Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = chitosan biopolymer-based membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9437 KiB  
Review
Antibacterial Polysaccharides in Dental Implantology
by Lubica Hallmann and Mark Daniel Gerngroß
Mar. Drugs 2025, 23(8), 321; https://doi.org/10.3390/md23080321 - 4 Aug 2025
Viewed by 238
Abstract
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used [...] Read more.
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used to search for peer-reviewed scientific publications published between 2018 and 2025 that provide insights to answer research questions on the role of antibacterial polysaccharides in combating pathogens in dental implantology without triggering immune reactions and inflammation. Further research questions relate to the efficacy against various dental pathogens and the understanding of the antibacterial mechanism, which may enable the development of functionalized polysaccharides with long-term antibacterial activity. Results: Biomedical implants have revolutionized medicine but also increased the risk of infections. Implant infections are a major problem in implantology and lead to implant failure and replacement. An antibacterial coating could be an excellent strategy to extend the lifespan of implants and improve the quality of the patient’s life. Bacterial resistance to antibiotics poses significant challenges for researchers, forcing them to search for new ways to prevent bacterial infections in implantology. Antibacterial natural polymers have recently received considerable research attention due to their long-term antibacterial activity. Polysaccharides from marine sources, such as chitosan and alginate, or pectin, xanthan, etc., from various plants, appear to be promising biopolymers for such applications in implantology due to their antibacterial activity, biocompatibility, and osteogenic properties. The antibacterial activity of these natural biopolymers depends on their chemical and physical properties. Nanopolysaccharides exhibit higher antibacterial activity than conventional polysaccharides, but their toxicity to human cells must be considered. Their antibacterial activity is based on the disruption of bacterial DNA or RNA synthesis, increased cell wall permeability, membrane disruption, and cytoplasmic leakage. Conclusions: Polysaccharides are a class of natural polymers with a broad spectrum of biological activities. They exhibit antioxidant, immunomodulatory, anticoagulant, anticancer, anti-inflammatory, antibacterial, and antiviral activity. Furthermore, polysaccharides are non-cytotoxic and exhibit good biocompatibility with osteogenic cells. Bactericidal polysaccharides are attractive new antibacterial materials against implant infections and open up new perspectives in implantology. Full article
(This article belongs to the Special Issue Marine Biomaterials for Dental Applications)
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 407
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

28 pages, 9071 KiB  
Review
Chitosan-Based Membranes: A Comprehensive Review of Nanofiltration, Pervaporation, and Ion Exchange Applications
by Km Nikita, Vijayalekshmi Vijayakumar and Sang Yong Nam
Polysaccharides 2025, 6(2), 31; https://doi.org/10.3390/polysaccharides6020031 - 8 Apr 2025
Cited by 3 | Viewed by 2325
Abstract
Innovations for separation via membranes are extremely energy-efficient, and through the previous decade, attention to this technology has spiked tremendously. Biopolymers are becoming widely recognized as membrane materials since they are sustainable. Furthermore, the second most common biopolymer, chitin, is the source of [...] Read more.
Innovations for separation via membranes are extremely energy-efficient, and through the previous decade, attention to this technology has spiked tremendously. Biopolymers are becoming widely recognized as membrane materials since they are sustainable. Furthermore, the second most common biopolymer, chitin, is the source of chitosan, which has several benefits that make it ideal for the construction of membranes. This review article presents an evaluation of current developments in the utilization of chitosan membranes. The applications of interest in this review are nanofiltration, pervaporation and ion exchange. The chitosan based nanofiltration membranes are comprehensively reviewed with respect to various factors (e.g., solvent, pH resistant, etc.). The development of water permselective, organic permselective, and organic-organic separation films, as well as its permeability and segregation properties, are addressed in pervaporation (PV) section. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Figure 1

