Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = chromene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 140 KiB  
Correction
Correction: Mahnashi et al. In-Vitro, In-Vivo, Molecular Docking and ADMET Studies of 2-Substituted 3,7-Dihydroxy-4H-chromen-4-one for Oxidative Stress, Inflammation and Alzheimer’s Disease. Metabolites 2022, 12, 1055
by Mater H. Mahnashi, Mohammed Abdulrahman Alshahrani, Mohammed H. Nahari, Syed Shams ul Hassan, Muhammad Saeed Jan, Muhammad Ayaz, Farhat Ullah, Osama M. Alshehri, Mohammad Ali Alshehri, Umer Rashid and Abdul Sadiq
Metabolites 2025, 15(8), 532; https://doi.org/10.3390/metabo15080532 - 6 Aug 2025
Abstract
There was an error in the original publication [...] Full article
13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 285
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

19 pages, 3447 KiB  
Article
Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Crystal Structure and Optical Properties
by Anarkul Kishkentayeva, Kymbat Kopbalina, Zhanar Shaimerdenova, Elvira Shults, Yury Gatilov, Dmitrii Pankin, Mikhail Smirnov, Anastasia Povolotckaia, Dastan Turdybekov and Nurlan Mazhenov
Materials 2025, 18(13), 3153; https://doi.org/10.3390/ma18133153 - 3 Jul 2025
Viewed by 450
Abstract
Coumarin and cytisine and their derivatives have significant biological activity. In addition, the electronic properties of coumarin derivatives are very sensitive to the molecular environment, which allows for their use as sensors for bioluminescent imaging. Due to the fact that cytisine exhibits high [...] Read more.
Coumarin and cytisine and their derivatives have significant biological activity. In addition, the electronic properties of coumarin derivatives are very sensitive to the molecular environment, which allows for their use as sensors for bioluminescent imaging. Due to the fact that cytisine exhibits high activity in binding to nicotinic acetylcholine receptors, a compound combining parts of cytisine and coumarin may have a broader spectrum of biological activity and also act as a photoactive element for promising use in optoelectronic devices. This article reports the synthesis of a crystalline cytisine–coumarin complex (IUPAC: N-(2-oxo-2H-chromene-3-carbonyl)cytisine), along with the results of both theoretical and experimental investigations of its structural and electronic properties. The structure of this new compound was established on the basis of X-ray diffraction and Fourier transform infrared spectroscopy data and was confirmed through density functional theory calculations using periodic crystal and single-molecule approaches. Interpretations of the IR absorption peaks and the atomic patterns of the vibrational modes are given. The electronic band structure and the contributions of individual atoms to the electronic density of states are analyzed. The structural and optical properties considered may be useful for quality control of the compound and for studying similar matrices. Full article
Show Figures

Figure 1

13 pages, 3184 KiB  
Article
Furin-Triggered Peptide Self-Assembly Activates Coumarin Excimer Fluorescence for Precision Live-Cell Imaging
by Peiyao Chen, Liling Meng, Yuting Wang, Xiaoya Yan, Meiqin Li, Yun Deng and Yao Sun
Molecules 2025, 30(11), 2465; https://doi.org/10.3390/molecules30112465 - 4 Jun 2025
Viewed by 609
Abstract
Monomer-to-excimer transition has become a valuable technique in fluorescence imaging because of its ability to enhance imaging contrast. However, from a practical perspective, the accuracy of excimer formation at target sites warrants further exploration. Enzyme-triggered peptide self-assembly provides a promising solution to this [...] Read more.
Monomer-to-excimer transition has become a valuable technique in fluorescence imaging because of its ability to enhance imaging contrast. However, from a practical perspective, the accuracy of excimer formation at target sites warrants further exploration. Enzyme-triggered peptide self-assembly provides a promising solution to this limitation. As a proof-of-concept, in this study, we developed a furin-triggered peptide self-assembling fluorescent probe RF-Cou by coupling a coumarin dye 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid (Cou) with a furin-responsive peptide scaffold for precision live-cell imaging. Upon entering furin-overexpressing 4T1 tumor cells, RF-Cou underwent enzymatic cleavage, releasing an amphiphilic peptide motif and self-assembling into nanoparticles largely concentrated in the Golgi apparatus to confine the diffusion of Cou. During this process, the Cou excimers were formed and induced a red shift in the fluorescence emission, validating the feasibility of RF-Cou in efficient excimer imaging of furin-overexpressing tumor cells. We expect that our findings will highlight the potential of stimuli-responsive small molecular peptide probes to advance excimer-based imaging platforms, particularly for enzyme-specific cell imaging and therapeutic monitoring. Full article
(This article belongs to the Special Issue Metal-Based Molecular Photosensitizers: From Design to Applications)
Show Figures

