.; Jones, R.H.; Awad, J.A.; Rewers, M.J.; Norris, J.M. Urinary F2-Isoprostanes in Young Healthy Children at Risk for Type 1 Diabetes Mellitus. Free Radic. Biol. Med. 2003, 35, 551–557. [Google Scholar] [CrossRef]
- Tsukahara, H. Biomarkers for Oxidative Stress: Clinical Application in Pediatric Medicine. Curr. Med. Chem. 2007, 14, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of Oxidative Damage in Human Disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Watters, J.L.; Satia, J.A.; Costa, K.-A.; da Boysen, G.; Collins, L.B.; Morrow, J.D.; Milne, G.L.; Swenberg, J.A. Comparison of Three Oxidative Stress Biomarkers in a Sample of Healthy Adults. Biomarkers 2009, 14, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Guaraldi, F.; Rossetto Giaccherino, R.; Lanfranco, F.; Motta, G.; Gori, D.; Arvat, E.; Ghigo, E.; Giordano, R. Endocrine Autoimmunity in Down’s Syndrome. Front. Horm. Res. 2017, 48, 133–146. [Google Scholar] [CrossRef]
- Izzo, A.; Mollo, N.; Nitti, M.; Paladino, S.; Calì, G.; Genesio, R.; Bonfiglio, F.; Cicatiello, R.; Barbato, M.; Sarnataro, V.; et al. Mitochondrial Dysfunction in Down Syndrome: Molecular Mechanisms and Therapeutic Targets. Mol. Med. 2018, 24, 2. [Google Scholar] [CrossRef]
- Mosaoa, R.; Kasprzyk-Pawelec, A.; Fernandez, H.R.; Avantaggiati, M.L. The Mitochondrial Citrate Carrier SLC25A1/CIC and the Fundamental Role of Citrate in Cancer, Inflammation and Beyond. Biomolecules 2021, 11, 141. [Google Scholar] [CrossRef]
- Pecze, L.; Randi, E.B.; Szabo, C. Meta-Analysis of Metabolites Involved in Bioenergetic Pathways Reveals a Pseudohypoxic State in Down Syndrome. Mol. Med. 2020, 26, 102. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, Y.; Zhu, L.; Zhang, B.; Feng, P.; Gao, E.; Xu, C.; Wang, X.; Yi, W.; Sun, Y. Asprosin Improves the Survival of Mesenchymal Stromal Cells in Myocardial Infarction by Inhibiting Apoptosis via the Activated ERK1/2-SOD2 Pathway. Life Sci. 2019, 231, 116554. [Google Scholar] [CrossRef]
- Yuan, M.; Li, W.; Zhu, Y.; Yu, B.; Wu, J. Asprosin: A Novel Player in Metabolic Diseases. Front. Endocrinol. 2020, 11, 64. [Google Scholar] [CrossRef]
- Luís, C.; Fernandes, R.; Soares, R.; von Hafe, P. A State of the Art Review on the Novel Mediator Asprosin in the Metabolic Syndrome. Porto Biomed. J. 2020, 5, e108. [Google Scholar] [CrossRef]
Subjects | Controls | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
First Author Year | Objective of the Study | Indicator | Specimen | N (M/F) | AGE | N (F/M) | AGE | |
Convertini 2016 [61] | to evaluate the contribution of the citrate pathway to oxidative stress | citrate | heparinized blood | 10 | 3–5 years | 10 | 3–5 years | <0.05 |
ATP-citrate lyase (ACLY) | <0.001 | |||||||
citrate carrier (CIC) | <0.001 | |||||||
ROS | <0.01 | |||||||
NO | <0.05 | |||||||
lipid peroxidation | <0.05 | |||||||
Ferreira 2015 [52] | to evaluate the activities of ectonucleotidases in the blood platelets of DS individuals | adenosine monophosphate (AMP) | blood | 28 (12 F and 16 M) | 26.20 ± 5.76 (F) years 28.88 ± 6.94 (M) years | 28 (15 F and 13 M) | 24.12 ± 5.54 (F) years 23.67 ± 3.98 (M) years | <0.05 |
adenosine deaminase (ADA) | <0.05 | |||||||
adenosine triphosphate (ATP) | <0.05 | |||||||
adenosine monophosphate (ADP) | N.S. | |||||||
lipid peroxidation | <0.05 | |||||||
sulfhydryl content | <0.05 | |||||||
superoxide dismutase (SOD) | <0.05 | |||||||
catalase activity | <0.05 | |||||||
Sadiq 2015 [62] | to investigate the possible association between antioxidant/redox status and DNA instability in DS individuals | superoxide dismutase (SOD) | blood | 19 | 5–16 years | 19 | 5–16 years | 0.042 |
