Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = chondroitin sulfate proteoglycan 4 (CSPG4)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1548 KiB  
Review
Chondroitin Sulfate Proteoglycan 4 (CSPG4) as an Emerging Target for Immunotherapy to Treat Melanoma
by Xinyi Chen, Shabana Habib, Madalina Alexandru, Jitesh Chauhan, Theodore Evan, Joanna M. Troka, Avigail Rahimi, Benjamina Esapa, Thomas J. Tull, Wen Zhe Ng, Amanda Fitzpatrick, Yin Wu, Jenny L. C. Geh, Hawys Lloyd-Hughes, Lais C. G. F. Palhares, Rebecca Adams, Heather J. Bax, Sean Whittaker, Joanna Jacków-Malinowska and Sophia N. Karagiannis
Cancers 2024, 16(19), 3260; https://doi.org/10.3390/cancers16193260 - 25 Sep 2024
Cited by 3 | Viewed by 4145
Abstract
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of [...] Read more.
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody–drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape. Full article
(This article belongs to the Collection The Development of Anti-cancer Agents)
Show Figures

Figure 1

19 pages, 16710 KiB  
Article
Chondroitin Sulfate Proteoglycan 4 Provides New Treatment Approach to Preventing Peritoneal Dissemination in Ovarian Cancer
by Kaname Uno, Yoshihiro Koya, Masato Yoshihara, Shohei Iyoshi, Kazuhisa Kitami, Mai Sugiyama, Emiri Miyamoto, Kazumasa Mogi, Hiroki Fujimoto, Yoshihiko Yamakita, Xinhui Wang, Akihiro Nawa and Hiroaki Kajiyama
Int. J. Mol. Sci. 2024, 25(3), 1626; https://doi.org/10.3390/ijms25031626 - 28 Jan 2024
Cited by 3 | Viewed by 2529
Abstract
Most epithelial ovarian cancer (EOC) patients are diagnosed with peritoneal dissemination. Cellular interactions are an important aspect of EOC cells when they detach from the primary site of the ovary. However, the mechanism remains underexplored. Our study aimed to reveal the role of [...] Read more.
Most epithelial ovarian cancer (EOC) patients are diagnosed with peritoneal dissemination. Cellular interactions are an important aspect of EOC cells when they detach from the primary site of the ovary. However, the mechanism remains underexplored. Our study aimed to reveal the role of chondroitin sulfate proteoglycan 4 (CSPG4) in EOC with a major focus on cell–cell interactions. We examined the expression of CSPG4 in clinical samples and cell lines of EOC. The proliferation, migration, and invasion abilities of the CSPG4 knockdown cells were assessed. We also assessed the role of CSPG4 in spheroid formation and peritoneal metastasis in an in vivo model using sh-CSPG4 EOC cell lines. Of the clinical samples, 23 (44.2%) samples expressed CSPG4. CSPG4 was associated with a worse prognosis in patients with advanced EOC. Among the EOC cell lines, aggressive cell lines, including ES2, expressed CSPG4. When CSPG4 was knocked down using siRNA or shRNA, the cell proliferation, migration, and invasion abilities were significantly decreased compared to the control cells. Proteomic analyses showed changes in the expression of proteins related to the cell movement pathways. Spheroid formation was significantly inhibited when CSPG4 was inhibited. The number of nodules and the tumor burden of the omentum were significantly decreased in the sh-CSPG4 mouse models. In the peritoneal wash fluid from mice injected with sh-CSPG4 EOC cells, significantly fewer spheroids were present. Reduced CSPG4 expression was observed in lymphoid enhancer-binding factor 1-inhibited cells. CSPG4 is associated with aggressive features of EOC and poor prognosis. CSPG4 could be a new treatment target for blocking peritoneal metastasis by inhibiting spheroid formation. Full article
(This article belongs to the Special Issue Molecular Advances in Ovarian Cancer)
Show Figures