17 pages, 2024 KiB  
Article
Antibacterial Properties of Polymeric Membranes Containing Doxycycline for Potential Applications in Foot Ulcer Treatment
by Stevaly Pérez-Gutiérrez, Jesús Ángel Ramírez-Enciso, Laura Abisai Pazos-Rojas, Abigailt Flores-Ledesma, Eric Reyes-Cervantes, Diana del C. Pazos-Guarneros, Ismael Juárez-Díaz, Paola G. Gordillo-Guerra, Bernardino Isaac Cerda-Cristerna, José Luis Suárez-Franco, Carolina Samano-Valencia, Brenda Erendida Castillo-Silva, Alejandro G. Martínez-Guerrero, Gisela N. Rubin de Celis-Quintana and Alberto V. Jerezano-Domínguez
Int. J. Mol. Sci. 2025, 26(7), 3274; https://doi.org/10.3390/ijms26073274 - 1 Apr 2025
Viewed by 1286
Abstract
Membranes made from biopolymers and loaded with doxycycline were investigated for potential use in the treatment of foot ulcers in diabetic patients. Carboxymethylcellulose (CMC) and chitosan (CHS) membranes were fabricated with 7% glycerol and 1% doxycycline (DOX). Their mechanical and physical properties, biocompatibility, [...] Read more.
Membranes made from biopolymers and loaded with doxycycline were investigated for potential use in the treatment of foot ulcers in diabetic patients. Carboxymethylcellulose (CMC) and chitosan (CHS) membranes were fabricated with 7% glycerol and 1% doxycycline (DOX). Their mechanical and physical properties, biocompatibility, and antimicrobial effects were thoroughly evaluated. The results demonstrated effective antibacterial activity against S. aureus and S. mutans. Based on the mechanical, physical, and hemolytic data, DOX-loaded CMC/CHS/G membranes show promise as a topical wound delivery system. Full article
Show Figures

Figure 1

20 pages, 1892 KiB  
Review
Hydrophobic Chitosan Derivatives for Gene and Drug Delivery in Cancer Therapies
by Daria N. Poshina, Anna D. Rakshina and Yury A. Skorik
Polysaccharides 2025, 6(1), 11; https://doi.org/10.3390/polysaccharides6010011 - 5 Feb 2025
Cited by 4 | Viewed by 1670
Abstract
Chitosan remains one of the most widely used biopolymers in biomedicine due to its non-toxicity and biodegradability. It is easily chemically modified, allowing its properties to be effectively altered to improve its performance as a gene and drug carrier. The introduction of hydrophobic [...] Read more.
Chitosan remains one of the most widely used biopolymers in biomedicine due to its non-toxicity and biodegradability. It is easily chemically modified, allowing its properties to be effectively altered to improve its performance as a gene and drug carrier. The introduction of hydrophobic moieties into chitosan can significantly enhance its interaction with cancer cells, improving its potential for targeted delivery. The hydrophobic moiety plays a crucial role in the interaction of the particle with the cell membrane during internalization by endocytosis. The type of hydrophobic moiety, its degree of substitution, and its placement along the chitosan backbone all influence the physicochemical properties and biological performance of the resulting polymer. Hydrophobic modification can also affect the self-assembly behavior of chitosan, influencing the size, shape, and stability of the resulting particles. These factors impact the loading efficiency of therapeutic agents and the release kinetics of the encapsulated cargo. While hydrophobic modification can enhance the therapeutic efficacy of chitosan, it is important to consider potential toxic effects. In summary, the hydrophobic modification of chitosan is a powerful strategy to improve its efficiency as a gene and drug carrier. By understanding the role of the hydrophobic moiety in cellular uptake, endosomal escape, self-assembly, and toxicity, researchers can design and develop optimized chitosan-based delivery systems for targeted cancer therapy. Full article
(This article belongs to the Special Issue Latest Research on Polysaccharides: Structure and Applications)
Show Figures