catalase (CAT) | N.S. | |||||||
glutathione peroxidase (GPx) | N.S. | |||||||
glutathione S-transferases (GST) | 0.007 | |||||||
Garlet 2013 [46] | to assess the antioxidant status and oxidative stress biomarkers in the blood of individuals with DS | superoxide dismutase (SOD) | blood | 20 | 3–14 years | 18 (8 F and 10 M) | 3–12 years | <0.001 |
catalase (CAT) | <0.001 | |||||||
glutathione peroxidase (GPx) | N.S. | |||||||
glutathione reductase (GR) | <0.001 | |||||||
reduced glutathione (GSH) | <0.05 | |||||||
glutathione S-transferases (GST) | <0.001 | |||||||
uric acid (UA) | <0.05 | |||||||
protein carbonyls (PCs) | <0.05 | |||||||
Sulthana 2012 [63] | to investigate oxidative stress in individuals with DS by determining the levels of non-enzymatic antioxidants such as reduced glutathione and total antioxidant status | reduced glutathione (GSH) | blood | 19 | 0–4 years | 19 | 0–4 years | N.S. |
6 | 4–8 years | 6 | 4–8 years | N.S. | ||||
6 | >8 years | 6 | >8 years | <0.05 | ||||
Sulthana 2012 [64] | to evaluate the activity of enzymatic antioxidants in individuals with DS | superoxide dismutase (SOD) | blood | 31 (13 F and 18 M) | 3 months–14 years | 31 (13 F and 18 M) | 3 months–14 years | N.S. |
catalase (CAT) | N.S. | |||||||
glutathione peroxidase (GPx) | N.S. | |||||||
SOD 1/CAT + GPx | <0.05 | |||||||
Casado 2007 [65] | to detect a change in malondialdehyde levels due to oxidative stress | malondialdehyde (MDA) | blood | 100 (66 F and 34 M) | 0–29 years | 100 (60 F and 40 M) | 0–29 years | <0.05 |
Pallardó 2006 [1] | evaluate a set of biomarkers of oxidative stress in DS individuals that could provide in vivo evidence of their propensity for accelerated ageing and other redox-related pathologies that occur in DS individuals | 8-hydroxy-2’-deoxyguanosine (8-OHdG) | blood | 32 (18 F and 14 M) | 2 months–57 years | 67 | 2 months–57 years | |
1–10 years | 1–10 years | 0.022 | ||||||
11–20 years | 11–20 years | 0.0003 | ||||||
21–30 years | 21–30 years | 0.069 | ||||||
31–57 years | 31–57 years | N.S. | ||||||
total glutathione (GSHt) | <15 years | <15 years | N.S. | |||||
>15 years | >15 years | 0.05 | ||||||
glutathione disulfide (GSSG) | <15 years | <15 years | 0.006 | |||||
>15 years | >15 years | N.S. | ||||||
reduced glutathione (GSH) | <15 years | <15 years | N.S. | |||||
>15 years | >15 years | 0.05 | ||||||
GSSG/GSH × 100 | <15 years | <15 years | 0.049 | |||||
>15 years | >15 years | 0.0003 | ||||||
glyoxal (Glx) | <15 years | <15 years | 0.003 | |||||
>15 years | >15 years | N.S. | ||||||
methylglyoxal (MGlx) | <15 years | <15 years | N.S. | |||||
>15 years | >15 years | 0.008 | ||||||
uric acid (UA) | <15 years | <15 years | 0.013 | |||||
>15 years | >15 years | 0.016 | ||||||
xanthine oxidase (XO) | 0.008 | |||||||
Ordonez 2006 [66] | to determine the activity of glucose-6-phosphate dehydrogenase in individuals with DS in order to analyse its role as a minimally invasive bioindicator of oxidative damage | superoxide dismutase (SOD) | blood | 31 M | 16.3 ± 1.1 years | 17 | 16.6 ± 1.3 years | 0.019 |
glutathione peroxidase (GPx) | 0.030 | |||||||
catalase (CAT) | N.S. | |||||||
glucose-6-phosphate dehydrogenase (G6PDH) | 0.038 | |||||||
Garcez 2005 [67] | to assess the levels of thiobarbituric acid reactive substances, uric acid and seric superoxide dismutase and catalase activities as well as serum total iron, total iron binding capacity (TIBC), erythrocyte osmotic fragility and haemograms in individuals with DS | thiobarbituric acid-reacting substances (TBARS) | blood | 50 (25 F and 25 M) | 3–24 years | 50 (25 F and 25 M) | 3–24 years | |
