Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = chloride ion exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 338
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

20 pages, 7211 KiB  
Article
Experimental and Numerical Analysis of Corrosion-Induced Cracking in Reinforced Concrete
by Olfa Loukil, Lucas Adelaide, Veronique Bouteiller and Marc Quiertant
Appl. Mech. 2025, 6(3), 57; https://doi.org/10.3390/applmech6030057 - 1 Aug 2025
Viewed by 294
Abstract
The aim of this paper is to present the results of an experimental and numerical investigation into the degradation of reinforced concrete (RC) specimens subjected to an accelerated corrosion process using impressed current in the presence of chloride ions. The corrosion of the [...] Read more.
The aim of this paper is to present the results of an experimental and numerical investigation into the degradation of reinforced concrete (RC) specimens subjected to an accelerated corrosion process using impressed current in the presence of chloride ions. The corrosion of the rebars was carried out using three current densities (50, 100, and 200 µA/cm2) and various exposure times. The experimental results characterised the internal degradation of the RC specimens through measurement of the corrosion product thicknesses at the steel–concrete interface; the widths, lengths and orientations of internal concrete cracks; and the external concrete crack widths. In addition, numerical modelling of the corroded RC specimens was conducted to describe the crack patterns. The comparison between the experimental and numerical results demonstrated a high degree of correlation, providing insights into the degradation process of RC specimens due to corrosion. Full article
Show Figures

Figure 1

15 pages, 2424 KiB  
Article
Cyanuric Chloride with the s-Triazine Ring Fabricated by Interfacial Polymerization for Acid-Resistant Nanofiltration
by Zhuangzhuang Tian, Yun Yin, Jiandong Wang, Xiuling Ao, Daijun Liu, Yang Jin, Jun Li and Jianjun Chen
Membranes 2025, 15(8), 231; https://doi.org/10.3390/membranes15080231 - 1 Aug 2025
Viewed by 427
Abstract
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane [...] Read more.
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane technologies for impurity removal under harsh conditions are still immature. In this work, we develop a novel strategy of acid-resistant nanofiltration membranes based on interfacial polymerization (IP) of polyethyleneimine (PEI) and cyanuric chloride (CC) with the s-triazine ring. The IP process was optimized by orthogonal experiments to obtain positively charged PEI-CC membranes with a molecular weight cut-off (MWCO) of 337 Da. We further applied it to the approximate industrial phosphoric acid purification condition. In the tests using a mixed solution containing 20 wt% P2O5, 2 g/L Fe3+, 2 g/L Al3+, and 2 g/L Mg2+ at 0.7 MPa and 25 °C, the NF membrane achieved 56% rejection of Fe, Al, and Mg and over 97% permeation of phosphorus. In addition, the PEI-CC membrane exhibited excellent acid resistance in the 48 h dynamic acid permeation experiment. The simple fabrication procedure of PEI-CC membrane has excellent acid resistance and great potential for industrial applications. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