Graphical abstract

18 pages, 11294 KiB  
Article
Investigating the Therapeutic Potential of Crude Leech Saliva Based on Its Anticancer, Antioxidant, and Anti-Inflammatory Effects
by Alican Bilden, İlhan Sabancılar, Serap Yalçın Azarkan, Kenan Karadağlı, Seçkin Kaya, Merve Kahraman and Muttalip Çiçek
Curr. Issues Mol. Biol. 2025, 47(5), 328; https://doi.org/10.3390/cimb47050328 - 3 May 2025
Viewed by 845
Abstract
Leech therapy is a biotherapeutic approach that has been traditionally used for centuries and is currently being re-evaluated in modern medicine. The efficacy of this treatment is attributed to various bioactive compounds found in leech saliva, which exhibit anticoagulant, anti-inflammatory, antioxidant, and anticancer [...] Read more.
Leech therapy is a biotherapeutic approach that has been traditionally used for centuries and is currently being re-evaluated in modern medicine. The efficacy of this treatment is attributed to various bioactive compounds found in leech saliva, which exhibit anticoagulant, anti-inflammatory, antioxidant, and anticancer properties. It has been demonstrated that leech saliva possesses the potential to modulate inflammatory processes and apoptotic mechanisms. In this study, the therapeutic potential of the saliva of Hirudo verbana was evaluated, and its biological and pharmacological effects were comprehensively investigated. The anticancer effects, antioxidant capacity, and anti-inflammatory activity of the crude leech saliva were assessed using human umbilical vein endothelial cells and epithelial ovarian cancer cells. The chemical composition of the saliva was analyzed using gas chromatography–mass spectrometry, while the protein content was determined by the Bradford assay. Antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, inflammatory effects were evaluated by Enzyme-Linked ImmunoSorbent Assay, and cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The findings revealed that crude leech saliva had a minimal effect on healthy cells but showed a selective effect on the viability of ovarian cancer cells. At low concentrations (3.13%), 99.16% of healthy cells remained viable, whereas this rate decreased to 89.25% in cancer cells; at high concentrations (50%), cell viability in cancer cells declined to 63.02%. Gas chromatography–mass spectrometry analysis identified compounds such as gibberellic acid and 6-[(4-methoxyphenyl)methoxy]-4,4,5,7,8-pentamethyl-3H-chromen-2-one, which demonstrated high affinity for the antiapoptotic proteins Bcl-2 and Survivin in molecular docking analyses. In conclusion, the crude leech saliva was confirmed to possess anti-inflammatory, antioxidant, and anticancer properties. However, further biochemical and clinical research is needed to elucidate the underlying mechanisms of these biological effects in greater detail. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