F | F | 0.002 | ||||||
M | M | 0.047 | ||||||
F + M | F + M | 0.002 | ||||||
superoxide dismutase (SOD) | F | F | 0.001 | |||||
M | M | 0.001 | ||||||
F + M | F + M | 0.004 | ||||||
catalase (CAT) | F | F | 0.005 | |||||
M | M | 0.002 | ||||||
F + M | F + M | 0.002 | ||||||
uric acid (UA) | F | F | 0.001 | |||||
M | M | 0.001 | ||||||
F + M | F + M | 0.001 | ||||||
Garaiová 2004 [68] | to investigate the relationship between the ratio of the activities of the antioxidant enzymes R = SOD/(GPx + CAT) and the content of non-enzymatic low molecular weight antioxidants (LMWA) (reduced and oxidised glutathione, vitamin E, uric acid, total antioxidant status) as well as the concentrations of malondialdehyde in erythrocytes and lipofuscin in the serum of individuals with DS | superoxide dismutase (SOD) | blood | 44 | 23.208 ± 1.967 years | 26 | 23.340 ± 2.978 years | <0.001 |
glutathione peroxidase (GPx) | <0.001 | |||||||
catalase (CAT) | N.S. | |||||||
reduced glutathione (GSH) | 0.064 | |||||||
glutathione disulfide (GSSG) | 0.012 | |||||||
GSH/GSSG | N.S. | |||||||
vitamin E | ||||||||
uric acid (UA) | 0.007 | |||||||
total antioxidant status (TAS) | 0.031 | |||||||
malondialdehyde (MDA) | 0.019 | |||||||
lipofuscin | N.S. | |||||||
erythrocytes R = SOD/(GPx + CAT) | 0.006 | |||||||
Žitňanová 2004 [69] | to compare the levels of purine metabolites (uric acid, hypoxanthine and xanthine) in the plasma of DS individuals with that of healthy control subjects and to analyse the levels of allantoin in both groups | uric acid (UA) | blood | 16 | 10.06 ± 1.04 years | 16 | 11.94 ± 0.97 years | <0.05 |
hypoxanthine (HX) | <0.05 | |||||||
xanthine (X) | <0.05 | |||||||
allantoin (Alla) | <0.05 | |||||||
Pastor 2003 [70] | to evaluate the concentrations of all forms of glutathione, including glutathionyl haemoglobin, as well as the enzyme activities of superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione S-transferase in the blood of individuals with DS | total glutathione (GSHt) | blood | 46 (26 F and 20 M) | 6.7 ± 2.7 years | 64 (34 F and 30 M) | 5.1 ± 2.3 years | <0.0001 |
free glutathione (GSHf) | <0.0001 | |||||||
GSSG/GSH | <0.0001 | |||||||
glutathionyl-haemoglobin (GS-Hb) | <0.0001 | |||||||
superoxide dismutase (SOD) | <0.0001 | |||||||
glutathione peroxidase (GPx) | <0.05 | |||||||
SOD/GPx | <0.0001 | |||||||
glutathione reductase (GR) | N.S. | |||||||
glutathione S-transferase (GST) | <0.05 | |||||||
Pogribna 2001 [71] | to evaluate the effects of overexpression of the cystathionine beta-synthase (CBS) gene on homocysteine metabolism in individuals with DS and to determine whether supplementation of Ts21 lymphoblasts in vitro with selected nutrients would shift the genetically determined metabolic imbalance | total homocysteine (tHcy) | blood | 42 | 7.4 ± 4.2 years | 36 | 7.4 ± 4.2 years | <0.001 |
methionine (Met) | <0.001 | |||||||
cystathionine | <0.001 | |||||||
cysteine (CYS) | <0.001 | |||||||
reduced glutathione (GSH) | <0.001 | |||||||
S-adenosylmethionine (SAM) | <0.04 | |||||||
S-adenosylhomocysteine (SAH) | <0.04 | |||||||
adenosine | <0.001 | |||||||
Kanavin 2000 [72] | to investigate the hypothesis of a role of an imbalance between the production of toxic oxygen and protective metallo-enzymes in the development of hypothyroidism in DS individuals | free thyroxine (fT4) | blood | 38 (22 F and 16 M) | 33 ± 11.1 years | 39 (22 F and 17 M) | 33 ± 11.1 years | <0.05 |
total thyroxine (tT4) | <0.05 | |||||||
thyroid stimulating hormone (TSH) | <0.05 | |||||||