16 pages, 1702 KiB  
Article
Does Salt Form Matter? A Pilot Randomized, Double-Blind, Crossover Pharmacokinetic Comparison of Crystalline and Regular Glucosamine Sulfate in Healthy Volunteers
by Chuck Chang, Afoke Ibi, Yiming Zhang, Min Du, Yoon Seok Roh, Robert O’Brien and Julia Solnier
Nutrients 2025, 17(15), 2491; https://doi.org/10.3390/nu17152491 - 30 Jul 2025
Viewed by 483
Abstract
Background: Crystalline glucosamine sulfate (cGS) claims to be a stabilized form of glucosamine sulfate with a defined crystalline structure intended to enhance chemical stability. It is proposed to offer pharmacokinetic advantages over regular glucosamine sulfate (rGS) which is stabilized with potassium or [...] Read more.
Background: Crystalline glucosamine sulfate (cGS) claims to be a stabilized form of glucosamine sulfate with a defined crystalline structure intended to enhance chemical stability. It is proposed to offer pharmacokinetic advantages over regular glucosamine sulfate (rGS) which is stabilized with potassium or sodium chloride. However, comparative human bioavailability data are limited. Since both forms dissociate in gastric fluid into constituent ions, the impact of cGS formulation on absorption remains uncertain. This pilot study aimed to compare the bioavailability of cGS and rGS using a randomized, double-blind, crossover design. Methods: Ten healthy adults received a single 1500 mg oral dose of either cGS or rGS with a 7-day washout between interventions. Capillary blood samples were collected over 24 h. Glucosamine and its metabolite concentrations were quantified by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS), and pharmacokinetic parameters—including maximum concentration (Cmax), time to reach Cmax (Tmax), and area under the curve (AUC)—were calculated. Results: Mean AUC0–24, Cmax, Tmax, and T½ values for glucosamine and glucosamine-6-sulfate (GlcN-6-S) were comparable between cGS and rGS. Although the AUC0–24 for glucosamine was modestly higher with rGS (18,300 ng·h/mL) than with cGS (12,900 ng·h/mL), the difference was not statistically significant (p = 0.136). GlcN-6-S exposure was also similar between formulations (rGS: 50,700 ng·h/mL; cGS: 50,600 ng·h/mL), with a geometric mean ratio of 1.39, a delayed Tmax (6–8 h) and longer half-life, consistent with its role as a downstream metabolite. N-acetylglucosamine levels remained stable, indicating potential homeostatic regulation. Conclusions: This pilot study found no significant pharmacokinetic advantage of cGS over rGS. These preliminary findings challenge claims of cGS’ pharmacokinetic superiority, although the small sample size limits definitive conclusions. Larger, adequately powered studies are needed to confirm these results. Full article
(This article belongs to the Special Issue Bone-Health-Promoting Bioactive Nutrition)
Show Figures

Graphical abstract

20 pages, 2847 KiB  
Article
Oxidative Stress Disrupts Gill Function in Eriocheir sinensis: Consequences for Ion Transport, Apoptosis, and Autophagy
by Wenrong Feng, Qinghong He, Qiqin Yang, Yuanfeng Xu, Gang Jiang, Jianlin Li, Jun Zhou, Rui Jia and Yongkai Tang
Antioxidants 2025, 14(8), 897; https://doi.org/10.3390/antiox14080897 - 22 Jul 2025
Viewed by 412
Abstract
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O [...] Read more.
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O2)-induced oxidative stress, integrating antioxidant defense, ion transport regulation, and stress-induced cell apoptosis and autophagy. Morphological alterations in the gill filaments were observed, characterized by septum degeneration, accumulation of haemolymph cells, and pronounced swelling. For antioxidant enzymes like catalase (CAT) and glutathione peroxidase (GPx), activities were enhanced, while superoxide dismutase (SOD) activity was reduced following 48 h of exposure. Overall, the total antioxidant capacity (T-AOC) showed a significant increase. The elevated concentrations of malondialdehyde (MDA) and H2O2 indicated oxidative stress. Ion transport genes displayed distinct transcription patterns: Na+-K+-2Cl co-transporter-1 (NKCC1), Na+/H+ exchanger 3 (NHE3), aquaporin 7 (AQP7), and chloride channel protein 2 (CLC2) were significantly upregulated; the α-subunit of Na+/K+-ATPase (NKAα) and carbonic anhydrase (CA) displayed an initial increase followed by decline; whereas vacuolar-type ATPase (VATP) consistently decreased, suggesting compensatory mechanisms to maintain osmotic balance. Concurrently, H2O2 triggered apoptosis (Bcl2, Caspase-3/8) and autophagy (beclin-1, ATG7), likely mediated by MAPK and AMPK signaling pathways. These findings reveal a coordinated yet adaptive response of crab gills to oxidative stress, providing new insights into the mechanistic basis of environmental stress tolerance in crustaceans. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