27 pages, 8944 KiB  
Article
Machine Learning-Based Virtual Screening and Molecular Modeling Reveal Potential Natural Inhibitors for Non-Small Cell Lung Cancer
by Zafer Saad Al Shehri and Faez Falah Alshehri
Crystals 2025, 15(5), 383; https://doi.org/10.3390/cryst15050383 - 22 Apr 2025
Viewed by 989
Abstract
Non-Small Cell Lung Cancer (NSCLC) is the most typical kind of lung cancer. Chemotherapy, radiation therapy, and other traditional cancer therapies are ineffective. Advancements in understanding cancer’s molecular causes have led to targeted therapies, such as those addressing NTRK gene fusions in NSCLC. [...] Read more.
Non-Small Cell Lung Cancer (NSCLC) is the most typical kind of lung cancer. Chemotherapy, radiation therapy, and other traditional cancer therapies are ineffective. Advancements in understanding cancer’s molecular causes have led to targeted therapies, such as those addressing NTRK gene fusions in NSCLC. Several machine-learning techniques were used in our work, including k-Nearest Neighbors (kNN), Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB). As a result, the RF model outperformed the other studied machine-learning methods, achieving an astonishing 93.12% accuracy for both training as well as testing datasets, and it was employed to screen 9000 chemicals, resulting in the discovery of 65 putative NTRK potential inhibitors. The active sites of NTRK proteins were then docked with these 65 active chemicals. Our findings show that Gancaonin X, 5-hydroxy-2-(4-methoxyphenyl)-8,8-dimethyl-2,3-dihydropyrano[2,3-h]chromen-4-one, (2S)-7-[[(2R)-3,3-dimethyloxiran-2-yl]methoxy]-5-hydroxy-2-phenyl-2,3-dihydrochromen-4-one, (2S)-5-hydroxy-2-(4-methoxyphenyl)-8,8-dimethyl-2,3-dihydropyrano[2,3-h]chromen-4-one, and methyl 2-(methylamino)-5-[(3S)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-yl]benzoate establish strong interactions inside the binding region of NTRK, as a result of which stable complexes are formed. This study employs 100 ns molecular dynamics simulations to investigate the dynamic behavior of phytochemical-NTRK complexes, revealing stable interactions through RMSD, RMSF, Rg, and SASA analyses. The detailed examination of protein–ligand interactions provides crucial atomic-level insights, enhancing our understanding of potential neurotrophic receptor kinase-targeted therapeutic strategies. This highlights their significant ability as NTRK antagonists, giving novel treatment options for NSCLC therapy. To summarize, the application of machine learning in combination with virtual screening in this study not only can discover new NSCLC therapeutics but also highlight new computer approaches in the field of drug discovery. Full article
Show Figures

Figure 1

14 pages, 657 KiB  
Article
Chemical Constituents and Antifungal Properties of Piper ceanothifolium Kunth Against Phytopathogens Associated with Cocoa Crops
by Yudy S. Mahecha-Jimenez, Oscar J. Patiño-Ladino and Juliet A. Prieto-Rodríguez
Plants 2025, 14(6), 934; https://doi.org/10.3390/plants14060934 - 16 Mar 2025
Viewed by 583
Abstract
In this study, the antifungal potential of chemical constituents of Piper ceanothifolium Kunth was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study of the inflorescences of P. ceanothifolium, the synthesis of a chroman-4-one type [...] Read more.
In this study, the antifungal potential of chemical constituents of Piper ceanothifolium Kunth was determined against three phytopathogenic fungi associated with the cocoa crop. The methodology included the phytochemical study of the inflorescences of P. ceanothifolium, the synthesis of a chroman-4-one type derivative and the evaluation of the antifungal activity against Moniliophthora roreri, Fusarium solani, and Lasiodiplodia theobromae. The phytochemical study led to the isolation and identification of two new hydroquinones (1 and 5), together with three known compounds (hydroquinones 2 and 3, and chromene 4). The synthesis of a new chromone 6 obtained from 2 through an oxa-Michael type intramolecular cyclization is also reported. All compounds showed strong antifungal activity, with 6 (IC50 of 16.9 µM) standing out for its action against F. solani, while prenylated hydroquinones 1 (30.4 µM) and 2 (60.0 µM) were the most active against M. roreri and L. theobromae, respectively. The results of this research represent the first report of the chemical composition and antifungal properties for P. ceanotifolium, suggesting its potential use as a control method against M. roreri, F. solani, and L. theobromae. Full article
Show Figures