triiodothyronine (T3) | N.S. | |||||||
thyroxine-binding globulin (TBG) | <0.05 | |||||||
high-density lipoprotein (HDL) | <0.05 | |||||||
low-density lipoprotein (LDL) | N.S. | |||||||
triglycerides (TGs) | <0.05 | |||||||
Brugge 1999 [73] | to investigate the possible relationship between biochemical indices of free radical metabolism (FRM) and specific memory deficits in individuals with DS | copper-zinc superoxide dismutase (SOD1) | blood | 17 (14 F and 3 M) | 22–51 years | 11 (5 F and 6 M) | 22–48 years | <0.02 |
glutathione peroxidase (GPx) | <0.01 | |||||||
catalase (CAT) | N.S. | |||||||
Pastor 1998 [74] | to evaluate the cellular antioxidant system by determining the catalytic activity of the enzymes copper-zinc superoxide dismutase, glutathione peroxidase, catalase and glutathione reductase as well as the concentrations of alpha-tocopherol in the erythrocytes of DS individuals | copper-zinc superoxide dismutase (SOD1) | blood | 72 | 17.8 ± 15.8 years | 72 | 14.6 ± 10.8 years | 0.0001 |
glutathione peroxidase (GPx) | 0.0001 | |||||||
catalase (CAT) | 0.026 | |||||||
glutathione reductase (GR) | 0.0001 | |||||||
Gerli 1990 [75] | to evaluate the level of antioxidant enzyme activities copper-zinc superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione in the erythrocytes of individuals with DS | copper-zinc superoxide dismutase (SOD1) | blood | 39 (18 F and 21 M) | 14–53 years | 50 (25 F and 25 M) | 23–60 years | <0.001 |
catalase (CAT) | N.S. | |||||||
glutathione peroxidase (GPx) | <0.001 | |||||||
reduced glutathione (GSH) | N.S. | |||||||
Bras 1989 [76] | to obtain further evidence for the possible role of increased superoxide dismutase activity in oxidative damage in individuals with DS | thiobarbituric acid (TBA) | blood | 9 | 9 months–22 years | 9 | 9 months–22 years | <0.01 |
Lazzarino 2022 [77] | distinguish the potential effects of ageing from those of pathobiological processes associated with DS on circulating levels of the aforementioned compounds, identify the metabolic pathways that are actually altered by DS, recognise certain biomarkers that are unique to DS and therefore useful to drive future potential DS-targeted pharmacological treatments | aspartate (Asp) | serum | YDSP = 29 (13 F and 16 M) ADSP = 27 (12 F and 15 M) | 20–40 years (YDSP) 41–60 years (ADSP) | YnonDSP = 55 (26 F and 29 M) AnonDSP = 47 (22 F and 25 M) | 30–60 years (YnonDSP) 75–90 years (AnonDSP) | <0.0001 |
glutamate (Glu) | <0.0001 | |||||||
asparagine (Asn) | <0.0001 | |||||||
serine (Ser) | <0.0001 | |||||||
glutamine (Gln) | <0.0001 | |||||||
histidine (His) | <0.0001 | |||||||
glycine (Gly) | N.S. | |||||||
threonine (Thr) | <0.0001 | |||||||
citrulline (Cit) | <0.02 | |||||||
arginine (Arg) | <0.0001 | |||||||
alanine (Ala) | N.S. | |||||||
taurine (Tau) | <0.0001 | |||||||
tyrosine (Tyr) | <0.01 | |||||||
valine (Val) | N.S. | |||||||
methionine (Met) | <0.0001 | |||||||
tryptophan (Trp) | <0.0001 | |||||||
phenylalanine (Phe) | <0.0001 | |||||||
isoleucine (Ile) | N.S. | |||||||
leucine (Leu) | <0.02 | |||||||
ornithine (Orn) | <0.0001 | |||||||
lysine (Lys) | N.S. | |||||||
uracil | <0.0001 | |||||||
beta-pseudouridine | <0.0001 | |||||||
uridine | <0.0001 | |||||||
hypoxanthine | <0.0001 | |||||||
xanthine | <0.0001 | |||||||
uric acid (UA) | <0.0001 | |||||||
sum of oxypurines | <0.0001 | |||||||
inosine | <0.0001 | |||||||
vitamin C | <0.002 | |||||||
reduced glutathione (GSH) | <0.001 | |||||||
nitrites | <0.002 | |||||||
nitrates | <0.0001 | |||||||
nitrites + nitrates | <0.0001 | |||||||
lactate | <0.0001 | |||||||
creatinine (Cr) | N.S. | |||||||