9 pages, 4992 KiB  
Communication
Corrosion Behavior of 347H Stainless Steel in NaCl-KCl-MgCl2 Molten Salt: Vapor, Liquid, and Interface Comparison
by Zhiwen Liu, Huigai Li, Yang Wang, Yanjie Peng, Luyan Sun and Jianping Liang
Materials 2025, 18(14), 3412; https://doi.org/10.3390/ma18143412 - 21 Jul 2025
Viewed by 305
Abstract
The suitability of 347H stainless steel (SS347H) for chloride salt environments is critical in selecting materials for next-generation concentrated solar power (CSP) systems. This study investigated the corrosion behavior of SS347H in a ton-scale purification system with continuously flowing chloride salt under three [...] Read more.
The suitability of 347H stainless steel (SS347H) for chloride salt environments is critical in selecting materials for next-generation concentrated solar power (CSP) systems. This study investigated the corrosion behavior of SS347H in a ton-scale purification system with continuously flowing chloride salt under three conditions: exposure to NaCl-KCl-MgCl2 molten salt vapor, immersion in molten salt, and at the molten salt surface interface. Results revealed that corrosion was most severe in the molten salt vapor, where HCl steam facilitated Cl reactions with Fe and Cr in the metal, causing dissolution and forming deep corrosion pits. At the interface, liquid Mg triggered displacement reactions with Fe2+/Cr2+ ions in the salt, depositing Fe and Cr onto the surface, which reduced corrosion intensity. Within the molten salt, Mg’s purification effect minimized impurity-induced corrosion, resulting in the least damage. In all cases, the primary corrosion mechanism involves the dissolution of Fe and Cr, with the formation of minor MgO. These insights provide valuable guidance for applying 347H stainless steel in chloride salt environments. Full article
Show Figures

Figure 1

13 pages, 11396 KiB  
Article
Morphometric and Enzymatic Changes in Gills of Rainbow Trout After Exposure to Suboptimal Low Temperature
by Elias Lahnsteiner, Nooshin Zamannejad, Anna Dünser and Franz Lahnsteiner
Curr. Issues Mol. Biol. 2025, 47(6), 457; https://doi.org/10.3390/cimb47060457 - 13 Jun 2025
Viewed by 910
Abstract
The present study investigated the influence of a 30 day exposure of rainbow trout (Oncorhynchus mykiss) to a suboptimal low temperature of 1.8 ± 1.0 °C on their different gill characteristics (morphometry, enzyme activities, and expression of genes) in comparison to [...] Read more.
The present study investigated the influence of a 30 day exposure of rainbow trout (Oncorhynchus mykiss) to a suboptimal low temperature of 1.8 ± 1.0 °C on their different gill characteristics (morphometry, enzyme activities, and expression of genes) in comparison to fish acclimated to 9.4 ± 0.1 °C. Morphometric analysis revealed a significant decrease in the distance between the secondary lamellae at the low temperature, which can be interpreted as a decrease in the effective gill surface. The epithelial thickness increased at the lower temperatures, which is considered a mechanism to reduce ion fluxes and save the energy costs for osmoregulation. The length of the primary lamellae, distance between the primary lamellae, length of the secondary lamellae, as well as the number of mucus cells, chloride cells, and capillaries per mm of the secondary lamella were similar between the temperature regimes. The enzymatic activities of pyruvate kinase and malate dehydrogenase were significantly increased in cold-exposed fish, whereas lactate dehydrogenase activity was higher in controls, indicating increased energy expenditure and adjustments in energy metabolism. The activities of carbonic anhydrase, caspase, Na+/K+ ATPase, and H+ ATPase, and the gene expressions of hif1a, ca2, rhCG, slc26a6, and slc9a1 showed no statistically significant differences between the two temperature regimes. Therefore, it can be concluded that ammonia transport, acid–base regulation, and osmoregulation were not affected by the tested low temperature regime. These findings highlight that exposure to suboptimal temperatures induces structural and metabolic modifications in rainbow trout gills, potentially as an adaptive response to thermal stress. This study contributes to the understanding of fish acclimation to cold environments, with implications for aquaculture and ecological resilience in changing climates. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