Figure 1

11 pages, 2852 KiB  
Article
VT68.2: An Antibody to Chondroitin Sulfate Proteoglycan 4 (CSPG4) Displays Reactivity against a Tumor-Associated Carbohydrate Antigen
by Bernice Nounamo, Fariba Jousheghany, Eric Robb Siegel, Steven R. Post, Thomas Kelly, Soldano Ferrone, Thomas Kieber-Emmons and Behjatolah Monzavi-Karbassi
Int. J. Mol. Sci. 2023, 24(3), 2506; https://doi.org/10.3390/ijms24032506 - 28 Jan 2023
Cited by 3 | Viewed by 3133
Abstract
The anti-CSPG4 monoclonal antibodies (mAbs) have shown anti-tumor activity and therapeutic potential for treating breast cancer. In addition, CSPG4 is a dominant tumor-associated antigen that is also involved in normal-tissue development in humans. Therefore, the potential for off-tumor activity remains a serious concern [...] Read more.
The anti-CSPG4 monoclonal antibodies (mAbs) have shown anti-tumor activity and therapeutic potential for treating breast cancer. In addition, CSPG4 is a dominant tumor-associated antigen that is also involved in normal-tissue development in humans. Therefore, the potential for off-tumor activity remains a serious concern when targeting CSPG4 therapeutically. Previous work suggested that glycans contribute to the binding of specific anti-CSPG4 antibodies to tumor cells, but the specificity and importance of this contribution are unknown. In this study, the reactivity of anti-CSPG4 mAbs was characterized with a peptide mimetic of carbohydrate antigens expressed in breast cancer. ELISA, flow cytometry, and microarray assays were used to screen mAbs for their ability to bind to carbohydrate-mimicking peptides (CMPs), cancer cells, and glycans. The mAb VT68.2 displayed a distinctly strong binding to a CMP (P10s) and bound to triple-negative breast cancer cells. In addition, VT68.2 showed a higher affinity for N-linked glycans that contain terminal fucose and fucosylated lactosamines. The functional assays demonstrated that VT68.2 inhibited cancer cell migration. These results define the glycoform reactivity of an anti-CSPG4 antibody and may lead to the development of less toxic therapeutic approaches that target tumor-specific glyco-peptides. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Immune Response in Breast Cancer)
Show Figures

Figure 1

29 pages, 3709 KiB  
Review
Chondroitin Sulfate Proteoglycan 4 as a Marker for Aggressive Squamous Cell Carcinoma
by Kathryn Chen, Joel Yong, Roland Zauner, Verena Wally, John Whitelock, Mila Sajinovic, Zlatko Kopecki, Kang Liang, Kieran Francis Scott and Albert Sleiman Mellick
Cancers 2022, 14(22), 5564; https://doi.org/10.3390/cancers14225564 - 13 Nov 2022
Cited by 9 | Viewed by 4143
Abstract
Chondroitin sulfate (CS) proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is currently under investigation as a marker of cancer malignancy, and as a potential target of anticancer drug treatment. CSPG4 acts as a driver of tumourigenesis by regulating turnover of the [...] Read more.
Chondroitin sulfate (CS) proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is currently under investigation as a marker of cancer malignancy, and as a potential target of anticancer drug treatment. CSPG4 acts as a driver of tumourigenesis by regulating turnover of the extracellular matrix (ECM) to promote tumour cell invasion, migration as well as inflammation and angiogenesis. While CSPG4 has been widely studied in certain malignancies, such as melanoma, evidence is emerging from global gene expression studies, which suggests a role for CSPG4 in squamous cell carcinoma (SCC). While relatively treatable, lack of widely agreed upon diagnostic markers for SCCs is problematic, especially for clinicians managing certain patients, including those who are aged or infirm, as well as those with underlying conditions such as epidermolysis bullosa (EB), for which a delayed diagnosis is likely lethal. In this review, we have discussed the structure of CSPG4, and quantitatively analysed CSPG4 expression in the tissues and pathologies where it has been identified to determine the usefulness of CSPG4 expression as a diagnostic marker and therapeutic target in management of malignant SCC. Full article
Show Figures