Tarani 2020 [5] | to determine and correlate serum levels of nerve growth factor and brain neurotrophic factor in prepubertal male and female DS individuals (i); (ii) to measure oxidative status in serum as an oxygen free radical defence and oxygen free radical assay; and (iii) the serum levels of cytokines that play a subtle role in both neuroinflammatory and oxidative processes, such as tumour necrosis factor alpha, transforming growth factor beta, monocyte chemoattractant protein-1, interleukin-1 alfa, interleukin-2, interleukin-6, interleukin-10, interleukin-12 | nerve growth factor (NGF) | serum | 9 (4 F and 5 M) | 1–9.6 years | 21 (11 F and 10 M) | 1–9.6 years | N.S. |
brain-derived neurotrophic factor (BDNF) | <0.05 | |||||||
free oxygen radicals defense (FORD) | N.S. | |||||||
free oxygen radicals test (FORT) | N.S. | |||||||
tumour necrosis factor alpha (TNF-α) | N.S. | |||||||
transforming growth factor beta (TGF-β) | N.S. | |||||||
monocyte chemoattractant protein-1 (MCP1) | N.S. | |||||||
interleukin-1 alpha (IL-1α) | <0.01 | |||||||
interleukin-2 (IL-2) | <0.01 | |||||||
interleukin-6 (IL-6) | <0.01 | |||||||
interleukin-10 (IL-10) | <0.01 | |||||||
interleukin-12 (IL-12) | <0.01 | |||||||
Manna 2016 [78] | to investigate a possible pathogenic role of iron in neurodegeneration | total iron serum (STI) | serum | 16 | 18–35 years | 16 | 18–35 years | N.S. |
ferritin | 0.0093 | |||||||
transferrin | 0.0093 | |||||||
Buczyńska 2021 [79] | assessment of the utility of selected parameters of oxidative stress biomarkers in maternal plasma and amniotic fluid for DS screening | 25-hydroxyvitamin D (25(OH)D) | plasma | 20 F | 15–18 weeks of gestation | 20 F | 15–18 weeks of gestation | N.S. |
aspros | <0.0001 | |||||||
advanced glycation end products (AGEs) | <0.001 | |||||||
ischemia-modified albumin (IMA) | <0.0001 | |||||||
alpha-1-antitrypsin (A1AT) | N.S. | |||||||
DNA/RNA oxidative stress damage products (OSDP) | N.S. | |||||||
Manna 2016 [78] | to investigate a possible pathogenic role of iron in neurodegeneration | uric acid (UA) | plasma | 16 | 18–35 years | 16 | 18–35 years | 0.0013 |
plasma nonprotein-bound iron (P-NPBI) | 0.0013 | |||||||
intraerythrocyte non-protein bound iron (IE-NPBI) | 0.0004 | |||||||
ROS | 0.0004 | |||||||
F2-isoprostane (F2-isoPs) | 0.0001 | |||||||
F4-neuroprostanes (F4-NeuroPs) | 0.0032 | |||||||
F2-dihomo-isoprostanes (F2-dihomo-IsoPs) | 0.0001 | |||||||
Garlet 2013 [46] | to assess the antioxidant status and oxidative stress biomarkers in the blood of individuals with DS | vitamin E | plasma | 20 | 3–14 years | 18 (8 F and 10 M) | 3–12 years | N.S. |
thiobarbituric acid-reacting substances (TBARS) | N.S. | |||||||
Sulthana 2012 [63] | to investigate oxidative stress in individuals with DS by estimating the levels of non-enzymatic antioxidants such as reduced glutathione and total antioxidants status | total antioxidant status (TAS) | plasma | 19 | 0–4 years | 19 | 0–4 years | <0.05 |
6 | 4–8 years | 6 | 4–8 years | N.S. | ||||
6 | >8 years | 6 | >8 years | N.S. | ||||
Sulthana 2012 [64] | assessment of oxidative stress in DS by determining products of oxidative damage such as plasma malondialdehyde and plasma protein carbonylation | malondialdehyde (MDA) | plasma | 19 | 3 months–4 years | 19 | 3 months–4 years | 0.0002 |
6 | 4–8 years | 6 | 4–8 years | 0.0102 | ||||
6 | >8 years | 6 | >8 years | N.S. | ||||
protein carbonylation (PCO) | 19 | 0–4 years | 19 | 0–4 years | <0.0001 | |||
6 | 4–8 years | 6 | 4–8 years | 0.0065 | ||||
6 | 8–14 years | 6 | 8–14 years | 0.0022 | ||||
