Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (399)

Search Parameters:
Keywords = chondroitin 4-sulfate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
62 pages, 4641 KiB  
Review
Pharmacist-Driven Chondroprotection in Osteoarthritis: A Multifaceted Approach Using Patient Education, Information Visualization, and Lifestyle Integration
by Eloy del Río
Pharmacy 2025, 13(4), 106; https://doi.org/10.3390/pharmacy13040106 - 1 Aug 2025
Viewed by 175
Abstract
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate [...] Read more.
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection—illustrating how conventional agents, such as glucosamine sulfate and chondroitin sulfate, can potentially restore extracellular matrix (ECM) components, may attenuate catabolic enzyme activity, and might enhance joint lubrication—and explores the delivery challenges posed by avascular cartilage and synovial diffusion barriers. Subsequently, a practical “What–How–When” framework is introduced to guide community pharmacists in risk screening, DMOAD selection, chronotherapeutic dosing, safety monitoring, and lifestyle integration, as exemplified by the CHONDROMOVING infographic brochure designed for diverse health literacy levels. Building on these strategies, the P4–4P Chondroprotection Framework is proposed, integrating predictive risk profiling (physicians), preventive pharmacokinetic and chronotherapy optimization (pharmacists), personalized biomechanical interventions (physiotherapists), and participatory self-management (patients) into a unified, feedback-driven OA care model. To translate this framework into routine practice, I recommend the development of DMOAD-specific clinical guidelines, incorporation of chondroprotective chronotherapy and interprofessional collaboration into health-professional curricula, and establishment of multidisciplinary OA management pathways—supported by appropriate reimbursement structures, to support preventive, team-based management, and prioritization of large-scale randomized trials and real-world evidence studies to validate the long-term structural, functional, and quality of life benefits of synchronized DMOAD and exercise-timed interventions. This comprehensive, precision-driven paradigm aims to shift OA care from reactive palliation to true disease modification, preserving cartilage integrity and improving the quality of life for millions worldwide. Full article
Show Figures

Figure 1

31 pages, 3964 KiB  
Article
Integrase-Deficient Lentiviral Vector as a Platform for Efficient CRISPR/Cas9-Mediated Gene Editing for Mucopolysaccharidosis IVA
by Fnu Nidhi and Shunji Tomatsu
Int. J. Mol. Sci. 2025, 26(14), 6616; https://doi.org/10.3390/ijms26146616 - 10 Jul 2025
Viewed by 524
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder causing systemic skeletal dysplasia due to a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) enzyme activity, leading to the impaired degradation and accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate. While treatments such as enzyme [...] Read more.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder causing systemic skeletal dysplasia due to a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) enzyme activity, leading to the impaired degradation and accumulation of glycosaminoglycans (GAGs), keratan sulfate (KS) and chondroitin-6-sulfate. While treatments such as enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available, they have significant limitations regarding efficacy in skeletal tissues and long-term safety, highlighting the need for more effective therapies. We evaluated a novel gene therapy approach using a dual Integrase-deficient lentiviral vector (IDLV) to deliver an expression cassette that includes human GALNS cDNA and Cas9 sgRNA, targeting the upstream region of the mouse Galns initial codon. This approach leverages the endogenous promoter to drive transgene expression. We assessed in vitro transduction, editing, and functional correction in NIH3T3 and MPS IVA mouse fibroblasts. In vivo efficacy was successfully evaluated via the facial vein injection in MPS IVA newborn mice. In vitro, this IDLV platform demonstrated supraphysiological GALNS activity in cell lysate, resulting in the normalization of KS levels. In vivo direct IDLV platform in newborn MPS IVA mice led to sustained plasma GALNS activity, reduced plasma KS, and favorable biodistribution. Partial correction of heart and bone pathology was observed, with no vector toxicity and minimal antibody responses. This dual IDLV-CRISPR/Cas9 approach effectively mediated targeted GALNS knock-in, yielding sustained enzyme activity, reduced KS storage, and partial pathological amelioration in MPS IVA mice. In conclusion, IDLVs represent an efficient, safe platform for delivering the CRISPR/Cas9 gene editing system for MPS IVA. Full article
Show Figures