Figure 1

22 pages, 29803 KiB  
Article
Generation and Characterization of Native and Sialic Acid-Deficient IgE
by Alex J. McCraw, Richard A. Gardner, Anna M. Davies, Daniel I. R. Spencer, Melanie Grandits, Gerd K. Wagner, James M. McDonnell, Sophia N. Karagiannis, Alicia Chenoweth and Silvia Crescioli
Int. J. Mol. Sci. 2022, 23(21), 13455; https://doi.org/10.3390/ijms232113455 - 3 Nov 2022
Cited by 6 | Viewed by 3290
Abstract
Efficient characterization of IgE antibodies and their glycan structures is required for understanding their function in allergy and in the emerging AllergoOncology field for antibody immunotherapy. We report the generation, glyco-profiling and functional analysis of native and sialic acid-deficient glyco-engineered human IgE. The [...] Read more.
Efficient characterization of IgE antibodies and their glycan structures is required for understanding their function in allergy and in the emerging AllergoOncology field for antibody immunotherapy. We report the generation, glyco-profiling and functional analysis of native and sialic acid-deficient glyco-engineered human IgE. The antibodies produced from human embryonic kidney cells were purified via a human IgE class-specific affinity matrix and structural integrity was confirmed by SDS-PAGE and size-exclusion chromatography (SEC). Purified IgEs specific for the tumor-associated antigens Chondroitin Sulfate Proteoglycan 4 (CSPG4-IgE) and Human Epidermal Growth Factor Receptor 2 (HER2-IgE) were devoid of by-products such as free light chains. Using neuraminidase-A, we generated sialic acid-deficient CSPG4-IgE as example glyco-engineered antibody. Comparative glycan analyses of native and glyco-engineered IgEs by Hydrophilic interaction liquid chromatography (HILIC)-high performance liquid chromatography (HPLC) indicated loss of sialic acid terminal residues and differential glycan profiles. Native and glyco-engineered CSPG4-IgEs recognized Fc receptors on the surface of human FcεRI-expressing rat basophilic leukemia RBL-SX38 cells, and of CD23/FcεRII-expressing human RPMI-8866 B-lymphocytes and bound to CSPG4-expressing A2058 human melanoma cells, confirming Fab-mediated recognition. When cross-linked on the cell surface, both IgEs triggered RBL-SX38 degranulation. We demonstrate efficient generation and functional competence of recombinant native and sialic acid-deficient IgEs. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Allergy and Asthma 2.0)
Show Figures

Figure 1

14 pages, 1659 KiB  
Article
Decitabine-Mediated Upregulation of CSPG4 in Ovarian Carcinoma Cells Enables Targeting by CSPG4-Specific CAR-T Cells
by Dennis Christoph Harrer, Charlotte Schenkel, Carola Berking, Wolfgang Herr, Hinrich Abken, Jan Dörrie and Niels Schaft
Cancers 2022, 14(20), 5033; https://doi.org/10.3390/cancers14205033 - 14 Oct 2022
Cited by 13 | Viewed by 2579
Abstract
The addition of CAR-T cells to the armamentarium of immunotherapy revigorated the field of oncology by inducing long-lasting remissions in patients with relapsing/refractory hematological malignancies. Nevertheless, in the lion’s share of patients diagnosed with solid tumors, CAR-T-cell therapy so far failed to demonstrate [...] Read more.
The addition of CAR-T cells to the armamentarium of immunotherapy revigorated the field of oncology by inducing long-lasting remissions in patients with relapsing/refractory hematological malignancies. Nevertheless, in the lion’s share of patients diagnosed with solid tumors, CAR-T-cell therapy so far failed to demonstrate satisfactory anti-tumor activity. A crucial cause of resistance against the antigen-specific attack of CAR-T cells is predicated on the primary or secondary absence of suitable target antigens. Thus, the necessity to create a broad repertoire of different target antigens is vital. We aimed to evaluate the potential of the well-established melanoma antigen chondroitin sulfate proteoglycan 4 (CSPG4) as an inducible antigen in ovarian cancer cells, using CSPG4-negative SKOV-3 ovarian cancer cells as a model. Based on the hypomethylating activity of the FDA-approved drug decitabine, we refined a protocol to upregulate CSPG4 in the majority of decitabine-treated SKOV-3 cells. CSPG4-specific CAR-T cells generated by mRNA-electroporation showed CSPG4-directed cytokine secretion and cytotoxicity towards decitabine-treated SKOV-3. Another ovarian cancer cell line (Caov-3) and the neoplastic cell line 293T behaved similar. In aggregate, we generated proof-of-concept data paving the way for the further exploration of CSPG4 as an inducible antigen for CAR-T cells in ovarian cancer. Full article
(This article belongs to the Special Issue Combined CAR T-cell Therapies: A Next Step towards Precision Oncology)
Show Figures