Žitňanová 2006 [80] | to evaluate the role of oxidative stress in individuals with DS and to investigate the effects of an imbalance of antioxidant enzyme activities in individuals with DS on the formation of oxidative stress biomarkers | protein carbonyls (PCs) | plasma | 20 | 10.06 ± 1.04 years | 18 | 11.94 ± 0.97 years | 0.002 |
ferric reducing ability of plasma (FRAP) | N.S. | |||||||
4-hydroxynonenal (4-HNE) | N.S. | |||||||
Pinto 2002 [81] | glutathione and other lesser-known antioxidant mechanisms to determine if there are changes in reactive oxygen species in individuals with DS | reduced glutathione (GSH) | plasma | 60 | 0.5–12 years | 29 | 1–17 years | N.S. |
glutathione disulfide (GSSG) | N.S. | |||||||
total glutathione (GSHt) | N.S. | |||||||
acid phosphatase (ACP1) | N.S. | |||||||
methemoglobin reductase (MHR) | N.S. | |||||||
transmembrane reductase (TMR) | N.S. | |||||||
Bras 1989 [76] | to obtain further evidence for the possible role of increased copper-zinc superoxide dismutase activity in oxidative damage in individuals with DS | thiobarbituric acid (TBA) | plasma | 9 | 9 months–22 years | 9 | 9 months–22 years | N.S. |
uric acid (UA) | N.S. | |||||||
vitamin C | N.S. | |||||||
vitamin E | N.S. | |||||||
Domingues 2017 [82] | to correlate clinical parameters with salivary parameters and the content of cariogenic and periodontopathogenic bacteria and to evaluate the antioxidant profile in individuals with DS compared to individuals without DS | total protein (TP) | saliva | 18 | 23 | <0.0001 | ||
glutathione peroxidase (GPx) | N.S. | |||||||
superoxide dismutase (SOD) | 0.0002 | |||||||
total antioxidant capacity of saliva (TAOC) | N.S. | |||||||
malondialdehyde (MDA) | <0.001 | |||||||
de Sousa 2015 [83] | investigation of the enzymatic and non-enzymatic antioxidant systems and the levels of biomarkers for oxidative damage in the saliva of individuals with DS | superoxide dismutase (SOD) | saliva | 30 | 14–24 years | 30 | 14–24 years | <0.05 |
total protein (TP) | <0.05 | |||||||
carbonylated proteins | <0.05 | |||||||
uric acid (UA) | N.S. | |||||||
vitamin C | N.S. | |||||||
peroxidase | N.S. | |||||||
total antioxidant status (TAS) | N.S. | |||||||
Subramaniam 2014 [84] | to assess the total antioxidant status, nitric oxide and sialic acid of saliva in individuals with DS and their relationship to their oral health status | total antioxidant status (TAS) | saliva | 34 (19 F and 15 M) | 9.44 ± 1.50 years | 34 (13 F and 21 M) | 9.29 ± 1.98 years | 0.001 |
nitric oxide (NO) | N.S. | |||||||
sialic acid (SA) | 0.001 | |||||||
Komatsu 2013 [85] | evaluation of 8-hydroxy-2’-deoxyguanosine as a marker for oxidative stress in the saliva of DS individuals | 8-hydroxy-20-deoxyguanosine (8-OHdG) | saliva | 45 (24 F and 21 M) | 1–12 years | 45 (22 F and 23 M) | 1–12 years | <0.01 |
21 (3 F and 18 M) | 30–66 years | 26 (20 F and 6 M) | 30–58 years | <0.01 | ||||
Tolun 2012 [86] | comparison of urinary levels of allantoin and 2,3-dinor-iPF2a-III in DS individuals and control subjects | allantoin (Alla) | urine | 48 (23 F and 25 M) | 2–52 years | 130 (71 F and 59 M) —Alla | 4–78 years | <0.05 |
2,3-dinor-8-iso-prostaglandin F2α-III (2,3-dinor-iPF2α-III) | 85 (49 F and 36 M) —2,3-dinor-iPF2ɑ-III | 4–75 years | N.S. | |||||
Campos 2011 [87] | assess a comprehensive set of urinary biomarkers of oxidative/nitrosative stress in individuals with and without DS | creatinine (Cr) | urine | 26 (13 F and 13 M) | 3–14 years | 19 (11 F and 8 M) | 5–14 years | N.S. |
8-hydroxy-2’-deoxyguanosine (8-OHdG) | N.S. | |||||||
isoprostane (15-F2t-IsoP) | N.S. | |||||||