16 pages, 4660 KiB  
Article
Erosion Resistance of Iron Ore Tailings as Aggregate for Manufacturing of Cement-Based Materials
by Shuang Liu, Kangning Liu, Jing Wu and Sheliang Wang
Buildings 2025, 15(10), 1741; https://doi.org/10.3390/buildings15101741 - 21 May 2025
Viewed by 492
Abstract
Cement-based materials used in China’s coastal and salt lake areas in the northwest are exposed to long-term chloride corrosion, which deteriorates the materials and substantially reduces the durability of the structures. This study investigates the chlorine ion erosion resistance in salt spray environments [...] Read more.
Cement-based materials used in China’s coastal and salt lake areas in the northwest are exposed to long-term chloride corrosion, which deteriorates the materials and substantially reduces the durability of the structures. This study investigates the chlorine ion erosion resistance in salt spray environments of cement-based materials made with iron ore tailings (IOTs) as an aggregate (namely, IOTCs). The compressive strength, mass loss, and relative dynamic elastic modulus (RDEM) macroscopic performance of IOTC undergoing different chloride diffusion times (0–180 d) were explored in detail. Chloride ion profiles at 0–180 d were analyzed via chemical titration, while X-ray computed tomography (CT) and scanning electron microscopy (SEM) were employed to characterize microstructural evolution. The results demonstrate that IOTC exhibited superior chloride resistance compared to conventional concrete (GC). While both materials showed early strength gain (<60 d) due to hydration and pore-filling effects, IOTC experienced only a 23.9% strength loss after long-term exposure (180 d) significantly less than the 37.2% reduction in GC. Chloride profiling revealed that IOTC had 43.5% lower free chloride ions (Cf) and 32% lower total chloride ions (Ct) at 1 mm depth after 180 d, alongside reduced chloride diffusion coefficients (Da). The CT analysis revealed that IOTC exhibited a significantly denser and more uniformly distributed pore structure than GC, with a porosity of only 0.67% under chloride-free conditions. SEM confirmed IOTC’s more intact matrix and fewer microcracks. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 4851 KiB  
Article
Shape-Engineering and Mechanism Investigation of AgCl Microcrystals
by Chunli Cai, Qian Wang, Changsheng Yin, Xuhuan Li, Rong Yang, Xiaodong Shen and Wenbo Xin
Crystals 2025, 15(5), 451; https://doi.org/10.3390/cryst15050451 - 10 May 2025
Cited by 1 | Viewed by 403
Abstract
AgCl microcrystals are used in visible light photocatalysis. However, their properties depend strongly on the morphology of the crystals and the degree of exposure of the crystal planes. Despite extensive research conducted on the synthesis of AgCl microcrystals, the majority of existing studies [...] Read more.
AgCl microcrystals are used in visible light photocatalysis. However, their properties depend strongly on the morphology of the crystals and the degree of exposure of the crystal planes. Despite extensive research conducted on the synthesis of AgCl microcrystals, the majority of existing studies have focused on the stable growth of crystals. The role of Cl ions concentration as a key factor controlling the microcrystals morphology has not been fully explored, which limits the precise tuning of the morphology of AgCl microcrystals. In this study, AgCl microcrystals with controllable morphology are successfully synthesized by a facile solvothermal method. During the preparation process, ethylene glycol (EG) is utilized as a solvent, while polyvinylpyrrolidone (PVP) is employed as a surfactant. We systematically investigate the etching mechanism of AgCl microcrystals by analyzing the effect of sodium chloride (NaCl) concentration on their morphology. This investigation involves the integration of diverse characterization methods, including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and geometrical struc-ture analysis. The results demonstrate that Cl functions as both a surfactant, thereby promoting the nucleation of cubic microcrystals, and as an etchant, selectively etching the crystal surface. The order of selective etching on the crystal surface follows (100) planes > (110) planes > (111) planes. Based on this new mechanism, AgCl microcrystals with various morphologies, such as cube, octopod and dendrite, are successfully prepared, which provides a new idea for the precise design of noble metal halide microcrystals. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