Figure 1

13 pages, 5370 KiB  
Review
Immunotherapeutic Targeting of NG2/CSPG4 in Solid Organ Cancers
by Hongyu Zhang, Zhenyu Wu, Deyu Hu, Min Yan, Jing Sun, Jiejuan Lai and Lianhua Bai
Vaccines 2022, 10(7), 1023; https://doi.org/10.3390/vaccines10071023 - 26 Jun 2022
Cited by 7 | Viewed by 4197
Abstract
Neuro-glia antigen 2/chondroitin sulfate proteoglycan 4 (NG2/CSPG4, also called MCSP, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a large cell-surface antigen and an unusual cell membrane integral glycoprotein frequently expressed on undifferentiated precursor cells in multiple solid organ cancers, including cancers of the [...] Read more.
Neuro-glia antigen 2/chondroitin sulfate proteoglycan 4 (NG2/CSPG4, also called MCSP, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a large cell-surface antigen and an unusual cell membrane integral glycoprotein frequently expressed on undifferentiated precursor cells in multiple solid organ cancers, including cancers of the liver, pancreas, lungs, and kidneys. It is a valuable molecule involved in cancer cell adhesion, invasion, spreading, angiogenesis, complement inhibition, and signaling. Although the biological significance underlying NG2/CSPG4 proteoglycan involvement in cancer progression needs to be better defined, based on the current evidence, NG2/CSPG4+ cells, such as pericytes (PCs, NG2+/CD146+/PDGFR-β+) and cancer stem cells (CSCs), are closely associated with the liver malignancy, hepatocellular carcinoma (HCC), pancreatic malignancy, and pancreatic ductal adenocarcinoma (PDAC) as well as poor prognoses. Importantly, with a unique method, we successfully purified NG2/CSPG4-expressing cells from human HCC and PDAC vasculature tissue blocks (by core needle biopsy). The cells appeared to be spheres that stably expanded in cultures. As such, these cells have the potential to be used as sources of target antigens. Herein, we provide new information on the possibilities of frequently selecting NG2/CSPG4 as a solid organ cancer biomarker or exploiting expressing cells such as CSCs, or the PG/chondroitin sulfate chain of NG2/CSPG4 on the cell membrane as specific antigens for the development of antibody- and vaccine-based immunotherapeutic approaches to treat these cancers. Full article
(This article belongs to the Special Issue Vaccines: 10th Anniversary)
Show Figures