thiobarbituric acid-reacting substances (TBARS) | N.S. | |||||||
advanced glycation end product (AGEs) | N.S. | |||||||
dityrosine (diTyr) | <0.05 | |||||||
hydrogen peroxide (H2O2) | N.S. | |||||||
total nitrite and nitrate (tNOx) | N.S. | |||||||
Campos 2011 [88] | to evaluate a comprehensive set of urinary biomarkers of oxidative/nitrosative stress in individuals with and without DS | creatinine (Cr) | urine | 78 (43 F and 35 M) | 15–59 years | 65 (39 F and 26 M) | 15–59 years | <0.001 |
8-hydroxy-2’-deoxyguanosine (8-OHdG) | N.S. | |||||||
isoprostane (15-F2t-IsoP) | N.S. | |||||||
thiobarbituric acid-reacting substances (TBARS) | N.S. | |||||||
advanced glycation end product (AGEs) | N.S. | |||||||
dityrosine (diTyr) | <0.001 | |||||||
hydrogen peroxide (H2O2) | <0.001 | |||||||
total nitrite and nitrate (tNOx) | <0.001 | |||||||
Campos 2010 [89] | comparison of uric acid levels and antioxidant status in a sample of individuals with DS with those of healthy, age-matched controls to assess the role of oxidative stress in these individuals | creatinine (Cr) | urine | 19 (6 F and 13 M) | 1–12 years | 14 (8 F and 6 M) | 5–13 years | N.S. |
13 (6 F and 7 M) | 43–57 years | 15 (10 F and 5 M) | 43–61 years | N.S. | ||||
total antioxidant status (TAS)/creatinine (Cr) | 19 (6 F and 13 M) | 1–12 years | 14 (8 F and 6 M) | 5–13 years | 0.015 | |||
13 (6 F and 7 M) | 43–57 years | 15 (10 F and 5 M) | 43–61 years | N.S. | ||||
total antioxidant status without relative contribution of uric acid (TAS−UA)/creatinine (Cr) | 19 (6 F and 13 M) | 1–12 years | 14 (8 F and 6 M) | 5–13 years | N.S. | |||
13 (6 F and 7 M) | 43–57 years | 15 (10 F and 5 M) | 43–61 years | 0.033 | ||||
uric acid (UA)/creatinine (Cr) | 19 (6 F and 13 M) | 1–12 years | 14 (8 F and 6 M) | 5–13 years | 0.045 | |||
13 (6 F and 7 M) | 43–57 years | 15 (10 F and 5 M) | 43–61 years | N.S. | ||||
Jovanovic 1998 [90] | to assess the role of oxidative stress in DS | 8-hydroxy-2’-deoxyguanosine (8-OHdG) | urine | 85 | 5.11 ± 4.15 years | 81 | 7.56 ± 4.67 years | 0.00011 |
thiobarbituric acid-reacting substances (TBARS) | 0.033 | |||||||
Buczyńska 2021 [79] | assessment of the utility of selected parameters of oxidative stress biomarkers in maternal plasma and amniotic fluid for DS screening | 25-hydroxyvitamin D (25(OH)D) | amniotic fluid | 20 F | 15–18 weeks of gestation | 20 F | 15–18 weeks of gestation | N.S. |
aspros | <0.0001 | |||||||
advanced glycation end products (AGEs) | <0.001 | |||||||
ischemia-modified albumin (IMA) | <0.0001 | |||||||
alpha-1-antitrypsin (A1AT) | N.S. | |||||||
DNA/RNA oxidative stress damage products (OSDP) | N.S. | |||||||
Bahsi 2022 [47] | to assess the status of the oxidant/antioxidant system and the levels of interleukin-6/interleukin-10 in the amniotic fluid of expectant mothers carrying a child with Ts21 identified by amniocentesis | catalase (CAT) | amniotic fluid | 18 | 16–20 weeks of gestation | 13 | 16–20 weeks of gestation | 0.034 |
malondialdehyde (MDA) | N.S. (0.323) | |||||||
superoxide dismutase (SOD) | 0.012 | |||||||
glutathione peroxidase (GPx) | N.S. (0.566) | |||||||
adenosine deaminase (ADA) | N.S. (0.149) | |||||||
xanthine oxidase (XO) | N.S. (0.114) | |||||||
nitric oxide (NO) | N.S. (0.749) | |||||||
nitric oxide synthase (NOS) | N.S. (0.434) | |||||||
interleukin-6 (IL-6) | 0.017 | |||||||
interleukin-10 (IL-10) | N.S. (0.425) | |||||||
Buczyńska 2021 [79] | assessment of the utility of selected parameters of oxidative stress biomarkers in maternal plasma and amniotic fluid for DS screening | 25-hydroxyvitamin D (25(OH)D) | amniotic fluid | 20 F | 15–18 weeks of gestation | 20 F | 15–18 weeks of gestation | N.S. |