Figure 1

14 pages, 1995 KiB  
Article
Computational Design and Synthesis of Phthalimide Derivatives as TGF-β Pathway Inhibitors for Cancer Therapeutics
by Héctor M. Heras-Martínez, Blanca Sánchez-Ramírez, Linda-Lucila Landeros-Martínez, Víctor H. Ramos-Sánchez, Alejandro A. Camacho-Dávila, Kostiantyn O. Marichev, Alejandro Bugarin and David Chávez-Flores
Chemistry 2025, 7(2), 31; https://doi.org/10.3390/chemistry7020031 - 26 Feb 2025
Viewed by 1317
Abstract
Background: This study investigates the synthesis and pharmacological potential of N-substituted isoindoline-1,3-dione (phthalimide) derivatives. Using the M06 meta-GGA hybrid functional with a polarized 6-311G(d,p) basis set, computational evaluations assessed their impact on apoptosis modulation in colon cancer cells. Molecular docking studies targeted [...] Read more.
Background: This study investigates the synthesis and pharmacological potential of N-substituted isoindoline-1,3-dione (phthalimide) derivatives. Using the M06 meta-GGA hybrid functional with a polarized 6-311G(d,p) basis set, computational evaluations assessed their impact on apoptosis modulation in colon cancer cells. Molecular docking studies targeted the TGF-β protein (PDB: 1RW8) at the ALK5 binding site. On this study fourteen molecules were evaluated (P1P14) and six (P1, P3, P4, P5, P7, and P13) demonstrated promising binding values. Methods: from the fourteen studied compounds five compounds (P2, P4, P7, P10, and P11) were successfully synthesized and fully characterized. The reactions were monitored via TLC and HPLC confirming high-purity compounds. Functional groups were identified through FTIR and structural characterization was supported by NMR analyses. Results: Density functional theory calculations and docking simulations allowed to classified the compounds as potential ALK5 inhibitors. Synthesized derivatives were developed in yields from 85 to 99% and showed better binding affinities than Capecitabine (−6.95 kcal/mol) used as control compound, with P7 (5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yl 2-(1,3-dioxoisoindolin-2-yl) acetate) leading the group with a binding energy of −12.28 kcal/mol. Other synthesized compounds also exhibited significant affinities: P4 (−11.42 kcal/mol), P10 (−8.99 kcal/mol), P11 (−7.50 kcal/mol), and P2 (−7.22 kcal/mol). Conclusions: Integrating computational insights with experimental validation highlights the therapeutic potential of phthalimide derivatives, particularly P7. The study underscores a rigorous approach to identifying promising candidates for anticancer therapeutics, warranting further exploration. Full article
(This article belongs to the Special Issue Cutting-Edge Studies of Computational Approaches in Drug Discovery)
Show Figures