Figure 1

14 pages, 3932 KiB  
Article
Identification and Biochemical Characterization of a Surfactant-Tolerant Chondroitinase VhChlABC from Vibrio hyugaensis LWW-1
by Juanjuan Su, Xiaoyi Wang, Chengying Yin, Yujiao Li, Hao Wu, Wengong Yu and Feng Han
Mar. Drugs 2021, 19(7), 399; https://doi.org/10.3390/md19070399 - 18 Jul 2021
Cited by 4 | Viewed by 2733
Abstract
Chondroitinases, catalyzing the degradation of chondroitin sulfate (CS) into oligosaccharides, not only play a crucial role in understanding the structure and function of CS, but also have been reported as a potential candidate drug for the treatment of high CS-related diseases. Here, a [...] Read more.
Chondroitinases, catalyzing the degradation of chondroitin sulfate (CS) into oligosaccharides, not only play a crucial role in understanding the structure and function of CS, but also have been reported as a potential candidate drug for the treatment of high CS-related diseases. Here, a marine bacterium Vibrio hyugaensis LWW-1 was isolated, and its genome was sequenced and annotated. A chondroitinase, VhChlABC, was found to belong to the second subfamily of polysaccharide lyase (PL) family 8. VhChlABC was recombinant expressed and characterized. It could specifically degrade CS-A, CS-B, and CS-C, and reached the maximum activity at pH 7.0 and 40 °C in the presence of 0.25 M NaCl. VhChlABC showed high stability within 8 h under 37 °C and within 2 h under 40 °C. VhChlABC was stable in a wide range of pH (5.0~10.6) at 4 °C. Unlike most chondroitinases, VhChlABC showed high surfactant tolerance, which might provide a good tool for removing extracellular CS proteoglycans (CSPGs) of lung cancer under the stress of pulmonary surfactant. VhChlABC completely degraded CS to disaccharide by the exolytic mode. This research expanded the research and application system of chondroitinases. Full article
Show Figures

Figure 1

16 pages, 6151 KiB  
Article
NG2 as an Identity and Quality Marker of Mesenchymal Stem Cell Extracellular Vesicles
by Mario Barilani, Valeria Peli, Alessandro Cherubini, Marta Dossena, Vincenza Dolo and Lorenza Lazzari
Cells 2019, 8(12), 1524; https://doi.org/10.3390/cells8121524 - 27 Nov 2019
Cited by 20 | Viewed by 4741
Abstract
The therapeutic potential of mesenchymal stem cell (MSC) extracellular vesicles (EV) is currently under investigation in many pathological contexts. Both adult and perinatal MSC are being considered as sources of EV. Herein, we address antigen expression of cord blood and bone marrow MSC [...] Read more.
The therapeutic potential of mesenchymal stem cell (MSC) extracellular vesicles (EV) is currently under investigation in many pathological contexts. Both adult and perinatal MSC are being considered as sources of EV. Herein, we address antigen expression of cord blood and bone marrow MSC and released EV to define an identity and quality parameter of MSC EV as a medicinal product in the context of clinical applications. The research focuses on EV-shuttled neural/glial antigen 2 (NG2), which has previously been detected as a promising surface marker to distinguish perinatal versus adult MSC. Indeed, NG2 was significantly more abundant in cord blood than bone marrow MSC and MSC EV. Ultracentrifuge-isolated EV were then challenged for their pro-angiogenic properties on an xCELLigence system as quality control. NG2+ cord blood MSC EV, but not bone marrow MSC EV, promote bFGF and PDGF-AA proliferative effect on endothelial cells. Likewise, they successfully rescue angiostatin-induced endothelial cell growth arrest. In both cases, the effects are NG2-dependent. These results point at NG2 as an identity and quality parameter for cord blood MSC EV, paving the way for their clinical translation. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