Figure 1

16 pages, 4896 KiB  
Article
Enhancing the Separation Performance of Chitosan Membranes Through the Blending with Deep Eutectic Solvents for the Pervaporation of Polar/Non-Polar Organic Mixtures
by Francesco Galiano, Asma Msahel, Francesca Russo, Natalia Rovella, Alfonso Policicchio, Sofiane Ben Hamouda, Amor Hafiane, Roberto Castro-Muñoz and Alberto Figoli
Membranes 2024, 14(11), 237; https://doi.org/10.3390/membranes14110237 - 11 Nov 2024
Cited by 8 | Viewed by 1934
Abstract
This study explores the development of chitosan-based membranes blended with three distinct deep eutectic solvents (DESs) for the pervaporation separation of methanol and methyl tert-butyl ether. DESs were selected for their eco-friendly properties and their potential to enhance membrane performance. The chitosan [...] Read more.
This study explores the development of chitosan-based membranes blended with three distinct deep eutectic solvents (DESs) for the pervaporation separation of methanol and methyl tert-butyl ether. DESs were selected for their eco-friendly properties and their potential to enhance membrane performance. The chitosan (CS) membranes, both crosslinked and non-crosslinked, were characterized in terms of morphology, chemical composition, wettability, mechanical resistance, and solvent uptake. Pervaporation tests revealed that incorporating DESs significantly enhanced the membranes’ selective permeability toward methanol, with up to a threefold increase in separation efficiency compared to pristine CS membranes. The membranes demonstrated a strong dependence on feed temperature, with higher temperatures improving permeation flux but reducing separation factor. Crosslinking with glutaraldehyde further increased membrane selectivity by reducing free volume into the polymer matrix. These findings underscore the potential of DESs as green additives for improving the performance of biopolymer membranes, making them promising candidates for efficient and eco-friendly organic–organic separations. Full article
(This article belongs to the Special Issue Membranes for Energy and the Environment)
Show Figures

Figure 1

23 pages, 1045 KiB  
Review
Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants
by Janaína Oliveira Gonçalves, Bruna Silva de Farias, Estéfani Cardillo Rios, Débora Pez Jaeschke, Anelise Christ Ribeiro, Mariele Dalmolin da Silva, Mery Luiza Garcia Vieira, Valéria Vieira de Lima Carvalho, Tito Roberto Santanna Cadaval and Luiz Antonio de Almeida Pinto
Sustainability 2024, 16(19), 8321; https://doi.org/10.3390/su16198321 - 25 Sep 2024
Cited by 7 | Viewed by 3314
Abstract
The increasing disposal of emerging contaminants in the environment is a worldwide concern due to environmental impacts, such as toxicity, hormonal disorders, and bioaccumulation. The persistence of these pollutants in water bodies makes conventional pollutant removal techniques inefficient or partial, thus requiring the [...] Read more.
The increasing disposal of emerging contaminants in the environment is a worldwide concern due to environmental impacts, such as toxicity, hormonal disorders, and bioaccumulation. The persistence of these pollutants in water bodies makes conventional pollutant removal techniques inefficient or partial, thus requiring the development of new, more effective, sustainable remediation technologies. Therefore, chitosan-based materials have emerged as a promising alternative for application in catalysis and contaminant removal. The biopolymer has functional properties that make it an excellent adsorbent capable of removing more specific pollutants, such as pharmaceuticals, microplastics, agricultural pesticides, and perfluoroalkyl and poly-fluoroalkyl substances, which are increasingly in evidence today. Therefore, this review of recent and advanced research into using chitosan to manufacture catalytic and adsorption materials offers an innovative approach to treating contaminants in aqueous environments, significantly reducing their presence and impact. It discusses the advantages of using chitosan as an adsorbent and catalyst and its role as a support for catalysts and biocatalysts. In addition, the review highlights the diversity of the physical forms of chitosan, such as particles, membranes, and hydrogels, and its possible chemical modifications, highlighting its effectiveness in catalytic applications and the removal of a wide range of emerging contaminants. Full article
(This article belongs to the Special Issue Heterogeneous Catalytic Technology in Pollutant Degradation)
Show Figures