Figure 1

18 pages, 1067 KiB  
Article
Exploring the Potential of Coumarin Derivatives on Serotonin Receptors 5-HT1A and 5HT2A
by Kinga Ostrowska, Gabriela Horosz, Karolina Kruk, Bartłomiej Sieroń, Anna Leśniak, Zofia Czartoryska, Magdalena Bujalska-Zadrożny, Dejan Milenkovic and Bartosz Trzaskowski
Int. J. Mol. Sci. 2025, 26(5), 1946; https://doi.org/10.3390/ijms26051946 - 24 Feb 2025
Viewed by 1117
Abstract
A series of 2- and 3-methoxyphenylpiperazine derivatives in combination with a 2-hydroxypropoxy linker and coumarins containing various substituents was synthesized and evaluated for antidepressant-like activity. Microwave-assisted synthesis was used, and the structures of all compounds were confirmed by 1H, 13C NMR, [...] Read more.
A series of 2- and 3-methoxyphenylpiperazine derivatives in combination with a 2-hydroxypropoxy linker and coumarins containing various substituents was synthesized and evaluated for antidepressant-like activity. Microwave-assisted synthesis was used, and the structures of all compounds were confirmed by 1H, 13C NMR, and HRMS spectrometry. The affinity toward the 5-HT1A and 5-HT2A receptors was determined using radioligand binding assays and analyzed by molecular docking studies. Among the compounds evaluated, four demonstrated high affinity for the 5-HT1A receptor with the following Ki values: 5-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propoxy)-4,7-dimethyl-2H-chromen-2-one (5) (90 nM), 6-acetyl-5-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propoxy)-4,7-dimethyl-2H-chromen-2-one (7) (90 nM), 7-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl) propoxy)-4-methyl-2H-chromen-2-one (10) (87 nM), and 8-acetyl-7-(2-hydroxy-3-(4-(2-methoxy phenyl)piperazin-1-yl)propoxy)-4-methyl-2H-chromen-2-one (11) (96 nM), and four demonstrated high affinity for the 5-HT2A receptor with the following Ki values: 6-acetyl-7-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl)propoxy)-4-methyl-2H-chromen-2-one (2) (83 nM), 8-acetyl-7-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl)propoxy)-4-methyl-2H-chromen-2-one (12) (67 nM), 7-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl) propoxy)-2H-chromen-2-one (13) (18 nM), and 7-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl)propoxy)-2H-chromen-2-one (14) (68 nM). In functional assays, 8-acetyl-7-(2-hydroxy-3-(4-(2-methoxyphenyl) piperazin-1-yl)propoxy)-4-methyl-2H-chromen-2-one (compound 11) exhibited a significant 5-HT1A antagonistic profile. Computational studies revealed the structural details responsible for the high affinity of selected derivatives, which were compared to known 5HT1A partial agonists. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 614 KiB  
Article
Halogenated 3-Nitro-2H-Chromenes as Potential Agents Against Multidrug-Resistant Bacteria
by Patrícia I. C. Godinho, Paula Pérez-Ramos, Yaiza Gabasa, Enmanuel Cornielle, Sara M. Soto, Raquel G. Soengas and Artur M. S. Silva
Antibiotics 2025, 14(3), 218; https://doi.org/10.3390/antibiotics14030218 - 21 Feb 2025
Viewed by 963
Abstract
Introduction/Objectives: Nosocomial infections caused by S. aureus and S. epidermidis resistant strains are an important cause of morbidity and mortality worldwide. Due to the increasing rate of resistance to conventional antibiotics, the discovery of new antibiotic drugs is crucial to keep pace [...] Read more.
Introduction/Objectives: Nosocomial infections caused by S. aureus and S. epidermidis resistant strains are an important cause of morbidity and mortality worldwide. Due to the increasing rate of resistance to conventional antibiotics, the discovery of new antibiotic drugs is crucial to keep pace with the evolution of these pathogenic bacterial species. Methods: The 3-nitro-2H-chromene moiety is present in several compounds with potent antibacterial activity; based on these previous studies, we report herein the synthesis of 20 new 2-aryl-3-nitro-2H-chromene derivatives and the evaluation of their antibacterial potential in vitro. Results: Mono-halogenated nitrochromenes showed moderate anti-staphylococcal activity with MIC values of 8–32 μg/mL, whereas tri-halogenated 3-nitro-2H-chromenes displayed potent anti-staphylococcal activities with MIC values of 1–8 μg/mL. Notably, 2-(4-bromophenyl)-6-bromo-8-chloro-3-nitro-2H-chromene 5s was the best antibacterial agent in the series against multidrug-resistant strains of S. aureus and S. epidermidis with MIC values of 4 μg/mL and 1–4 μg/mL, respectively. Conclusions: nitrochromene 5s shows a good safety profile, so it can be considered as a lead for further development. Full article
Show Figures

Figure 1

18 pages, 2046 KiB  
Article
Dynamic Environmental Interactions Shape the Volatile Compounds of Agarwood Oils Extracted from Aquilaria sinensis Using Supercritical Carbon Dioxide
by Wenxian Zhang, Sizhu Qian, Dehuai Wu, Qiaoling Yan, Jen-Ping Chung and Yongmei Jiang
Molecules 2025, 30(4), 945; https://doi.org/10.3390/molecules30040945 - 18 Feb 2025
Viewed by 907
Abstract
Aquilaria spp. are a highly valuable plant species found in the Chinese herbal medicine and agarwood fragrance supplement industries for fumigation, combustion and perfume. The phytochemical composition of agarwood oils (extracts) was derived from Aquilaria sinensis and its subspecies ‘Qi-Nan’ using supercritical CO [...] Read more.
Aquilaria spp. are a highly valuable plant species found in the Chinese herbal medicine and agarwood fragrance supplement industries for fumigation, combustion and perfume. The phytochemical composition of agarwood oils (extracts) was derived from Aquilaria sinensis and its subspecies ‘Qi-Nan’ using supercritical CO2 extraction technology. Gas chromatography connected with a mass spectrometry apparatus was employed for qualitative and quantitative analyses. Comparing the agarwood oils from six planting areas, 12 common components were obtained, among which sesquiterpenes and chromones had the highest relative content. Genetic and environmental factors had the greatest impact on the three chromones, especially on 2-phenyl-4H-chromen-4-one. According to the PCA and PLS-DA models, the ‘Qi-Nan’ was derived from a variety selected from the native A. sinensis, and the difference in the volatile components was able to indirectly prove that it was genetically heterogeneous with the native A. sinensis. Using the 73 components obtained from GC–MS analysis, the VIP values and S-plots were generated using the OPLS-DA model. Seven components with VIP values > 1.0 were selected from two groups of agarwood oils of the native A. sinensis and ‘Qi-Nan’ subspecies. In addition, by analyzing 12 common components, the differential components with VIP values > 1 were 2-phenyl-4H-chromen-4-one and 2-(4-methoxyphenethyl)-4H-chromen-4-one. Chromones were the main component of agarwood oils extracted by supercritical CO2, and 2-phenyl-4H-chromen-4-one could be used as a volatile marker, especially in the ‘Qi-Nan’ subspecies, where this marker exhibited more prominent characteristics. Full article
Show Figures