22 pages, 2171 KiB  
Review
CSPG4 as Target for CAR-T-Cell Therapy of Various Tumor Entities–Merits and Challenges
by Dennis C. Harrer, Jan Dörrie and Niels Schaft
Int. J. Mol. Sci. 2019, 20(23), 5942; https://doi.org/10.3390/ijms20235942 - 26 Nov 2019
Cited by 47 | Viewed by 7389
Abstract
Targeting cancer cells using chimeric-antigen-receptor (CAR-)T cells has propelled adoptive T-cell therapy (ATT) to the next level. A plentitude of durable complete responses using CD19-specific CAR-T cells in patients suffering from various lymphoid malignancies resulted in the approval by the food and drug [...] Read more.
Targeting cancer cells using chimeric-antigen-receptor (CAR-)T cells has propelled adoptive T-cell therapy (ATT) to the next level. A plentitude of durable complete responses using CD19-specific CAR-T cells in patients suffering from various lymphoid malignancies resulted in the approval by the food and drug administration (FDA) of CD19-directed CAR-T cells for the treatment of acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). A substantial portion of this success in hematological malignancies can be traced back to the beneficial properties of the target antigen CD19, which combines a universal presence on target cells with no detectable expression on indispensable host cells. Hence, to replicate response rates achieved in ALL and DLBCL in the realm of solid tumors, where ideal target antigens are scant and CAR-T cells are still lagging behind expectations, the quest for appropriate target antigens represents a crucial task to expedite the next steps in the evolution of CAR-T-cell therapy. In this review, we want to highlight the potential of chondroitin sulfate proteoglycan 4 (CSPG4) as a CAR-target antigen for a variety of different cancer entities. In particular, we discuss merits and challenges associated with CSPG4-CAR-T cells for the ATT of melanoma, leukemia, glioblastoma, and triple-negative breast cancer. Full article
(This article belongs to the Special Issue CAR-T Cell Therapy)
Show Figures

Figure 1

18 pages, 2937 KiB  
Technical Note
Clinical-Scale Production of CAR-T Cells for the Treatment of Melanoma Patients by mRNA Transfection of a CSPG4-Specific CAR under Full GMP Compliance
by Manuel Wiesinger, Johannes März, Mirko Kummer, Gerold Schuler, Jan Dörrie, Beatrice Schuler-Thurner and Niels Schaft
Cancers 2019, 11(8), 1198; https://doi.org/10.3390/cancers11081198 - 16 Aug 2019
Cited by 54 | Viewed by 8558
Abstract
Chimeric antigen receptor (CAR)-T cells already showed impressive clinical regressions in leukemia and lymphoma. However, the development of CAR-T cells against solid tumors lags behind. Here we present the clinical-scale production of CAR-T cells for the treatment of melanoma under full GMP compliance. [...] Read more.
Chimeric antigen receptor (CAR)-T cells already showed impressive clinical regressions in leukemia and lymphoma. However, the development of CAR-T cells against solid tumors lags behind. Here we present the clinical-scale production of CAR-T cells for the treatment of melanoma under full GMP compliance. In this approach a CAR, specific for chondroitin sulfate proteoglycan 4 (CSPG4) is intentionally transiently expressed by mRNA electroporation for safety reasons. The clinical-scale protocol was optimized for: (i) expansion of T cells, (ii) electroporation efficiency, (iii) viability, (iv) cryopreservation, and (v) potency. Four consistency runs resulted in CAR-T cells in clinically sufficient numbers, i.e., 2.4 × 109 CAR-expressing T cells, starting from 1.77x108 PBMCs, with an average expansion of 13.6x, an electroporation efficiency of 88.0% CAR-positive cells, a survival of 74.1% after electroporation, and a viability of 84% after cryopreservation. Purity was 98.7% CD3+ cells, with 78.1% CD3+/CD8+ T cells and with minor contaminations of 1.2% NK cells and 0.6% B cells. The resulting CAR-T cells were tested for cytolytic activity after cryopreservation and showed antigen-specific and very efficient lysis of tumor cells. Although our work is descriptive rather than investigative in nature, we expect that providing this clinically applicable protocol to generate sufficient numbers of mRNA-transfected CAR-T cells will help in moving the field of adoptive cell therapy of cancer forward. Full article
(This article belongs to the Special Issue CAR-T Cell Therapy-Novel Approaches and Challenges)
Show Figures

