Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (474)

Search Parameters:
Keywords = chromatographic modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1609 KiB  
Article
Advancing Reversed-Phase Chromatography Analytics of Influenza Vaccines Using Machine Learning Approaches on a Diverse Range of Antigens and Formulations
by Barry Lorbetskie, Narges Manouchehri, Michel Girard, Simon Sauvé and Huixin Lu
Vaccines 2025, 13(8), 820; https://doi.org/10.3390/vaccines13080820 (registering DOI) - 31 Jul 2025
Abstract
One concern in the yearly re-formulation of influenza vaccines is the time-consuming manufacturing of vaccine potency reagents, particularly for emergency responses. The continuous evaluation of modern techniques such as reversed-phase (RP) chromatography is an asset for streamlining this process. One challenge with RP [...] Read more.
One concern in the yearly re-formulation of influenza vaccines is the time-consuming manufacturing of vaccine potency reagents, particularly for emergency responses. The continuous evaluation of modern techniques such as reversed-phase (RP) chromatography is an asset for streamlining this process. One challenge with RP methods, however, is the need to re-optimize methods for antigens that show poor separation, which can be highly dependent on analyst experience and available data. In this study, we leveraged a large RP dataset of influenza antigens to explore machine learning (ML) approaches of classifying challenging separations for computer-assisted method re-optimization across years, products, and analysts. Methods: To address recurring chromatographic issues—such as poor resolution, strain co-elution, and signal absence—we applied data augmentation techniques to correct class imbalance and trained multiple supervised ML classifiers to distinguish between these peak profiles. Results: With data augmentation, several ML models demonstrated promising accuracy in classifying chromatographic profiles according to the provided labels. These models effectively distinguished patterns indicative of separation issues in real-world data. Conclusions Our findings highlight the potential of ML as a computer assisted tool in the evaluation of vaccine quality, offering a scalable and objective approach to chromatogram classification. By reducing reliance on manual interpretation, ML can expedite the optimization of analytical methods, which is particularly needed for rapid responses. Future research involving larger, inter-laboratory datasets will further elucidate the utility of ML in vaccine analysis. Full article
(This article belongs to the Special Issue Novel Vaccines and Vaccine Technologies for Emerging Infections)
Show Figures

Figure 1

13 pages, 1866 KiB  
Article
Application of Humate-Containing Agent for Sorbing Trace Metals in Simulated Solutions and Surface Waters from Tunnels at the ‘Degelen’ Site
by Madina Dyussembayeva, Yerbol Shakenov, Vladimir Kolbin, Azhar Tashekova, Assan Aidarkhanov, Umirzak Dzhusipbekov, Gulzipa Nurgalieva, Zamira Bayakhmetova, Dulat Duisenbay and Ulzhan Aksakalova
Sustainability 2025, 17(15), 6921; https://doi.org/10.3390/su17156921 - 30 Jul 2025
Viewed by 38
Abstract
This article presents the potential use of a humic agent called ‘Superhumate’, obtained from weathered coal from the Shubarkol deposit in Kazakhstan. The experiment was conducted using model solutions and surface mine water samples from the “Degelen” site at the Semipalatinsk Test Site. [...] Read more.
This article presents the potential use of a humic agent called ‘Superhumate’, obtained from weathered coal from the Shubarkol deposit in Kazakhstan. The experiment was conducted using model solutions and surface mine water samples from the “Degelen” site at the Semipalatinsk Test Site. The adsorption of heavy metals and toxic elements using the “Superhumate” agent was carried out under dynamic conditions using a chromatographic column. Tests were conducted at a natural pH range of 5–8 (mine waters) and with a model solution at pH 1.7. Assessing the sorption efficiency of this preparation revealed that at pH 1.7, the agent does not adsorb elements such as Cd, Cu, Pb, and Zn. Under dynamic experimental conditions, using the preparation for mine waters at natural pH levels (pH 5–8), elements such as Be, Sr, Mo, Cd, Cs, Zn, and U were efficiently adsorbed at levels of 60–95%. The sorption efficiency of Pb ions was found to be almost independent of pH. The experimental results obtained with mine water samples indicate that alkaline solutions have the highest sorption efficiency, with pH ≥ 7, which is attributed to the solubility of the agent. Full article
Show Figures