Figure 1

5 pages, 493 KiB  
Proceeding Paper
Isolation and Characterization of Two Coumarin Compounds from the Chloroform Fraction of Scadoxus multiflorus (Martyn) Raf. (Amaryllidaceae)
by Olaiya Akeem Ayodele, Tijani Tawakaltu Omolara, Abdullahi Sakynah Musa and Sule Mohammed Ibrahim
Chem. Proc. 2024, 16(1), 89; https://doi.org/10.3390/ecsoc-28-20184 - 18 Feb 2025
Viewed by 745
Abstract
In this study, the aerial parts of Scadoxus multiflorus were extracted using methanol through a maceration process. The resulting methanol crude extract was subsequently partitioned with solvents including n-hexane, chloroform, ethyl acetate, and n-butanol. Extensive column chromatography separation of the chloroform fraction, followed [...] Read more.
In this study, the aerial parts of Scadoxus multiflorus were extracted using methanol through a maceration process. The resulting methanol crude extract was subsequently partitioned with solvents including n-hexane, chloroform, ethyl acetate, and n-butanol. Extensive column chromatography separation of the chloroform fraction, followed by isocratic elution of two pooled fractions, led to the isolation of two coumarin derivatives: 2-methyl-2H-chromen-7-ol and 7-methoxy-2H-chromen-2-one. These compounds underwent various physicochemical analyses, such as chemical tests, melting point determination, and solubility assessments. Structural elucidation of the isolated compounds was conducted using UV spectroscopy, FT-IR, and 1D/2D NMR techniques. The final molecular structures were confirmed and named using ChemDraw. Full article
Show Figures

Figure 1

12 pages, 3546 KiB  
Article
Antiviral Effect and Metabolic Regularity of a Phenylpropanoid- Based Compound as Potential Immunopotentiator
by Dawei Song, Xue Cai, Qianhao Shao, Xinhui Tong, Zhe Zhao, Lei Liu and Guanglu Liu
Fishes 2025, 10(2), 77; https://doi.org/10.3390/fishes10020077 - 15 Feb 2025
Viewed by 528
Abstract
Spring viremia of carp virus (SVCV) is a significant pathogen that has notably hindered the advancement of cyprinid aquaculture in recent years. Infections caused by SVCV are often associated with substantial economic losses due to the absence of effective treatment options. Previous reports [...] Read more.
Spring viremia of carp virus (SVCV) is a significant pathogen that has notably hindered the advancement of cyprinid aquaculture in recent years. Infections caused by SVCV are often associated with substantial economic losses due to the absence of effective treatment options. Previous reports indicated that N-(4-methyl-2-oxo-2H-chromen-7-yl) benzenesulfonamide (N6) exhibits inhibitory effects on SVCV proliferation. This study aims to comprehensively evaluate the anti-SVCV effects of N6 using healthy young carp as the experimental model. The research investigates the antiviral activity of this compound in vivo, the immune response of interferon (IFN)-related genes, its impact on the horizontal transmission of SVCV, and histopathological changes. The results indicate that N6 significantly inhibits SVCV infectivity and apoptosis in EPC cells in vitro. Furthermore, while N6 reduced horizontal transmission of SVCV in a static cohabitation challenge model, the N6-treated SVCV-infected group showed a nearly 3-fold decrease in viral load compared to the control group, it did not completely prevent transmission at established antiviral dosages. Histopathological analysis of the affected fish revealed that N6 effectively mitigated tissue damage induced by SVCV. Additionally, the up-regulation of six IFN-related genes suggests that N6 may indirectly activate IFNs to facilitate the clearance of SVCV in the kidney and spleen, as demonstrated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). These findings provide a foundation for further investigations into the mechanisms by which N6 acts against SVCV and may aid in the development of novel anti-SVCV therapeutics. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