Graphical abstract

17 pages, 3187 KiB  
Article
Efficacy and Safety Assessment of a Dietary Supplement in a Rat Model of Osteoarthritis and Dogs with Arthritic Signs
by Geon A Kim, Mi-Jin Lee, Eun Pyo Kim, Gun Ho Heo, Seung Gyu Oh, Se Chang Park, Byeong Chun Lee and Sang O Park
Animals 2025, 15(13), 1825; https://doi.org/10.3390/ani15131825 - 20 Jun 2025
Viewed by 535
Abstract
BYVET JOINT HEALTM (BJH) contains mucopolysaccharide protein, chondroitin sulfate, type II collagen, and omega-3 fatty acids, which protect and prevent osteoarthritis (OA)-associated tissue damage and degradation in dogs and cats. This study aimed to generate a novel dietary supplement and evaluate its [...] Read more.
BYVET JOINT HEALTM (BJH) contains mucopolysaccharide protein, chondroitin sulfate, type II collagen, and omega-3 fatty acids, which protect and prevent osteoarthritis (OA)-associated tissue damage and degradation in dogs and cats. This study aimed to generate a novel dietary supplement and evaluate its prevention and therapeutic efficacy in an OA Sprague Dawley rat model induced using monosodium iodoacetate (MIA). Negative control, MIA-induced OA control (MIA), OA rats treated with BJH three weeks after (M+BJH3) and those treated two weeks before and three weeks after OA induction (BJH2+M+BJH3) groups were assigned. M+BJH3 and BJH2+M+BJH3 had similar mean body weight increases until 29 days. BJH2+M+BJH3 showed a significantly higher body weight than M+BJH3 and MIA on the final day. Interleukin-1β in BJH2+M+BJH3 was significantly lower than that in MIA. Tumor necrosis factor-α, aggrecan, matrix metalloproteinases13, and cyclooxygenase-2 levels in M+BJH3 and BJH2+M+BJH3 significantly differed compared to those in MIA. BJH administration before OA induction significantly decreased OA severity and functional recovery. Consuming a BJH supplement showed modifying and chondroprotective effects and significantly reduced cartilage degeneration and inflammation with no side effects. Hence, our findings demonstrate the potential of using BJH as a safe therapeutic and preventive supplement for OA and associated cartilage abnormalities. Also, 30 dogs diagnosed with OA by a veterinarian participated in the clinical trial, and BJH was provided for 8 weeks. Blood tests (CBC, serum chemistry) and joint assessment were performed before and after the feeding, and the effects of a BJH supplement were compared. BJH supplement was easy to administer, and no side effects were reported. Feeding BJH supplementation alone to dogs with arthritis had an overall positive effect on arthritis scores for 8 weeks without any other treatment, including non-steroidal drugs. Full article
(This article belongs to the Topic Research on Companion Animal Nutrition)
Show Figures

Figure 1

16 pages, 2668 KiB  
Article
Revisiting Host-Binding Properties of LigA and LigB Recombinant Domains
by Henrique M. Pires, Igor R. M. Silva, Aline F. Teixeira and Ana L. T. O. Nascimento
Microorganisms 2025, 13(6), 1293; https://doi.org/10.3390/microorganisms13061293 - 31 May 2025
Viewed by 522
Abstract
Pathogenic bacteria of the genus Leptospira are the etiological agents of leptospirosis, a disease that affects humans and animals worldwide. Despite the increasing number of studies, the mechanisms of leptospiral pathogenesis remain poorly comprehended. In this study, we report various interactions of the [...] Read more.
Pathogenic bacteria of the genus Leptospira are the etiological agents of leptospirosis, a disease that affects humans and animals worldwide. Despite the increasing number of studies, the mechanisms of leptospiral pathogenesis remain poorly comprehended. In this study, we report various interactions of the LigA7’-13’ and LigB1’-7’ domains with host components. The LigA7’-13’ and LigB1’-7’ were cloned into the pET28a vector, and the recombinant proteins were expressed in E. coli C43 (DE3) and E. coli BL21 (DE3), respectively. Both recombinant protein domains were expressed in soluble form and purified using nickel-chelating chromatography. The rLigA7’-13’ and rLigB1’-7’ domains exhibited binding to several types of integrins, with most interactions occurring in a dose-dependent and saturable manner, consistent with the characteristics of typical receptor-ligand interactions. The recombinant domain LigA7’-13’ demonstrated affinity for the glycosaminoglycans (GAGs) chondroitin-4-sulfate, chondroitin sulfate, heparin, chondroitin sulfate B, and heparan sulfate, while no binding was detected for LigB1’-7’ with these molecules. Both rLigA7’-13’ and rLigB1’-7’ interacted with components of the terminal complement pathway and were capable of recruiting C9 from normal human serum (NHS). These interactions may inhibit the formation of polyC9, ultimately preventing the assembly of the membrane attack complex (MAC). Collectively, our data expand the repertoire of host components that interact with rLigA7’-13’ and rLigB1’-7’, opening new avenues for understanding leptospiral immune evasion and broadening the roles of these domains in bacterial virulence. Full article
(This article belongs to the Special Issue Microbial Infections and Host Immunity)
Show Figures