22 pages, 9500 KiB  
Article
Increased CO2 Concentration Mitigates the Impact of Nitrite on Zebrafish (Danio rerio) Liver and Gills
by Xinyu Wang, Yao Tang, Hui Yang, Ya He, Kang Ou-Yang, Liangmou Wang, Qian Zhang, Dapeng Li and Li Li
Fishes 2025, 10(5), 205; https://doi.org/10.3390/fishes10050205 - 1 May 2025
Viewed by 523
Abstract
Nitrite and carbon dioxide (CO2) are common environmental substances in intensive aquaculture ponds. However, the effects and mechanisms of their combined exposure on aquatic animals remain unclear. In this study, we investigated the toxic effects of 2.5, 5, and 10 mg/L [...] Read more.
Nitrite and carbon dioxide (CO2) are common environmental substances in intensive aquaculture ponds. However, the effects and mechanisms of their combined exposure on aquatic animals remain unclear. In this study, we investigated the toxic effects of 2.5, 5, and 10 mg/L CO2 in the presence of 2 mg/L nitrite on hematological, blood gas parameters, and liver physiological and pathological changes in zebrafish (Danio rerio) over 14 days and 28 days. Our results demonstrated a reduced nitrite uptake and accumulation in the gills and liver of zebrafish exposed to nitrite and varying levels of CO2. Increased CO2 levels also led to a decrease in the expression of gill ae1, whereas the transcriptional levels of nhe1 and nhe3b, nkcc and nbc1 were notably upregulated. Moreover, there was a decrease in Cl and Na+ concentrations, along with an increase in K+ concentrations. These changes suggested that zebrafish responded to increased CO2 stress by reducing their absorption of chloride-dependent nitrite, excreting H+ and maintaining their internal pH. Exposure to higher CO2 levels in the presence of nitrite resulted in lower blood MetHb levels and liver oxidative stress compared to the nitrite single-exposure treatment. Furthermore, co-treatment with CO2 and nitrite attenuated the nitrite-induced damage to genes related to mitochondrial respiratory chain function (ndufs1, mtnd5, mtycb, atp5f1b, mtatp8), leading to elevated ATP levels. Exposure to nitrite alone increased the expression of lipolytic genes (hsla, cpt1aa, atgl) and decreased the expression of lipid synthesis genes (fasn, acaca), resulting in a decrease in TG and TC content in zebrafish liver. However, co-treatment with CO2 and nitrite prevented the nitrite-induced disruption of lipid metabolism, as evidenced by the improvement in TG and TC levels, as well as transcriptional levels of lipid metabolism-related genes. In conclusion, our study suggests that in the presence of 2 mg/L nitrite, increased CO2 (2.5–10 mg/L) may modulate ion transporter genes to reduce the chloride-dependent nitrite uptake and maintain pH homeostasis, concurrently alleviating oxidative stress, restoring mitochondrial respiratory function, and improving lipid metabolism in a dose-dependent manner. These changes may be related to the increase in the concentration of bicarbonate ions in the water as the CO2 level rises. These findings shed light on the potential protective effects of CO2 in mitigating the harmful effects of nitrite exposure in aquatic animals. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Graphical abstract