6 pages, 844 KiB  
Short Note
N-(4-Methoxyphenethyl)-2-oxo-2H-chromene-3-carboxamide
by Iliyan Ivanov, Stanimir Manolov, Diyana Dimitrova and Paraskev Nedialkov
Molbank 2025, 2025(1), M1968; https://doi.org/10.3390/M1968 - 13 Feb 2025
Viewed by 1913
Abstract
Herein, we present the synthesis of N-(4-methoxyphenethyl)-2-oxo-2H-chromene-3-carboxamide. The synthesized compound has been thoroughly characterized using melting point analysis, 1H- and 13C-NMR spectroscopy, infrared spectroscopy, and mass spectrometry. The comprehensive data obtained from these techniques confirm the successful synthesis [...] Read more.
Herein, we present the synthesis of N-(4-methoxyphenethyl)-2-oxo-2H-chromene-3-carboxamide. The synthesized compound has been thoroughly characterized using melting point analysis, 1H- and 13C-NMR spectroscopy, infrared spectroscopy, and mass spectrometry. The comprehensive data obtained from these techniques confirm the successful synthesis and structural integrity of the newly synthesized molecule. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

15 pages, 4056 KiB  
Article
Studies on Quality Deterioration and Metabolomic Changes in Oysters Induced by Spoilage Bacteria During Chilled Storage
by Hanzheng Dou, Wenxiu Zhu, Siyang Chen, Yue Zou and Xiaodong Xia
Foods 2025, 14(2), 193; https://doi.org/10.3390/foods14020193 - 9 Jan 2025
Cited by 2 | Viewed by 1340
Abstract
The correlation between spoilage bacteria and the degradation of aquatic food quality during chilled storage is substantial. However, our understanding of the precise roles of spoilage bacteria in oyster spoilage remains incomplete. The aim of this study was to explore the role of [...] Read more.
The correlation between spoilage bacteria and the degradation of aquatic food quality during chilled storage is substantial. However, our understanding of the precise roles of spoilage bacteria in oyster spoilage remains incomplete. The aim of this study was to explore the role of three dominant spoilage bacteria strains in oyster spoilage. Subsequently, the metabolites of spoiled oyster meat after inoculation with bacteria were analyzed using LC-MS-based untargeted metabolomics. Combining the results from various biochemical indicators of spoilage, Psychrobacter immobilis, Shewanella putrefaciens, and Photobacterium swingsii are shown to be the main spoilage bacteria in spoiled oyster meat, and their effects on changes in oyster meat quality were evaluated through total volatile basic nitrogen (TVB-N), pH, thiobarbituric acid reactive substances (TBARSs), and weight loss, respectively. The results showed that Ps. immobilis and S. putrefaciens exhibited great spoilage capacity. P swingsii, although a dominant spoilage bacterium, exhibited lower spoilage competency than the above two bacterial strains but demonstrated activity in producing microbial lipases to oxidize fats. In addition, the results of the metabolomics of spoiled oyster meat suggest that 7, 8-Dimethoxy-3-(4-methoxyphenyl)-4-oxo-4H-chromen-5-yl-2-O-pentopyranosylhexopyranoside, 1,2,3,6-Tetrahydropyridine-4-carboxylic acid, Propionic acid, and L-phenylalanine are potential markers of spoilage in oysters. These findings extend our understanding of the roles that microorganisms play in the spoilage of oysters and offer valuable insights into the development of technologies for monitoring the freshness of oysters based on these potential spoilage markers. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

Back to TopTop