Figure 1

21 pages, 5296 KiB  
Article
Exploring the Inhibitory Effects of Fucosylated Chondroitin Sulfate (FCS) Oligosaccharide Isolated from Stichopus horrens and the Derivatives on P-Selectin
by Caiyi Li, Huifang Sun, Xi Gu, Wen Long, Guangyu Zhu, Xiaolu Wu, Yu Wang, Pengfei Li, Le Sha, Jiali Zhang, Wenwu Sun, Na Gao, Zhili Zuo and Jinhua Zhao
Mar. Drugs 2025, 23(6), 236; https://doi.org/10.3390/md23060236 - 30 May 2025
Viewed by 648
Abstract
Unique fucosylated chondroitin sulfate (FCS) extracted from the sea cucumber Stichopus horrens was subjected to deacetylation and deaminative depolymerization to generate oligosaccharide fragments containing anTal-diol, which were further purified to obtain the trisaccharide ShFCS-3. Subsequently, the coupling of ShFCS-3 and 4-azidoaniline was achieved [...] Read more.
Unique fucosylated chondroitin sulfate (FCS) extracted from the sea cucumber Stichopus horrens was subjected to deacetylation and deaminative depolymerization to generate oligosaccharide fragments containing anTal-diol, which were further purified to obtain the trisaccharide ShFCS-3. Subsequently, the coupling of ShFCS-3 and 4-azidoaniline was achieved by reductive amination. After purification, the main product ShFCS-A1 and by-product ShFCS-A2 were obtained, which were identified as (N-(L-Fuc2S4S-α1,3-D-GlcA-β1,3-D-anTalA4S6S-1-)-4-azidoaniline) and (4S)-[2-(3-L-Fuc2S4S-α1)-D-GlcA-β1]-2,4,5-trihydroxy-5-sulfated-pent-2-enoic-acid) by 1D/2D NMR spectroscopy, respectively. ELISA experiments revealed that ShFCS-A1 exhibited P-selectin inhibition rates of 19.73% ± 9.60% at 1 μM, 96.28% ± 2.37% at 10 μM, and near-complete inhibition (99.92% ± 0.84%) at 100 μM. ShFCS-A2 demonstrated inhibition rates of 8.29% ± 3.00% at 1 μM, 74.02% ± 8.80% at 10 μM, and maximal inhibition approaching 100% at 100 μM. Cellular-level experiments revealed that ShFCS-A1 and ShFCS-A2 inhibited P-selectin binding to HL-60 cells by 92.72% ± 0.85% and 96.97% ± 1.16% at 100 μM, respectively. Molecular docking analysis indicated binding energies of −5.954 kcal/mol for ShFCS-A1 and −6.140 kcal/mol for ShFCS-A2 with P-selectin, confirming their potent inhibitory effects. These findings highlight the therapeutic potential of FCS oligosaccharides as pharmacophores and provide an important foundation for developing novel small-molecule P-selectin inhibitors. Full article
Show Figures

Figure 1

20 pages, 2851 KiB  
Article
Chondroitin Sulfate as a Lysosomal Enhancer Attenuates Lipid-Driven Inflammation via Lipophagy and Mitophagy
by Ting Sun, Huimin Lv, Huarong Shao, Xiuhua Zhang, Anqi Wang, Wei Zhang, Fei Liu and Peixue Ling
Mar. Drugs 2025, 23(6), 228; https://doi.org/10.3390/md23060228 - 27 May 2025
Viewed by 662
Abstract
Non-alcoholic steatohepatitis (NASH), a progressive liver disease characterized by lipid accumulation and chronic inflammation, lacks effective therapies targeting its multifactorial pathogenesis. This study investigates marine-derived chondroitin sulfate (CS) as a multi-organelle modulator capable of regulating lipid metabolism, oxidative stress, and inflammation in NASH. [...] Read more.
Non-alcoholic steatohepatitis (NASH), a progressive liver disease characterized by lipid accumulation and chronic inflammation, lacks effective therapies targeting its multifactorial pathogenesis. This study investigates marine-derived chondroitin sulfate (CS) as a multi-organelle modulator capable of regulating lipid metabolism, oxidative stress, and inflammation in NASH. By employing subcellular imaging and organelle-specific labeling techniques, we demonstrate that CS restores lysosomal acidification in a NASH model, enabling the reduction of lipid droplets via lysosomal–lipid droplet fusion. Concurrently, CS upregulates dynamin-related protein 1 (DRP1), driving mitochondrial terminal fission to spatially isolate reactive oxygen species (ROS) segments for mitophagy, thereby reducing ROS levels. Notably, pharmacological inhibition of lysosomal activity using chloroquine or bafilomycin A1 abolished the therapeutic effects of CS, confirming lysosomal acidification as an essential prerequisite. Collectively, these findings reveal the potential of CS as a therapeutic agent for NASH and provide critical insights into the subcellular mechanisms underlying its protective effects, thus offering a foundation for future research and therapeutic development. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