Figure 1

19 pages, 1849 KiB  
Article
A Simultaneous Determination of the B1 and B6 Vitamers Reveals Their Loss During a Single Peritoneal Dialysis Session: Chromatographic and Chemometric Approach
by Paweł Rudnicki-Velasquez, Karol Krzymiński, Magdalena Jankowska, Anna Baraniak and Paulina Czaplewska
Int. J. Mol. Sci. 2025, 26(15), 7177; https://doi.org/10.3390/ijms26157177 - 25 Jul 2025
Viewed by 160
Abstract
This study aimed to assess the extent of vitamin B1 and B6 vitamer loss during a single peritoneal dialysis (PD) session using a combination of chromatographic techniques and chemometric analysis. Dialysis effluent samples were collected from 41 PD patients (22 on [...] Read more.
This study aimed to assess the extent of vitamin B1 and B6 vitamer loss during a single peritoneal dialysis (PD) session using a combination of chromatographic techniques and chemometric analysis. Dialysis effluent samples were collected from 41 PD patients (22 on continuous ambulatory peritoneal dialysis (CAPD) and 19 on automated peritoneal dialysis (APD)) during a standardised peritoneal equilibration test. Concentrations of thiamine monophosphate, thiamine diphosphate (ThDP), pyridoxine, pyridoxal (PL), and pyridoxamine were determined using high-performance liquid chromatography with a fluorescence detector. The analytical method was validated in terms of sensitivity, linearity, accuracy, and recovery. Multiple regression analysis was employed to identify potential clinical and demographic predictors of vitamin washout. All vitamers except pyridoxal 5-phosphate (PLP) were detectable in dialysis effluents. ThDP exhibited the greatest loss among the B1 forms (ca. 0.05–0.57 mg/24 h), while PL exhibited the most significant loss among the B6 forms (ca. 0.01–0.19 mg/24 h). Vitamin losses varied depending on the dialysis modality (continuous ambulatory peritoneal dialysis, or CAPD, versus automated peritoneal dialysis, or APD) and the peritoneal transport category. Regression analysis identified body weight, haemoglobin, and haematocrit as independent predictors of ThDP washout (R2 = 0.58). No statistically robust models were established for the other vitamers. Even short medical procedures (such as single PD) can result in measurable losses of water-soluble vitamins, particularly ThDP and PL. The results emphasise the importance of personalised vitamin supplementation for PD patients and suggest that body composition and haematological parameters significantly influence the loss of thiamine. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 537 KiB  
Article
Phenolic Profiles of Different Apricot Varieties Grown in Spain: Discrimination Among Cultivars During the Harvest Season
by Julia Morales, Helena Gómez-Martínez and Almudena Bermejo
Agronomy 2025, 15(7), 1652; https://doi.org/10.3390/agronomy15071652 - 7 Jul 2025
Viewed by 367
Abstract
Apricot is one of the most important Mediterranean fruits with high diversity and fruit quality properties, being an excellent raw material for polyphenol compounds. This study aimed to determine the anthocyanin, quercetin glycoside and phenolic acid contents in new apricot genotypes from the [...] Read more.
Apricot is one of the most important Mediterranean fruits with high diversity and fruit quality properties, being an excellent raw material for polyphenol compounds. This study aimed to determine the anthocyanin, quercetin glycoside and phenolic acid contents in new apricot genotypes from the breeding program at the Instituto Valenciano de Investigaciones Agrarias, confirming the potential of the ‘Goldrich’ cultivar to be a parental donor for increasing the antioxidant content, which would, in turn, enhance fruit quality. Phenolic composition of the apricot accessions is strongly genotype-dependent, with the concentrations of overall total phenolic compounds ranging from 770 to 260 mg 100 g−1 DW, reflecting significant genetic diversity. ‘Goldrich’ contributed to the polyphenol content; however, its influence varied across derived varieties, with ‘GG9310’ and ‘GG979’ enhancing the shikimic acid pathway and accumulating high levels of total phenolics. In contrast, ‘Mitger’ and ‘HG9850’ stood out for high anthocyanin synthesis, despite their lower levels of flavonols and phenolic acids. The predominant anthocyanin was cyanidin-3-O-rutinoside, followed by cyanidin-3-O-glucoside and peonidin-3-O-rutinoside in smaller amounts. Other phenolics were rutin and quercetin-3-O-glucuronide, as well as neochlorogenic and chlorogenic acids. The PCA model was applied to all data to identify the most attractive cultivars, and chromatographic analysis was performed in a short time using Ultra-High-Performance Liquid Chromatography (UHPLC) with diode array and mass spectrometric detection. Apricot peel is an excellent source of nutraceutical compounds with a chemical composition strongly determined by the cultivar. Results can help establish authenticity markers for apricot cultivars. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