Graphical abstract

29 pages, 1354 KiB  
Review
Gene Therapy with Chitosan Nanoparticles: Modern Formulation Strategies for Enhancing Cancer Cell Transfection
by Varvara Antoniou, Elena A. Mourelatou, Eleftheria Galatou, Konstantinos Avgoustakis and Sophia Hatziantoniou
Pharmaceutics 2024, 16(7), 868; https://doi.org/10.3390/pharmaceutics16070868 - 27 Jun 2024
Cited by 10 | Viewed by 2430
Abstract
Gene therapy involves the introduction of exogenous genetic material into host tissues to modify gene expression or cellular properties for therapeutic purposes. Initially developed to address genetic disorders, gene therapy has expanded to encompass a wide range of conditions, notably cancer. Effective delivery [...] Read more.
Gene therapy involves the introduction of exogenous genetic material into host tissues to modify gene expression or cellular properties for therapeutic purposes. Initially developed to address genetic disorders, gene therapy has expanded to encompass a wide range of conditions, notably cancer. Effective delivery of nucleic acids into target cells relies on carriers, with non-viral systems gaining prominence due to their enhanced safety profile compared to viral vectors. Chitosan, a biopolymer, is frequently utilized to fabricate nanoparticles for various biomedical applications, particularly nucleic acid delivery, with recent emphasis on targeting cancer cells. Chitosan’s positively charged amino groups enable the formation of stable nanocomplexes with nucleic acids and facilitate interaction with cell membranes, thereby promoting cellular uptake. Despite these advantages, chitosan-based nanoparticles face challenges such as poor solubility at physiological pH, non-specificity for cancer cells, and inefficient endosomal escape, limiting their transfection efficiency. To address these limitations, researchers have focused on enhancing the functionality of chitosan nanoparticles. Strategies include improving stability, enhancing targeting specificity, increasing cellular uptake efficiency, and promoting endosomal escape. This review critically evaluates recent formulation approaches within these categories, aiming to provide insights into advancing chitosan-based gene delivery systems for improved efficacy, particularly in cancer therapy. Full article
(This article belongs to the Special Issue Cancer Gene Therapy with Non-Viral Nanocarriers, 2nd Edition)
Show Figures

Figure 1

34 pages, 5558 KiB  
Review
Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields
by Saeid Mezail Mawazi, Mohit Kumar, Noraini Ahmad, Yi Ge and Syed Mahmood
Polymers 2024, 16(10), 1351; https://doi.org/10.3390/polym16101351 - 10 May 2024
Cited by 96 | Viewed by 12603
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, [...] Read more.
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine. Full article
(This article belongs to the Special Issue Supramolecular Structures Derived from Biopolymers)
Show Figures