29 pages, 917 KiB  
Article
Identification of Surrogate Biomarkers for Mucopolysaccharidosis Type IVA
by Yasuhiko Ago, Shaukat Khan, Kimberly Klipner, Allison Bradford and Shunji Tomatsu
Int. J. Mol. Sci. 2025, 26(10), 4940; https://doi.org/10.3390/ijms26104940 - 21 May 2025
Viewed by 654
Abstract
Mucopolysaccharidosis type IVA (MPS IVA, Morquio A syndrome) is a rare inherited disorder characterized by skeletal dysplasia due to deficient N-acetylgalactosamine-6-sulfate sulfatase activity, resulting in glycosaminoglycan (GAG) accumulation. Identifying accurate biomarkers reflecting clinical severity and therapeutic response remains challenging. This study evaluated potential [...] Read more.
Mucopolysaccharidosis type IVA (MPS IVA, Morquio A syndrome) is a rare inherited disorder characterized by skeletal dysplasia due to deficient N-acetylgalactosamine-6-sulfate sulfatase activity, resulting in glycosaminoglycan (GAG) accumulation. Identifying accurate biomarkers reflecting clinical severity and therapeutic response remains challenging. This study evaluated potential surrogate biomarkers, including N-terminal pro-C-type natriuretic peptide (NT-proCNP), collagen types I and II, mono-sulfated keratan sulfate (KS), di-sulfated KS, and chondroitin-6-sulfate (C6S), in blood and urine samples from 60 patients ranging from 1 to 62 years of age. NT-proCNP levels were significantly elevated in patients of all ages and negatively correlated with growth impairment, especially after 8 years of age. Collagen type I levels significantly increased in adult patients, whereas collagen type II showed age-dependent elevations. Urinary KS, in mono- and di-sulfated forms, demonstrated moderate negative correlations with growth impairment. Moreover, NT-proCNP, mono- and di-sulfated KS in plasma, and urinary di-sulfated KS were not affected by enzyme replacement therapy in patients younger than 12 years, unlike urinary mono-sulfated KS. In conclusion, NT-proCNP has emerged as a promising independent biomarker reflecting the severity of skeletal dysplasia and possibly the near-future growth rate. These findings highlight the potential role of NT-proCNP in clinical assessment and monitoring therapeutic efficacy, addressing current unmet needs in MPS IVA management. Full article
Show Figures

Figure 1

21 pages, 5986 KiB  
Article
FAM20B Gain-of-Function Blocks the Synthesis of Glycosaminoglycan Chains of Proteoglycans and Inhibits Proliferation and Migration of Glioblastoma Cells
by Lydia Barré, Irfan Shaukat and Mohamed Ouzzine
Cells 2025, 14(10), 712; https://doi.org/10.3390/cells14100712 - 14 May 2025
Viewed by 546
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PGs) are essential regulators of many biological processes including cell differentiation, signalization, and proliferation. PGs interact mainly via their glycosaminoglycan (GAG) chains, with a large number of ligands including growth factors, enzymes, and extracellular matrix [...] Read more.
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PGs) are essential regulators of many biological processes including cell differentiation, signalization, and proliferation. PGs interact mainly via their glycosaminoglycan (GAG) chains, with a large number of ligands including growth factors, enzymes, and extracellular matrix components, thereby modulating their biological activities. HSPGs and CSPGs share a common tetrasaccharide linker region, which undergoes modifications, particularly the phosphorylation of the xylose residue by the kinase FAM20B. Here, we demonstrated that FAM20B gain-of-function decreased, in a dose dependent manner, the synthesis of both CS- and HS-attached PGs. In addition, we showed that blockage of GAG chain synthesis by FAM20B was suppressed by the mutation of aspartic acid residues D289 and D309 of the catalytic domain. Interestingly, we bring evidence that, in contrast to FAM20B, expression of the 2-phosphoxylose phosphatase XYLP increases, in a dose dependent manner, GAG chain synthesis and rescues the blockage of GAG chains synthesis induced by FAM20B. In line with previous reports, we found that FAM20B loss-of-function reduced GAG chain synthesis. Finally, we found that FAM20B inhibited proliferation and migration of glioblastoma cells, thus revealing the critical role of GAG chains of PGs in glioblastoma cell tumorigenesis. This study revealed that both gain- and loss-of-function of FAM20B led to decreased GAG chain synthesis, therefore suggesting that a balance between phosphorylation and dephosphorylation of the xylose by FAM20B and XYLP, respectively, is probably an essential factor for the regulation of the rate of PG synthesis. Full article
Show Figures