11 pages, 2312 KiB  
Article
The Fundamentals of the NP-Gram Method for the Characterisation of Pyrolysis Oils Based on the Estimated Boiling Points of Pyrolysis Products from Polypropylene
by Mihai Brebu and Katsuhide Murata
Polymers 2025, 17(13), 1855; https://doi.org/10.3390/polym17131855 - 2 Jul 2025
Viewed by 238
Abstract
The pyrolysis of polymers is a thermal processing method largely used to convert polymeric waste into valuable products such as oils and carbonaceous residues. The NP-gram method (NP standing for normal paraffins) is useful for the global characterisation of pyrolysis oils with complex [...] Read more.
The pyrolysis of polymers is a thermal processing method largely used to convert polymeric waste into valuable products such as oils and carbonaceous residues. The NP-gram method (NP standing for normal paraffins) is useful for the global characterisation of pyrolysis oils with complex composition. Here, we present the fundamental of this method, which is based on the concept of “carbon number”, in conjunction with the boiling point and the chromatographic retention time of chemical compounds. Polypropylene was selected as the model polymer due to its simple mechanism of thermal degradation. The boiling points of the main compounds in polypropylene pyrolysis oil were estimated based on the equations of Egloff and Wiener. A good correspondence was obtained for the estimated boiling points and the position of the compounds in the gas chromatogram. A distinction was made between the number of carbon atoms in the molecule and the corresponding carbon number used in characterisation of pyrolysis oils by NP-gram. Correlation with the chromatographic retention index was also discussed. The application of the NP-gram method for different polymers was also presented. Full article
Show Figures

Graphical abstract

20 pages, 7340 KiB  
Article
Pharmaco-Toxicological Effects of Cachrys libanotis Extract: Antioxidant, Antimicrobial, and Cytotoxic Activities in Human Cell Lines and Embryonic Models
by Mary Fucile, Ioana Gabriela Macasoi, Monica Negrea, Diana Obistioiu, Mariangela Marrelli, Ersilia Alexa, Cristina Dehelean, Giancarlo Statti, Filomena Conforti and Iulia Pinzaru
Antioxidants 2025, 14(7), 810; https://doi.org/10.3390/antiox14070810 - 30 Jun 2025
Viewed by 313
Abstract
We conducted a study to explore the potential of an enriched coumarin extract from Cachrys libanotis for the prevention and treatment of various diseases. The extract was prepared using pressurized cyclic solid–liquid extraction, and its safety profile was thoroughly evaluated using both cellular [...] Read more.
We conducted a study to explore the potential of an enriched coumarin extract from Cachrys libanotis for the prevention and treatment of various diseases. The extract was prepared using pressurized cyclic solid–liquid extraction, and its safety profile was thoroughly evaluated using both cellular and embryonic models. Our main goal was to uncover a mixture of bioactive compounds that could offer therapeutic benefits. The following parameters were assessed: (i) extract composition; (ii) antioxidant activity; (iii) effects on cell viability and morphology; (iv) irritant potential (in ovo); and (v) antimicrobial activity against nine microbial strains. Chromatographic and spectrometric analyses confirmed that the main specialized metabolites in C. libanotis extract were furanocoumarins, with xanthotoxin, bergapten, and isopimpinellin identified as the three predominant constituents. Treatment with the C. libanotis extract did not induce significant alterations in the adherent human keratinocytes, with confluence and epithelial morphology comparable to control cells. Conversely, viable cells declined in the breast carcinoma cell line (MDA-MB-231). Moreover, the C. libanotis extract exhibited a promising antimicrobial activity against two Gram-negative pathogens, Shigella flexneri and Salmonella typhimurium. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