Figure 1

16 pages, 1231 KiB  
Article
CSPG4-Specific CAR T Cells for High-Risk Childhood B Cell Precursor Leukemia
by Dennis C. Harrer, Gerold Schuler, Jan Dörrie and Niels Schaft
Int. J. Mol. Sci. 2019, 20(11), 2764; https://doi.org/10.3390/ijms20112764 - 5 Jun 2019
Cited by 19 | Viewed by 5252
Abstract
The advent of CD19-specific chimeric antigen receptor (CAR) T cells has proven to be a powerful asset in the arsenal of cancer immunotherapy of acute lymphoblastic leukemia and certain B cell lymphomas. However, a sizable portion of patients treated with CD19-CAR T cells [...] Read more.
The advent of CD19-specific chimeric antigen receptor (CAR) T cells has proven to be a powerful asset in the arsenal of cancer immunotherapy of acute lymphoblastic leukemia and certain B cell lymphomas. However, a sizable portion of patients treated with CD19-CAR T cells relapse with CD19-negative cancer cells, necessitating the quest for back-up antigens. Chondroitin sulfate proteoglycan 4 (CSPG4) expression has been reported on leukemic blasts bearing the ill-fated MLL 11q23 rearrangement. We aimed at exploring the use of CSPG4-specific CAR T cells against mixed-lineage leukemia (MLL)-rearranged leukemic blasts, using the precursor B cell leukemia cell line KOPN8 (MLL–MLLT1 translocation) as a model. First, we confirmed CSPG4 expression on KOPN8 cells. Bulk T cells electroporated with mRNA encoding a CSPG4-specific CAR upregulated activation markers and secreted the Th1 cytokines TNF and IFNγ in an antigen-specific manner upon co-culture with KOPN8 cells. More importantly, CSPG4-specific CAR T cells evinced specific degranulation towards KOPN8 cells and specifically lysed KOPN8 target cells in chromium lysis experiments. CSPG4 is a well-established CAR target in cutaneous melanoma. Here, we provide proof-of-principle data for the use of CSPG4-specific CAR T cells against MLL-translocated leukemias. Full article
(This article belongs to the Special Issue CAR-T Cell Therapy)
Show Figures

Figure 1

20 pages, 2671 KiB  
Review
The Significance of Chondroitin Sulfate Proteoglycan 4 (CSPG4) in Human Gliomas
by Davide Schiffer, Marta Mellai, Renzo Boldorini, Ilaria Bisogno, Silvia Grifoni, Cristiano Corona, Luca Bertero, Paola Cassoni, Cristina Casalone and Laura Annovazzi
Int. J. Mol. Sci. 2018, 19(9), 2724; https://doi.org/10.3390/ijms19092724 - 12 Sep 2018
Cited by 38 | Viewed by 8899
Abstract
Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different [...] Read more.
Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different pathological conditions, and is possibly involved in the origin and progression of human gliomas. In the latter, NG2/CSPG4 induces cell proliferation and migration, is highly expressed in pericytes, and plays a role in neoangiogenesis. NG2/CSPG4 expression has been demonstrated in oligodendrogliomas, astrocytomas, and glioblastomas (GB), and it correlates with malignancy. In rat tumors transplacentally induced by N-ethyl-N-nitrosourea (ENU), NG2/CSPG4 expression correlates with PDGFRα, Olig2, Sox10, and Nkx2.2, and with new vessel formation. In this review, we attempt to summarize the normal and pathogenic functions of NG2/CSPG4, as well as its potential as a therapeutic target. Full article
Show Figures