Figure 1

12 pages, 1959 KiB  
Article
Interactions of CFTR and Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) in Prostate Carcinoma
by Sumit Bhattacharyya and Joanne K. Tobacman
Int. J. Mol. Sci. 2025, 26(9), 4350; https://doi.org/10.3390/ijms26094350 - 3 May 2025
Viewed by 2346
Abstract
Defective CFTR (cystic fibrosis transmembrane conductance regulator) is pathognomonic for cystic fibrosis (CF), which is characterized by an accumulation of tenacious secretions in pulmonary airways, as well as by abnormal ductal secretions in other organs, including the pancreas and prostate. The advent of [...] Read more.
Defective CFTR (cystic fibrosis transmembrane conductance regulator) is pathognomonic for cystic fibrosis (CF), which is characterized by an accumulation of tenacious secretions in pulmonary airways, as well as by abnormal ductal secretions in other organs, including the pancreas and prostate. The advent of CFTR modulating therapies has markedly improved the clinical status and survival of CF patients, primarily attributable to improved lung function. Previous publications reported that a decline in CFTR function was associated with a decline in activity and expression of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB). ARSB removes 4-sulfate groups from N-acetylgalactosamine 4-sulfate residues and is required for the degradation of chondroitin 4-sulfate (chondroitin sulfate A) and dermatan sulfate, two sulfated glycosaminoglycans which accumulate in cystic fibrosis. Declines in both ARSB and in CFTR have been associated with the development of malignancies, including prostate malignancy. The experiments in this report show that similar effects on invasiveness are present when either CFTR or ARSB is inhibited in human prostate epithelial cells, and these effects resemble findings detected in malignant prostate tissue. The effects of CFTR inhibition are reversed by treatment with recombinant human ARSB in prostate cells. These results suggest that treatment by rhARSB may benefit patients with cystic fibrosis and prostate cancer. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cystic Fibrosis)
Show Figures

Figure 1

20 pages, 2422 KiB  
Article
CRISPR/nCas9-Edited CD34+ Cells Rescue Mucopolysaccharidosis IVA Fibroblasts Phenotype
by Angélica María Herreno-Pachón, Andrés Felipe Leal, Shaukat Khan, Carlos Javier Alméciga-Díaz and Shunji Tomatsu
Int. J. Mol. Sci. 2025, 26(9), 4334; https://doi.org/10.3390/ijms26094334 - 2 May 2025
Cited by 2 | Viewed by 744
Abstract
Mucopolysaccharidosis (MPS) IVA is a bone-affecting lysosomal storage disease (LSD) caused by impaired degradation of the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin 6-sulfate (C6S) due to deficient N-acetylgalactosamine-6-sulfatase (GALNS) enzyme activity. Previously, we successfully developed and validated a CRISPR/nCas9-based gene therapy (GT) [...] Read more.
Mucopolysaccharidosis (MPS) IVA is a bone-affecting lysosomal storage disease (LSD) caused by impaired degradation of the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin 6-sulfate (C6S) due to deficient N-acetylgalactosamine-6-sulfatase (GALNS) enzyme activity. Previously, we successfully developed and validated a CRISPR/nCas9-based gene therapy (GT) to insert an expression cassette at the AAVS1 and ROSA26 loci in human MPS IVA fibroblasts and MPS IVA mice, respectively. In this study, we have extended our approach to evaluate the effectiveness of our CRISPR/nCas9-based GT in editing human CD34+ cells to mediate cross-correction of MPS IVA fibroblasts. CD34+ cells were electroporated with the CRISPR/nCas9 system, targeting the AAVS1 locus. The nCas9-mediated on-target donor template insertion, and the stemness of the CRISPR/nCas-edited CD34+ cells was evaluated. Additionally, MPS IVA fibroblasts were co-cultured with CRISPR/nCas-edited CD34+ cells to assess cross-correction. CRISPR/nCas9-based gene editing did not affect the stemness of CD34+ cells but did lead to supraphysiological levels of the GALNS enzyme. Upon co-culture, MPS IVA fibroblasts displayed a significant increase in the GALNS enzyme activity along with lysosomal mass reduction, pro-oxidant profile amelioration, mitochondrial mass recovery, and pro-apoptotic and pro-inflammatory profile improvement. These results show the potential of our CRISPR/nCas9-based GT to edit CD34+ cells to mediate cross-correction. Full article
Show Figures