27 pages, 2201 KiB  
Review
Toxicity, Mitigation, and Chemical Analysis of Aflatoxins and Other Toxic Metabolites Produced by Aspergillus: A Comprehensive Review
by Habtamu Fekadu Gemede
Toxins 2025, 17(7), 331; https://doi.org/10.3390/toxins17070331 - 30 Jun 2025
Viewed by 1209
Abstract
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose significant risks to food safety, public health, and global trade. These mycotoxins contaminate staple crops such as maize and peanuts, particularly in warm and humid regions, leading to economic [...] Read more.
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose significant risks to food safety, public health, and global trade. These mycotoxins contaminate staple crops such as maize and peanuts, particularly in warm and humid regions, leading to economic losses and severe health effects, including hepatocellular carcinoma, immune suppression, and growth impairment. In addition to aflatoxins, Aspergillus species produce other toxic metabolites such as ochratoxin A, sterigmatocystin, and cyclopiazonic acid, which are associated with nephrotoxic, carcinogenic, and neurotoxic effects, respectively. This review provides a comprehensive analysis of aflatoxin toxicity, mitigation strategies, and chemical detection methods. The toxicity of aflatoxins is discussed in relation to their biochemical mechanisms, carcinogenicity, and synergistic effects with other mycotoxins. Various mitigation approaches, including pre-harvest biocontrol, post-harvest storage management, and novel detoxification methods such as enzymatic degradation and nanotechnology-based interventions, are evaluated. Furthermore, advances in aflatoxin detection, including chromatographic, immunoassay, and biosensor-based methods, are explored to improve regulatory compliance and food safety monitoring. This review underscores the need for integrated management strategies and global collaboration to reduce aflatoxin contamination and its associated health and economic burdens. Future research directions should focus on genetic engineering for resistant crop varieties, climate adaptation strategies, and improved risk assessment models. Full article
Show Figures

Figure 1

13 pages, 2967 KiB  
Article
Production, Purification, and Application of a Biomolecule with Herbicidal Activity Produced by Fusarium fujikuroi in Submerged Cultivation
by Silvana Schmaltz, Clair Walker, Keli Souza da Silva, Renata Gulart Ninaus, Cláudia Braga Dutra, Luiza Andrea Schmidt, Gilson Zeni and Marcio Antonio Mazutti
Fermentation 2025, 11(7), 375; https://doi.org/10.3390/fermentation11070375 - 29 Jun 2025
Viewed by 378
Abstract
This study investigated the production, purification, and evaluation of a microbial metabolite with herbicidal activity produced by Fusarium fujikuroi via submerged fermentation. The purified compound (PC) was obtained through organic solvent extraction and chromatographic purification, and assessed in bioassays using Raphanus sativus and [...] Read more.
This study investigated the production, purification, and evaluation of a microbial metabolite with herbicidal activity produced by Fusarium fujikuroi via submerged fermentation. The purified compound (PC) was obtained through organic solvent extraction and chromatographic purification, and assessed in bioassays using Raphanus sativus and Triticum aestivum as bioindicator plants. A concentration of 23 mg mL−1 completely inhibited seed germination in 96-well plate assays, while the crude extract (EXT) and cell-free broth (CFB) allowed radicle protrusion but resulted in abnormal seedlings with chlorosis and reduced growth. Mathematical models estimated that concentrations of 16.0 mg mL−1 for radish and 0.9 mg mL−1 for wheat were sufficient to suppress germination with the PC. In substrate experiments, the PC at 6.4 and 64.0 mg mL−1 did not inhibit germination but caused anomalies in radish and significantly reduced wheat seedling growth. In naturally infested soil, the PC maintained phytotoxicity symptoms for 21 days, and after 28 days, a concentration of 64.0 mg mL−1 significantly reduced radish seedling growth. The results highlight the potential of the compound as a bioherbicide. Full article
Show Figures