17 pages, 3610 KiB  
Article
Study on Pollution Characteristics, Sources, and Health Risks of Potentially Toxic Elements in Groundwater of Dongting Lake Basin, China
by Xinping Deng, Hao Zou, Bozhi Ren, Jin Wang and Luyuan Chen
Sustainability 2025, 17(8), 3554; https://doi.org/10.3390/su17083554 - 15 Apr 2025
Viewed by 322
Abstract
Groundwater is one of the most critical drinking water resources on Earth, and its safety significantly impacts the ecological environment and human health. This study focuses on the pollution characteristics, sources, and health risks of potentially toxic elements (PTEs) in the groundwater of [...] Read more.
Groundwater is one of the most critical drinking water resources on Earth, and its safety significantly impacts the ecological environment and human health. This study focuses on the pollution characteristics, sources, and health risks of potentially toxic elements (PTEs) in the groundwater of the Dongting Lake basin in China. It highlights the concentration distribution and pollution causes of common toxic elements such as manganese (Mn), copper (Cu), zinc (Zn), arsenic (As), mercury (Hg), iron (Fe), chloride ions (Cl), and fluoride ions (F). The results indicate that the Mn concentration reached 28.6 times the background value, followed by Cu at 16.7 times. The groundwater pollution level in the study area reached a severe contamination level, with Zn classified as severely polluted and Mn categorized as moderately to heavily polluted. Approximately 47.05% of the study area was severely contaminated by PTEs. The study further reveals that the primary sources of pollution are anthropogenic activities, including agricultural fertilization, industrial discharges, and urbanization processes, which have significantly elevated PTE concentrations in groundwater. Additionally, natural geochemical processes contribute substantially to the high concentrations of specific elements in certain areas. Health risk assessments indicate that long-term exposure to PTEs in groundwater may pose various potential threats to human health, particularly in terms of carcinogenic and non-carcinogenic risks. Children are identified as the most vulnerable group. This research provides a systematic scientific basis for the management of groundwater pollution in the Dongting Lake basin, emphasizing that the current pollution levels pose serious threats to regional ecosystems and public health. The findings not only offer guidance for groundwater management in the Dongting Lake basin but also serve as a valuable reference for groundwater pollution management in similar regions. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

22 pages, 7086 KiB  
Article
Corrosion Products and Microstructural Evolution of Ordinary Portland Cement and High-Performance Concrete After Eight Years of Field Exposure in Qarhan Salt Lake
by Zhiyuan Luo, Hongfa Yu, Haiyan Ma, Yongshan Tan, Chengyou Wu, Jingnan Sun, Xiaoming Wang and Peng Wu
Materials 2025, 18(8), 1769; https://doi.org/10.3390/ma18081769 - 12 Apr 2025
Cited by 2 | Viewed by 459
Abstract
Salt lakes and the surrounding saline soils distributed across northwestern China and Inner Mongolia impose severe physicochemical corrosion on cement-based concrete. Understanding the corrosion products and mechanisms are crucial scientific and technological factors in ensuring the durability and service life of concrete structures [...] Read more.
Salt lakes and the surrounding saline soils distributed across northwestern China and Inner Mongolia impose severe physicochemical corrosion on cement-based concrete. Understanding the corrosion products and mechanisms are crucial scientific and technological factors in ensuring the durability and service life of concrete structures in these regions. In this study, various analytical techniques—including X-ray diffraction, thermogravimetric–differential thermal analysis, X-ray fluorescence, and scanning electron microscopy coupled with energy-dispersive spectroscopy—were employed to systematically analyze the corrosion products of ordinary Portland cement (OPC) and high-performance concrete (HPC) specimens after eight years of field exposure in the Qarhan Salt Lake area of Qinghai. The study provided an in-depth understanding of the physicochemical corrosion mechanisms involved. The results showed that, after eight years of exposure, the corrosion products comprised both physical corrosion products (primarily sodium chloride crystals), and chemical corrosion products (associated with chloride, sulfate, and magnesium salt attacks). A strong correlation could be observed between the chemical corrosion products and the strength grade of the concrete. In C25 OPC, the detected corrosion products included gypsum, monosulfate-type calcium sulfoaluminate (AFm), Friedel’s salt, chloro-ettringite, brucite, magnesium oxychloride hydrate 318, calcium carbonate, potassium chloride, and sodium chloride. In C60 HPC, the identified corrosion products included Kuzel’s salt, Friedel’s salt, chloro-ettringite, brucite, calcium carbonate, potassium chloride, and sodium chloride. Among them, sulfate-induced corrosion led to the formation of gypsum and AFm, whereas chloride-induced corrosion resulted in chloro-ettringite and Friedel’s salt. Magnesium salt corrosion contributed to the formation of brucite and magnesium oxychloride hydrate 318, with Kuzel’s salt emerging as a co-corrosion product of chloride and sulfate attacks. Furthermore, a conversion phenomenon was evident between the sulfate and chloride corrosion products, which was closely linked to the internal chloride ion concentration in the concrete. As the chloride ion concentration increased, the transformation sequence of sulfate corrosion products occurred in the following order: AFm → Kuzel’s salt → Friedel’s salt → chloro-ettringite. There was a gradual increase in chloride ion content within these corrosion products. This investigation into concrete durability in salt-lake ecosystems offers technological guidance for infrastructure development and material specification in hyper-saline environments. Full article
Show Figures