Graphical abstract

17 pages, 13939 KiB  
Article
FAM20B-Catalyzed Glycosylation Regulates the Chondrogenic and Osteogenic Differentiation of the Embryonic Condyle by Controlling IHH Diffusion and Release
by Xiaoyan Chen, Han Liu, Yuhong Huang, Leilei Li, Xuxi Jiang, Bo Liu, Nan Li, Lei Zhu, Chao Liu and Jing Xiao
Int. J. Mol. Sci. 2025, 26(9), 4033; https://doi.org/10.3390/ijms26094033 - 24 Apr 2025
Viewed by 554
Abstract
Although the roles of proteoglycans (PGs) have been well documented in the development and homeostasis of the temporomandibular joint (TMJ), how the glycosaminoglycan (GAG) chains of PGs contribute to TMJ chondrogenesis and osteogenesis still requires explication. In this study, we found that FAM20B, [...] Read more.
Although the roles of proteoglycans (PGs) have been well documented in the development and homeostasis of the temporomandibular joint (TMJ), how the glycosaminoglycan (GAG) chains of PGs contribute to TMJ chondrogenesis and osteogenesis still requires explication. In this study, we found that FAM20B, a hexokinase essential for attaching GAG chains to the core proteins of PGs, was robustly activated in the condylar mesenchyme during TMJ development. The inactivation of Fam20b in craniofacial neural crest cells (CNCCs) dramatically reduced the synthesis and accumulation of GAG chains rather than core proteins in the condylar cartilage, which resulted in a hypoplastic condylar cartilage by severely promoting chondrocyte hypertrophy and perichondral ossification. In the condyles of Wnt1-Cre;Fam20bf/f mouse embryos, enlarged Ihh- and COL10-expressing domains indicated premature hypertrophy resulting from an attenuated IHH-PTHRP negative feedback in condylar chondrocytes, while increased osteogenic markers, canonical Wnt activity, and type-H angiogenesis verified the enhanced osteogenesis in the perichondrium. Further ex vivo investigations revealed that the loss of Fam20b decreased the domain area but increased the activity of HH signaling in the embryonic condylar mesenchyme. Moreover, the abrogation of GAG chains in heparan sulfate and chondroitin sulfate proteoglycans led to a rapid up- and then downregulation of HH signaling in condylar chondrocytes, implicating a “slow-release” manner of growth factors controlled by GAG chains. Overall, this study revealed a comprehensive role of the FAM20B-catalyzed GAG chain synthesis in the chondrogenic and osteogenic differentiation of the embryonic TMJ condyle. Full article
(This article belongs to the Special Issue Glycobiology in Human Health and Disease)
Show Figures

Figure 1

14 pages, 9175 KiB  
Article
Amphiphilic Celecoxib-Polysaccharide Delivery System for Enhanced Colon-Targeted Colitis Therapy
by Qiao Qiao, Xian Wan, Jie Li, Weijun Chen, Enxuan Li, Lipeng Qiu and Huiming Tu
Pharmaceutics 2025, 17(4), 511; https://doi.org/10.3390/pharmaceutics17040511 - 12 Apr 2025
Viewed by 646
Abstract
Background: Ulcerative colitis (UC), a subtype of chronic inflammatory bowel disease (IBD), is primarily treated with oral medications to reduce inflammation and alleviate symptoms. Celecoxib (CXB) is an attractive candidate for UC; however, its limited solubility and low bioavailability pose significant challenges [...] Read more.
Background: Ulcerative colitis (UC), a subtype of chronic inflammatory bowel disease (IBD), is primarily treated with oral medications to reduce inflammation and alleviate symptoms. Celecoxib (CXB) is an attractive candidate for UC; however, its limited solubility and low bioavailability pose significant challenges to its clinical application. Methods: We reported a novel chondroitin sulfate A–Celecoxib (CSA-CXB) polymeric nanoprodrug to address the limited solubility and low bioavailability of CXB. CXB was conjugated to chondroitin sulfate A (CSA) via succinic anhydride (SA) and ethylenediamine to prepare CSA-CXB polymers, which can self-assemble into nanoparticle structural prodrugs in aqueous condition. We investigated the stability, blood compatibility, and responsiveness of the nanoparticles. The ability of the nanoparticles to treat UC in vitro and in vivo was then evaluated. Results: The CSA-CXB nanoprodrug was spherical with a mean particle size of 188.4 ± 2.2 nm, a zeta potential of −22.9 ± 0.1 mV, and sustained drug release behavior. Furthermore, CSA-CXB exhibited remarkable antioxidant and anti-inflammatory effects, as it can significantly increase the free radical scavenging rate and reduce the expression level of ROS, TNF-α, IL-6, nitric oxide (NO), and COX-2 protein in vitro. In vivo results demonstrated that CSA-CXB targeted the mice’s colon efficiently mitigate UC symptoms by inhibiting the expression of inflammatory cytokine. Conclusions: The CSA-CXB nanoprodrug can improve the therapeutic impact of CXB, and has potential as a new preparation for a clinical UC treatment nanoprodrug. Full article
(This article belongs to the Special Issue Natural Macromolecule-Based Nanocarriers for Drug Delivery)
Show Figures