Figure 1

25 pages, 4374 KiB  
Article
Extraction and Characterization of Bioactive Compounds in Horseradish (Armoracia rusticana): Focus on Polyphenols, Vitamin C, and Fatty Acids
by Bianca Șuian and Sonia Amariei
Appl. Sci. 2025, 15(12), 6534; https://doi.org/10.3390/app15126534 - 10 Jun 2025
Viewed by 376
Abstract
Horseradish (Armoracia rusticana) is a plant with a long tradition of use and numerous remarkable properties. It is especially appreciated for its antioxidant, antimicrobial, and anti-inflammatory effects. The therapeutic potential of the subject in the management of allergies has received comparatively [...] Read more.
Horseradish (Armoracia rusticana) is a plant with a long tradition of use and numerous remarkable properties. It is especially appreciated for its antioxidant, antimicrobial, and anti-inflammatory effects. The therapeutic potential of the subject in the management of allergies has received comparatively less attention, despite its composition being rich in bioactive substances. The purpose of this research was to enhance the recovery of bioactive compounds from horseradish by applying an optimized ultrasound-assisted extraction process modelled through Design-Expert software (version 11). Spectrophotometric and chromatographic analyses revealed higher concentrations of polyphenols in extracts obtained with a methanol–water mixture (1:1, v/v) compared to ultrapure water, confirming the efficiency of solvents with lower polarity. The antioxidant activity was found to be significant, with the hydroalcoholic extract achieving 96.93% and the aqueous extract reaching 89.34%. The vitamin C content was determined to be 105.32 mg/100 g and 90.35 mg/100 g, respectively. The polyphenolic profile and fatty acid analysis confirmed the presence of bioactive compounds previously reported as antiallergenic, including protocatechuic, p-hydroxybenzoic, vanillic, caffeic, chlorogenic, p-coumaric, rosmarinic acids, and polyunsaturated fatty acids such as linoleic and linolenic acids, alongside the vitamin C content. The results of the present study confirm that horseradish is a rich natural source of bioactive compounds, particularly antioxidants, which may be of interest for further studies related to functional applications. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