Figure 1

15 pages, 4599 KiB  
Article
The Effect of Chloride Ions Morphology on the Properties of Concrete Under Dry and Wet Conditions
by Minhang Zhang, Zhanquan Yao, Meng Gao and Hailong Wang
Sustainability 2025, 17(7), 2884; https://doi.org/10.3390/su17072884 - 24 Mar 2025
Viewed by 755
Abstract
In order to explore a model for the deterioration rate law and mechanism of concrete performance in salt lake water or sea water, the mixed sand concrete test of different forms of chloride ion erosion under a dry–wet cycle was simulated in the [...] Read more.
In order to explore a model for the deterioration rate law and mechanism of concrete performance in salt lake water or sea water, the mixed sand concrete test of different forms of chloride ion erosion under a dry–wet cycle was simulated in the laboratory. The compressive strength and penetration depth were used to characterize the structural degradation degree of mixed sand concrete. The performance degradation of mixed sand concrete was analyzed through field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetry (TG), and nuclear magnetic resonance (NMR) testing. Experimental investigations have revealed that, at an age of 140 days and under alternating wet–dry conditions, liquid chloride ion erosion results in a 17.47% reduction in the compressive strength of blended sand concrete, accompanied by an erosion depth of 28.077 mm. This erosion progresses from the exterior towards the interior of the material. Conversely, gaseous chloride ion erosion exhibits a bidirectional penetration pattern. When subjected to gaseous chloride ion erosion, the compressive strength of blended sand concrete decreases by 31.36%, with an associated erosion depth of 38.008 mm. This exposure subjects the structure to heightened crystalline pressures, leading to severe deterioration of both the micro-porous structure within the concrete and the dense structure of hydration products. Consequently, the overall extent of structural damage is more pronounced, and the rate of degradation progression is accelerated. Under the action of liquid chloride ion erosion, the degradation of mixed sand concrete structure is caused by dry–wet fatigue, crystallization pressure, chloride salt erosion and calcium ion dissolution. Under the action of spray-born chloride erosion, the degradation of the mixed sand concrete structure is caused by dry–wet fatigue, crystallization pressure, chloride salt erosion, and calcium ion dissolution, among which crystallization degradation plays a major role. In line with the engineering standards for the utilization of vast desert resources in Inner Mongolia and the long-term service of concrete in the Hetao Irrigation District, our approach contributes to the achievement of sustainable development. Full article
Show Figures