Figure 1

21 pages, 14021 KiB  
Article
Three-Dimensional-Printed Bone Grafts for Simultaneous Bone and Cartilage Regeneration: A Promising Approach to Osteochondral Tissue Engineering
by Smiljana Paraš, Božana Petrović, Dijana Mitić, Miloš Lazarević, Marijana Popović Bajić, Marija Živković, Milutin Mićić, Vladimir Biočanin, Slavoljub Živković and Vukoman Jokanović
Pharmaceutics 2025, 17(4), 489; https://doi.org/10.3390/pharmaceutics17040489 - 8 Apr 2025
Viewed by 712
Abstract
Background/Objectives: A novel 3D-printed, bioresorbable bone graft, made of nanohydroxyapatite (nHAP) covered by poly(lactide-co-glycolide) (PLGA), showed strongly expressed osteoinductive properties in our previous investigations. The current study examines its application in the dual regeneration of bone and cartilage by combining with nHAP [...] Read more.
Background/Objectives: A novel 3D-printed, bioresorbable bone graft, made of nanohydroxyapatite (nHAP) covered by poly(lactide-co-glycolide) (PLGA), showed strongly expressed osteoinductive properties in our previous investigations. The current study examines its application in the dual regeneration of bone and cartilage by combining with nHAP gel obtained by nHAP enrichment with hydroxyethyl cellulose, sodium hyaluronate, and chondroitin sulfate. Methods: In the in vitro part of the study, the mitochondrial activity and osteogenic and chondrogenic differentiation of stem cells derived from apical papilla (SCAPs) in the presence of nHAP gel were investigated. For the in vivo part of the study, three rabbits underwent segmental osteotomies of the lateral condyle of the femur, and defects were filled by 3D-printed grafts customized to the defect geometry. Results: In vitro study revealed that nHAP gel displayed significant biocompatibility, substantially increasing mitochondrial activity and facilitating the osteogenic and chondrogenic differentiation of SCAPs. For the in vivo part of the study, after a 12-week healing period, partial resorption of the graft was observed, and lamellar bone tissue with Haversian systems was detected. Histological and stereological evaluations of the implanted grafts indicated successful bone regeneration, marked by the infiltration of new bone and cartilaginous tissue into the graft. The existence of osteocytes and increased vascularization indicated active osteogenesis. The hyaline cartilage near the graft showed numerous new chondrocytes and a significant layer of newly formed cartilage. Conclusions: This study demonstrated that tailored 3D-printed bone grafts could efficiently promote the healing of substantial bone defects and the formation of new cartilage without requiring supplementary biological factors, offering a feasible alternative for clinical bone repair applications. Full article
Show Figures