16 pages, 1432 KiB  
Article
Quorum-Quenching Activity of Myrtus communis Corsican Essential Oil Against the Marine Bacterium Aliivibrio fischeri
by Elisa Hardy, Jean-Pierre Poli, Ange Bighelli, Mathieu Paoli, Thomas Maroselli, Liliane Berti and Elodie Guinoiseau
Microorganisms 2025, 13(6), 1325; https://doi.org/10.3390/microorganisms13061325 - 6 Jun 2025
Viewed by 432
Abstract
The quorum-quenching activity of essential oils (EOs) from Corsican aromatic plants was evaluated using the marine bacterium Aliivibrio fischeri as a model system. Among the eleven EOs screened, Myrtus communis EO showed significant interference with QS-regulated phenotypes (swimming motility, bioluminescence, and biofilm formation). [...] Read more.
The quorum-quenching activity of essential oils (EOs) from Corsican aromatic plants was evaluated using the marine bacterium Aliivibrio fischeri as a model system. Among the eleven EOs screened, Myrtus communis EO showed significant interference with QS-regulated phenotypes (swimming motility, bioluminescence, and biofilm formation). Its activity was compared to Origanum vulgaris EO, known for its high carvacrol content and potent QS inhibition. The fractionation of M. communis EO revealed that its most polar fractions exhibited comparable levels of QS-disrupting activity. These chromatographic fractions significantly affected QS-controlled traits, indicating that minor or less volatile compounds may contribute to, or enhance, the overall bioactivity. Furthermore, M. communis EO and its polar fractions displayed stronger anti-QS effects against A. fischeri than O. vulgaris EO. These results highlight M. communis EO as a promising source of natural QS inhibitors and underscore the importance of exploring both complete EOs and their active fractions. This study supports the valorization of Mediterranean endemic flora as a reservoir of bioactive compounds, tested on a model system A. fischeri, and encourages future research on the potential of Myrtus communis against clinical bacterial isolates and the development of novel anti-virulence strategies. Full article
Show Figures

Figure 1

20 pages, 3639 KiB  
Article
Efficient Analytical Pretreatment of Cr(VI) in Ethylene Wastewater by Grafting g-C3N4 Material Based on Coupling Agent-Modified Basalt Matrix (Basalt–MTES/g-C3N4)
by Zheng Wang, Mingchang Jia, Yi Ren, Hongmin Ren, Shuhao Liang, Jiaru Sun, Siqi Hao, Jinchuan Li and He Li
Molecules 2025, 30(11), 2477; https://doi.org/10.3390/molecules30112477 - 5 Jun 2025
Viewed by 506
Abstract
This study presents a novel Basalt-based grafted graphitic carbon nitride composite (Basalt–MTES/g-C3N4) for the efficient pretreatment of Cr(VI) in ethylene wastewater. The composite was synthesized by the acid purification of natural Basalt, surface modification with hydroxymethyl triethoxysilane (MTES), and [...] Read more.
This study presents a novel Basalt-based grafted graphitic carbon nitride composite (Basalt–MTES/g-C3N4) for the efficient pretreatment of Cr(VI) in ethylene wastewater. The composite was synthesized by the acid purification of natural Basalt, surface modification with hydroxymethyl triethoxysilane (MTES), and the subsequent grafting of g-C3N4. Characterization confirmed the uniform distribution of nano-sized g-C3N4 particles on a Basalt surface with intact chemical bonding, where 82.63% of melamine participated in g-C3N4 crystallization. The material exhibited a high specific surface area (403.55 m2/g) and mesoporous structure (34.29 nm). Acidic conditions promoted the protonation of amino groups in g-C3N4, significantly enhancing Cr(VI) adsorption via ion exchange. Adsorption kinetics followed the pseudo-second-order model, while isotherm data fitted the Langmuir monolayer adsorption mechanism. The composite achieved 97% Cr(VI) recovery through chromatographic extraction and retained 96.87% removal efficiency after five regeneration cycles. This work demonstrates a cost-effective, recyclable green pretreatment material for high-sensitivity Cr(VI) monitoring in ethylene industry wastewater, offering dual benefits in environmental remediation and regulatory compliance. The design synergizes natural Basalt’s stability with g-C3N4’s adsorption affinity, showing practical potential for sustainable wastewater treatment technologies. Full article
Show Figures