Graphical abstract

14 pages, 3099 KiB  
Article
Utility of the Teslar Facial Massager for Skin Elasticity and the Mechanism of its Effects
by Kazuhisa Maeda, Sakura Koizumi, Taiga Sano, Ayano Yoshimura, Haruka Kiriyama and Seina Mimura
Cosmetics 2018, 5(3), 49; https://doi.org/10.3390/cosmetics5030049 - 14 Aug 2018
Cited by 1 | Viewed by 7296
Abstract
The Teslar is a facial massager that emits a weak electric current, where users have reported a beneficial effect on skin elasticity with continued use. Accordingly, we conducted a clinical utility study and a comprehensive gene analysis, with cultured human fibroblasts to investigate [...] Read more.
The Teslar is a facial massager that emits a weak electric current, where users have reported a beneficial effect on skin elasticity with continued use. Accordingly, we conducted a clinical utility study and a comprehensive gene analysis, with cultured human fibroblasts to investigate the utility and mechanism of this treatment. In this clinical utility study, we found significant improvement in skin elasticity in Teslar treatments, compared to controls after two weeks of treatment. In cell experiments, we found that adenosine triphosphate synthesis and collagen contraction were promoted in fibroblasts cultured in type I collagen gel, following Teslar treatment. We considered that Teslar treatment exerted a structurally regenerative effect on the dermal matrix, based on the results of GeneChip® Expression Analysis. In particular, we demonstrated that Teslar treatment promotes type I collagen mRNA expression and fibulin-5/DANCE (Developmental arteries and neural crest EGF (epidermal growth factor)-like) mRNA expression and protein levels, which are reduced with aging. We also found increases in LTBP-3 (Latent TGF-β binding protein-3) and CSPG4 (Chondroitin sulfate proteoglycan 4) mRNA expression levels. Based on these results, we considered that Teslar treatment promoted dermal regeneration and recovery of skin elasticity. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

15 pages, 1774 KiB  
Article
The Generation of CAR-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma
by Bianca Simon, Manuel Wiesinger, Johannes März, Kilian Wistuba-Hamprecht, Benjamin Weide, Beatrice Schuler-Thurner, Gerold Schuler, Jan Dörrie and Ugur Uslu
Int. J. Mol. Sci. 2018, 19(8), 2365; https://doi.org/10.3390/ijms19082365 - 11 Aug 2018
Cited by 66 | Viewed by 7721
Abstract
Natural killer T (NKT) cells represent a cell subpopulation that combines characteristics of natural killer (NK) cells and T cells. Through their endogenous T-cell receptors (TCRs), they reveal a pronounced intrinsic anti-tumor activity. Thus, a NKT cell transfected with a chimeric antigen receptor [...] Read more.
Natural killer T (NKT) cells represent a cell subpopulation that combines characteristics of natural killer (NK) cells and T cells. Through their endogenous T-cell receptors (TCRs), they reveal a pronounced intrinsic anti-tumor activity. Thus, a NKT cell transfected with a chimeric antigen receptor (CAR), which recognizes a tumor-specific surface antigen, could attack tumor cells antigen-specifically via the CAR and additionally through its endogenous TCR. NKT cells were isolated from peripheral blood mononuclear cells (PBMCs), expanded, and electroporated with mRNA encoding a chondroitin sulfate proteoglycan 4 (CSPG4)-specific CAR. The CAR expression on NKT cells and their in vitro functionality were analyzed. A transfection efficiency of more than 80% was achieved. Upon stimulation with melanoma cells, CAR-NKT cells produced cytokines antigen-specifically. Compared with conventional CAR-T cells, cytokine secretion of CAR-NKT cells was generally lower. Specific cytotoxicity, however, was similar with CAR-NKT cells showing a trend towards improved cytotoxicity. Additionally, CAR-NKT cells could kill target cells through their endogenous TCRs. In summary, it is feasible to generate CAR-NKT cells by using mRNA electroporation. Their CAR-mediated cytotoxicity is at least equal to that of conventional CAR-T cells, while their intrinsic cytotoxic activity is maintained. Thus, CAR-NKT cells may represent a valuable alternative to conventional CAR-T cells for cancer immunotherapy. Full article
(This article belongs to the Special Issue Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

Back to TopTop