Figure 1

25 pages, 12073 KiB  
Article
Exosome-Seeded Cryogel Scaffolds for Extracellular Matrix Regeneration in the Repair of Articular Cartilage Defects: An In Vitro and In Vivo Rabbit Model Study
by Daniel Yang, Joseph Yang, Shwu-Jen Chang, Jhe-Lun Hu, Yong-Ji Chen and Shan-Wei Yang
Polymers 2025, 17(7), 975; https://doi.org/10.3390/polym17070975 - 3 Apr 2025
Cited by 1 | Viewed by 1054
Abstract
Traumatic or degenerative defects of articular cartilage impair joint function, and the treatment of articular cartilage damage remains a challenge. By mimicking the cartilage extracellular matrix (ECM), exosome-seeded cryogels may enhance cell proliferation and chondral repair. ECM-based cryogels were cryopolymerized with gelatin, chondroitin [...] Read more.
Traumatic or degenerative defects of articular cartilage impair joint function, and the treatment of articular cartilage damage remains a challenge. By mimicking the cartilage extracellular matrix (ECM), exosome-seeded cryogels may enhance cell proliferation and chondral repair. ECM-based cryogels were cryopolymerized with gelatin, chondroitin sulfate, and various concentrations (0%, 0.3%, 0.5%, and 1%) of hyaluronic acid (HA), and their water content, swelling ratio, porosity, mechanical properties, and effects on cell viability were evaluated. The regenerative effects of bone marrow-derived mesenchymal stem cell (BM-MSC)-derived exosome (at a concentration of 106 particles/mL)-seeded 0.3% HA cryogels were assessed in vitro and in surgically induced male New Zealand rabbit cartilage defects in vivo. The water content, swelling ratio, and porosity of the cryogels significantly (p < 0.05) increased and the Young’s modulus values of the cryogels decreased with increasing HA concentrations. MTT assays revealed that the developed biomaterials had no cytotoxic effects. The optimal cryogel composition was 0.3% HA, and the resulting cryogel had favorable properties and suitable mechanical strength. Exosomes alone and exosome-seeded cryogels promoted chondrocyte proliferation (with cell optical densities that were 58% and 51% greater than that of the control). The cryogel alone and the exosome-seeded cryogel facilitated ECM deposition and sulfated glycosaminoglycan synthesis. Although we observed cartilage repair via Alcian blue staining with both the cryogel alone and the exosome-seeded cryogel, the layered arrangement of the chondrocytes was superior to that of the control chondrocytes when exosome-seeded cryogels were used. This study revealed the potential value of using BM-MSC-derived exosome-seeded ECM-based cryogels for cartilage tissue engineering to treat cartilage injury. Full article
(This article belongs to the Special Issue Advances in Synthesis and Application of Biomedical Polymer Materials)
Show Figures

Graphical abstract

21 pages, 3583 KiB  
Article
Exploring a Nitric Oxide-Releasing Celecoxib Derivative as a Potential Modulator of Bone Healing: Insights from Ex Vivo and In Vivo Imaging Experiments
by Christin Neuber, Luisa Niedenzu, Sabine Schulze, Markus Laube, Frank Hofheinz, Stefan Rammelt and Jens Pietzsch
Int. J. Mol. Sci. 2025, 26(6), 2582; https://doi.org/10.3390/ijms26062582 - 13 Mar 2025
Viewed by 736
Abstract
The inducible enzyme cyclooxygenase-2 (COX-2) and the subsequent synthesis of eicosanoids initiated by this enzyme are important molecular players in bone healing. In this pilot study, the suitability of a novel selective COX-2 inhibitor bearing a nitric oxide (NO)-releasing moiety was investigated as [...] Read more.
The inducible enzyme cyclooxygenase-2 (COX-2) and the subsequent synthesis of eicosanoids initiated by this enzyme are important molecular players in bone healing. In this pilot study, the suitability of a novel selective COX-2 inhibitor bearing a nitric oxide (NO)-releasing moiety was investigated as a modulator of healing a critical-size bone defect in rats. A 5 mm femoral defect was randomly filled with no material (negative control, NC), a mixture of collagen and autologous bone fragments (positive control, PC), or polycaprolactone-co-lactide (PCL)-scaffolds coated with two types of artificial extracellular matrix (aECM; collagen/chondroitin sulfate (Col/CS) or collagen/polysulfated hyaluronic acid (Col/sHA3)). Bone healing was monitored by a dual-tracer ([18F]FDG/[18F]fluoride) approach using PET/CT imaging in vivo. In addition, ex vivo µCT imaging as well as histological and immunohistochemical studies were performed 16 weeks post-surgery. A significant higher uptake of [18F]FDG, a surrogate marker for inflammatory infiltrate, but not of [18F]fluoride, representing bone mineralization, was observed in the implanted PCL-scaffolds coated with either Col/CS or Col/sHA3. Molecular targeting of COX-2 with NO-coxib had no significant effect on tracer uptake in any of the groups. Histological and immunohistochemical staining showed no evidence of a positive or negative influence of NO-coxib treatment on bone healing. Full article
(This article belongs to the Special Issue Advances in Bone Growth, Development and Metabolism)
Show Figures

Figure 1

Back to TopTop