Graphical abstract

23 pages, 5238 KiB  
Article
A Self-Consistent, High-Fidelity Adsorption Model for Chromatographic Process Predictions: Low-to-High Load Density and Charge Variants in a Preparative Cation Exchanger
by Gregor M. Essert, Marko Tesanovic, Sonja Berensmeier, Isabell Hagemann and Peter Schwan
Separations 2025, 12(6), 147; https://doi.org/10.3390/separations12060147 - 1 Jun 2025
Viewed by 546
Abstract
The development of ion exchange chromatography to polish biopharmaceuticals requires extensive experimental benchmarking. As part of the Design of Experiments (DoE), statistical models increased efficiency somewhat and are still state of the art; however, the capability to predict process conditions is limited due [...] Read more.
The development of ion exchange chromatography to polish biopharmaceuticals requires extensive experimental benchmarking. As part of the Design of Experiments (DoE), statistical models increased efficiency somewhat and are still state of the art; however, the capability to predict process conditions is limited due to their nature as interpolating models. Applying the DoE still requires numerous experiments and is constrained to the design space, posing a risk of missing the potential optimum. To make a leap in model-based process development, applying extrapolating models can tremendously extend the design space and also allow for process understanding and knowledge transfer. While existing chromatography modeling software explains experimental data, it often lacks predictive power for new conditions. In academic–industrial cooperation, we demonstrate a new high-fidelity model based on biophysics for developing ion-exchange chromatography in biomanufacturing, making it a general tool in rationalizing process development for the present demand of recombinant proteins and monoclonal antibodies and the emerging demand of new modalities. Using the new computational tool, we achieved predictability and attained high accuracy; with minimal experimental effort to calibrate the system, the mathematical model predicted sensitive process conditions, and even described product-related impurities, antibody charge variants. Thus, the computational tool can be deployed for process-by-design and material-by-design approaches. Full article
Show Figures

Figure 1

18 pages, 2716 KiB  
Article
Changes in the Volatile Profile, Fruity Flavor, and Rancidity in Virgin Olive Oils During Storage by Targeted and Untargeted Analytical Approaches
by Rosalba Tucci, Chiara Cevoli, Alessandra Bendini, Sara Barbieri, Enrico Casadei, Enrico Valli and Tullia Gallina Toschi
Foods 2025, 14(11), 1884; https://doi.org/10.3390/foods14111884 - 26 May 2025
Viewed by 486
Abstract
The changes in monovarietal extra virgin olive oils (EVOOs), produced with olives grown under different agronomic conditions, were investigated by targeted and untargeted analytical approaches. Specifically, volatile molecules were monitored in oils just produced and stored for 6 and 12 months with two [...] Read more.
The changes in monovarietal extra virgin olive oils (EVOOs), produced with olives grown under different agronomic conditions, were investigated by targeted and untargeted analytical approaches. Specifically, volatile molecules were monitored in oils just produced and stored for 6 and 12 months with two different packaging solutions. The targeted SPME-GC–MS method showed an increase in volatile markers of lipid oxidation. Moreover, more rapid analytical approaches, namely targeted HS-GC–IMS and untargeted FGC, were used to investigate volatile organic compounds (VOCs). These chromatographic methods, respectively, returned heatmaps and fingerprint profiles that were elaborated on by multivariate analysis. Exploratory principal component analysis performed on the data from VOCs allowed the clustering of samples based on the storage time. The quality of samples was also determined by a panel test. Furthermore, this study employed previously built models using partial least squares discriminant analysis to confirm the sensory classification of the stored samples. Based on these predictive models, all samples were confirmed as EVOO, except for one categorized as virgin (rancid according to the panel test). This classification was further supported by the SPME-GC–MS analysis, which revealed higher concentrations of lipid oxidation markers in this specific sample, in particular the (E)-2-heptenal reached a concentration twenty times higher than its odor threshold. In addition, five oils were inconsistently classified by the models and considered at risk of downgrading the commercial category after 12 months of storage. Full article
Show Figures