Figure 1

23 pages, 10722 KiB  
Article
Time-Dependent Seismic Fragility of Coastal RC Frames Considering Effect of Distance from Coastline
by Xiaohui Yu, Zenghui Li, Ao Yang, Yushi Li, Dagang Lu and Kuangyu Dai
Buildings 2025, 15(5), 737; https://doi.org/10.3390/buildings15050737 - 25 Feb 2025
Cited by 1 | Viewed by 672
Abstract
Reinforced concrete (RC) structures in coastal atmospheres commonly suffer the penetration of chloride ions, which can lead to the corrosion of reinforcements and, thus, a reduction in their structural performance under earthquakes. In recent years, time-dependent seismic fragility analysis has been widely used [...] Read more.
Reinforced concrete (RC) structures in coastal atmospheres commonly suffer the penetration of chloride ions, which can lead to the corrosion of reinforcements and, thus, a reduction in their structural performance under earthquakes. In recent years, time-dependent seismic fragility analysis has been widely used as an effective tool to represent the deterioration in the seismic performance of aging RC structures. However, few studies have considered the influences of varying chloride ion exposure environments due to the different distances of structures from a coastline. In light of this, this study performs a time-dependent seismic fragility analysis for aging RC frames, considering varying distances of the buildings from the coastline. To conduct this, a time-dependent reinforcement corrosion rate model that can consider the effect of the distance of a building from the coastline is established by combining a concrete surface chloride ion concentration model, an initial corrosion time model, and an electrochemical corrosion rate model. By integrating material deterioration models for reinforcements and concrete, the seismic fragility relationships for structures with different degrees of corrosion damage can be developed. A corrosion deterioration factor is then proposed to quantify the relationship between the seismic fragility function parameters and the corrosion rate. Subsequently, time-dependent fragility functions considering the effect of the distance from the coastline can be established. A nine-story RC frame designed according to the existing Chinese codes is used for illustration. The time-dependent seismic fragility relationship of the structure is developed considering different distances of buildings from the coastline. The results show that the effect of the distance of a building from the coastline varies under different categories of environment. The seismic fragility results for a structure under a III-a environment are more significantly influenced by the structural distance from the coastline compared to those for a structure under a II-a environment. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

33 pages, 7791 KiB  
Article
Durable Structural Recycled Concrete for Different Exposure Environments
by Carla Vintimilla and Miren Etxeberria
Materials 2025, 18(3), 587; https://doi.org/10.3390/ma18030587 - 28 Jan 2025
Cited by 1 | Viewed by 849
Abstract
In this work, the influence of limited percentages of coarse (CRCA) and fine (FRCA) recycled concrete aggregates (Type A recycled aggregates) on the durability properties of structural concrete was analyzed. Concretes were designed using 50% and 60% CRCA with simultaneous additions of 0%, [...] Read more.
In this work, the influence of limited percentages of coarse (CRCA) and fine (FRCA) recycled concrete aggregates (Type A recycled aggregates) on the durability properties of structural concrete was analyzed. Concretes were designed using 50% and 60% CRCA with simultaneous additions of 0%, 10%, and 20% FRCA and different types of cement (CEM II/AL 42.5 R, CEM II/AS 42.5 N/SRC, and CEM III/B 42.5 N-LH/SR). Recycled aggregate concrete (RAC) and natural aggregate concrete (NAC) mixtures were produced with similar compressive strength using effective water–cement ratios of 0.47 and 0.5. The drying shrinkage values and durability properties were determined, and they included the chloride permeability, chloride penetration depth, and accelerated and natural carbonation rates. The findings revealed that RAC produced using CEM III/B, which included the mixture produced with 60% coarse RCA and 20% fine RCA, achieved low chloride ion penetrability (up to 850 Coulombs) and exhibited the lowest chloride diffusion coefficient, approximately 7 × 10−13. Additionally, the RAC-C60-F20 concretes made with CEM II/AS proved suitable for the XC3 and XC4 exposure environments, guaranteeing a lifespan of 50 and 100 years based on the natural carbonation rate. In addition, the RAC-C60-F20 concrete made with CEM II/AL cement exhibited an adequate natural carbonation rate for XC4 environments, which was between 1.6 and 2.4 units higher than the accelerated carbonation rate. This work validates the use of RAC in XC environments (corrosion induced by carbonation) and XS1 environments (corrosion caused by chlorides from seawater). Full article
(This article belongs to the Special Issue Special Functional and Environmental Cement-Based Materials)
Show Figures

Figure 1

Back to TopTop