aspros | <0.0001 | |||||||
advanced glycation end products (AGEs) | <0.0001 | |||||||
ischemia-modified albumin (IMA) | N.S. | |||||||
alpha-1-antitrypsin (A1AT) | <0.0001 | |||||||
DNA/RNA oxidative stress damage products (OSDP) | <0.05 | |||||||
Perluigi 2011 [91] | evaluate a set of biomarkers of oxidative stress in the amniotic fluid of women carrying foetuses with Ts21 that could detect the early onset of oxidative damage in Ts21 in vivo | protein carbonylation (PCO) | amniotic fluid | 10 F | 15–17 weeks of gestation | 10 F | 15–17 weeks of gestation | <0.05 |
4-hydroxynonenal (4-HNE) | <0.05 | |||||||
thioredoxin (Trx) | <0.05 | |||||||
total glutathione (GSHt) | <0.05 | |||||||
glutathione disulfide (GSSG) | <0.05 | |||||||
Perrone 2007 [92] | to test the hypothesis that oxidative stress occurs early in pregnancies with foetuses with Ts21 | isoprostane (IP) | amniotic fluid | 10 F | 16th week of gestation | 56 F | 16th week of gestation | <0.0001 |
Sun 2022 [93] | to further elucidate the pathology of dopaminergic neurons (DNs) in DS | dopamine in dopaminergic neurons (DN) | stem cells from exfoliated baby teeth | 3 (M) | 6, 9 and 10 years | 3 (3 M) | 6, 6 and 7 years | <0.001 |
ROS | <0.001 | |||||||
Rodríguez-Sureda 2015 [94] | to determine whether there is an imbalance in the activities, messenger ribonucleic acid (mRNA) and protein expression of the antioxidant enzymes copper-zinc superoxide dismutase, superoxide dismutase-2 (SOD2), glutathione peroxidase and catalase during the cell replication process in vitro | oxidised proteins | abdominal skin | 5 | 9–22 weeks of gestation | 5 | 9–22 weeks of gestation | <0.05 |
malondialdehyde (MDA) | <0.01 | |||||||
superoxide dismutase (SOD1) | <0.01–<0.001 | |||||||
catalase (CAT) | <0.05–<0.01 | |||||||
glutathione peroxidase (GPx) | N.S.–<0.05 | |||||||
Odetti 1998 [95] | to further investigate the issue of oxidative stress through the presence and amount of lipid and protein oxidation biomarkers in the foetal cortex of DS | protein carbonyls (PCs) | the cerebral cortex | 8 | 18–20 weeks of gestation | 4 | 18–20 weeks of gestation | <0.05 |
thiobarbituric acid-reacting substances (TBARS) | <0.05 | |||||||
4-hydroxynonenal (4-HNE) | <0.05 | |||||||
pyrraline | <0.05 | |||||||
pentosidine | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slivšek, G.; Mijač, S.; Dolanc, I.; Fabijanec, M.; Petković, S.; Mautner, R.; Lončarek, K.; Kranjčić, J.; Blagaić, A.B.; Marinović, M.; et al. Oxidative Stress and Down Syndrome: A Systematic Review. Antioxidants 2025, 14, 816. https://doi.org/10.3390/antiox14070816
Slivšek G, Mijač S, Dolanc I, Fabijanec M, Petković S, Mautner R, Lončarek K, Kranjčić J, Blagaić AB, Marinović M, et al. Oxidative Stress and Down Syndrome: A Systematic Review. Antioxidants. 2025; 14(7):816. https://doi.org/10.3390/antiox14070816
Chicago/Turabian StyleSlivšek, Goran, Sandra Mijač, Ivan Dolanc, Marija Fabijanec, Silvija Petković, Renato Mautner, Karmen Lončarek, Josip Kranjčić, Alenka Boban Blagaić, Marin Marinović, and et al. 2025. "Oxidative Stress and Down Syndrome: A Systematic Review" Antioxidants 14, no. 7: 816. https://doi.org/10.3390/antiox14070816
APA StyleSlivšek, G., Mijač, S., Dolanc, I., Fabijanec, M., Petković, S., Mautner, R., Lončarek, K., Kranjčić, J., Blagaić, A. B., Marinović, M., Vitale, K., Verbanac, D., Čoklo, M., & Vraneković, J. (2025). Oxidative Stress and Down Syndrome: A Systematic Review. Antioxidants, 14(7), 816. https://doi.org/10.3390/antiox14070816