Figure 1

10 pages, 2158 KiB  
Article
Assessment of Performance of Short Cuboid Packed-Bed Devices Based on Simulations and Experiments
by Guoqiang Chen and Raja Ghosh
Processes 2025, 13(5), 1400; https://doi.org/10.3390/pr13051400 - 4 May 2025
Viewed by 320
Abstract
Cuboid packed-bed devices developed for chromatographic separation typically have shorter bed heights and larger cross-sectional areas than their equivalent cylindrical columns. These devices can be operated at low back pressures and give comparable or even better resolution than their equivalent columns. However, the [...] Read more.
Cuboid packed-bed devices developed for chromatographic separation typically have shorter bed heights and larger cross-sectional areas than their equivalent cylindrical columns. These devices can be operated at low back pressures and give comparable or even better resolution than their equivalent columns. However, the bed height of a cuboid packed-bed device could potentially affect its separation performance. To examine this, three devices having 5, 10 and 19.5 mm bed heights were fabricated and packed with the same resin media. A mathematical model was first developed to predict the effect of bed height on the performance of these cuboid devices. This prediction was performed based on the residence time heterogeneity (RTH) in these devices, which increased slightly as the bed height was decreased. However, this was not likely to affect the separation efficiency very significantly. The relative performances of these three cuboid devices were then compared based on the resolution obtained during ion-exchange chromatography of multi-protein mixtures. As predicted by the mathematical model, the loss in resolution due to the decrease in bed height was relatively small (0.83 to 0.73 in binary protein separation). Also, this loss could easily be compensated for by slightly lowering the flow rate or by extending the elution gradient. The results discussed in this paper demonstrate that with cuboid packed-bed devices, the dimensions could be altered in a reasonably flexible manner without adversely affecting separation performance. Such flexibility is advantageous from the point of view of process design and optimization, which is critically important for developing large-scale processes for the purification of biologics. Full article
(This article belongs to the Special Issue New Frontiers in Chromatographic Separation Technology)
Show Figures

Figure 1

23 pages, 2361 KiB  
Article
Tyrosinase Inhibitors Among Flora of Lubelskie Region—Application of Bio-Chromatographic Approach and Zebrafish Model in Bioactivity Screening of Plant Material
by Kamila Kusio-Targońska, Nataliia Kosheva, Krzysztof Kamil Wojtanowski, Katarzyna Gaweł-Bęben, Dimitris Beis and Wirginia Kukula-Koch
Molecules 2025, 30(9), 1979; https://doi.org/10.3390/molecules30091979 - 29 Apr 2025
Viewed by 613
Abstract
The whitening potential of natural products is commonly assessed through spectrophotometric assays that colorimetrically measure the inhibitory effects on tyrosinase, a key enzyme in pigment formation. However, these assays fail to provide evidence about the input of individual components into the total activity [...] Read more.
The whitening potential of natural products is commonly assessed through spectrophotometric assays that colorimetrically measure the inhibitory effects on tyrosinase, a key enzyme in pigment formation. However, these assays fail to provide evidence about the input of individual components into the total activity of a mixture like plant extracts. This study introduced chromatographic methods to identify active natural products without isolating them from their mixtures. In this study, various plant extracts of differing polarities (EtOH, 50% EtOH, and HOH) from species growing in the Lubelskie region of Poland were evaluated for their ability to inhibit tyrosinase. The most active extract identified through spectrophotometric assays was a 50% EtOH extract from Matricaria recutita L. (Chamomilla recutita (L.) Rauschert). Subsequent HPLC-MS analysis allowed for the identification of several active compounds from different classes, including organic acids, glycosylated phenolics, and phenolic acids that interacted with the enzyme. The bioactivity of individual components was confirmed through classical spectrophotometric assays, highlighting ferulic acid (IC50 = 0.484 µM), quinic acid (IC50 = 22.90 µM), and citric acid (IC50 = 24.18 µM) as three representatives of different classes of molecules with inhibitory potential. Furthermore, the whitening capacity of the chamomile extract was investigated in a zebrafish model, demonstrating effective pigmentation inhibition in Danio rerio larvae and validating the proposed chromatographic approach. Full article
Show Figures

Graphical abstract

Back to TopTop