Figure 1

23 pages, 2902 KiB  
Review
Biopolymeric Nanocomposites for CO2 Capture
by Rosalia Maria Cigala, Giovanna De Luca, Ileana Ielo and Francesco Crea
Polymers 2024, 16(8), 1063; https://doi.org/10.3390/polym16081063 - 11 Apr 2024
Cited by 13 | Viewed by 3810
Abstract
Carbon dioxide (CO2) impacts the greenhouse effect significantly and results in global warming, prompting urgent attention to climate change concerns. In response, CO2 capture has emerged as a crucial process to capture carbon produced in industrial and power processes before [...] Read more.
Carbon dioxide (CO2) impacts the greenhouse effect significantly and results in global warming, prompting urgent attention to climate change concerns. In response, CO2 capture has emerged as a crucial process to capture carbon produced in industrial and power processes before its release into the atmosphere. The main aim of CO2 capture is to mitigate the emissions of greenhouse gas and reduce the anthropogenic impact on climate change. Biopolymer nanocomposites offer a promising avenue for CO2 capture due to their renewable nature. These composites consist of biopolymers derived from biological sources and nanofillers like nanoparticles and nanotubes, enhancing the properties of the composite. Various biopolymers like chitosan, cellulose, carrageenan, and others, possessing unique functional groups, can interact with CO2 molecules. Nanofillers are incorporated to improve mechanical, thermal, and sorption properties, with materials such as graphene, carbon nanotubes, and metallic nanoparticles enhancing surface area and porosity. The CO2 capture mechanism within biopolymer nanocomposites involves physical absorption, chemisorption, and physisorption, driven by functional groups like amino and hydroxyl groups in the biopolymer matrix. The integration of nanofillers further boosts CO2 adsorption capacity by increasing surface area and porosity. Numerous advanced materials, including biopolymeric derivatives like cellulose, alginate, and chitosan, are developed for CO2 capture technology, offering accessibility and cost-effectiveness. This semi-systematic literature review focuses on recent studies involving biopolymer-based materials for CO2 capture, providing an overview of composite materials enriched with nanomaterials, specifically based on cellulose, alginate, chitosan, and carrageenan; the choice of these biopolymers is dictated by the lack of a literature perspective focused on a currently relevant topic such as these biorenewable resources in the framework of carbon capture. The production and efficacy of biopolymer-based adsorbents and membranes are examined, shedding light on potential trends in global CO2 capture technology enhancement. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 4208 KiB  
Article
Chitosan Gel Hydroxypropyl Methylcellulose Membranes: A Novel Approach for the Remediation of Cadmium in Aqueous Solutions and Soils
by Guanyu Cai, Jing Sun, Fei Kang, Qilin Lv, Jin Liu, Jie Wang, Zideng Gao and Xueqin Ren
Coatings 2024, 14(4), 421; https://doi.org/10.3390/coatings14040421 - 31 Mar 2024
Viewed by 1999
Abstract
Cadmium (Cd2+) pollution in soil and water bodies is a significant environmental concern, necessitating effective remediation strategies. Traditional methods often fall short in efficiency, cost-effectiveness, and environmental sustainability. This study develops and evaluates the effectiveness of chitosan–gelatin–hydroxypropyl methylcellulose (CS-GEL-HPMC) membranes for [...] Read more.
Cadmium (Cd2+) pollution in soil and water bodies is a significant environmental concern, necessitating effective remediation strategies. Traditional methods often fall short in efficiency, cost-effectiveness, and environmental sustainability. This study develops and evaluates the effectiveness of chitosan–gelatin–hydroxypropyl methylcellulose (CS-GEL-HPMC) membranes for Cd2+ removal from polluted environments. CS-GEL-HPMC membranes were synthesized with varying HPMC concentrations. Their structural and morphological characteristics were analyzed using UV–visible absorption spectroscopy and FT-IR. The membranes’ stability across different pH levels and their morphological traits were assessed. The adsorption efficiency for Cd2+ ions was evaluated in both aqueous solutions and soil environments under varying conditions of pH, initial ion concentration, and contact time. The CS-GEL-HPMC membranes demonstrated significant structural integrity and stability, especially at higher HPMC concentrations. UV–visible and FT-IR analyses confirmed the successful integration of HPMC into the CS-GEL matrix. In aqueous solutions, the membranes exhibited efficient Cd2+ adsorption, with the best performance observed for the CS30-GEL30-HPMC40 membrane. The adsorption capacity was influenced by contact time, initial Cd2+ concentration, and pH. In soil treatments, the membranes effectively reduced Cd2+ concentrations, with higher membrane dosages yielding better results. The incorporation of additives like (hydroxyapatite) HAP, fly ash (FA), and cement further enhanced the remediation efficiency. In summary, CS-GEL-HPMC membranes, particularly when combined with additives, emerge as a promising, sustainable solution for Cd2+ remediation in both soil and water bodies. This study highlights the potential of biopolymer-based composites in environmental clean-up efforts, offering a novel approach that is both effective and eco-friendly. Full article
Show Figures

Figure 1

28 pages, 2689 KiB  
Review
Green Synthesis of Cation Exchange Membranes: A Review
by Stef Depuydt and Bart Van der Bruggen
Membranes 2024, 14(1), 23; https://doi.org/10.3390/membranes14010023 - 17 Jan 2024
Cited by 11 | Viewed by 6005
Abstract
Cation exchange membranes (CEMs) play a significant role in the transition to a more sustainable/green society. They are important components for applications such as water electrolysis, artificial photosynthesis, electrodialysis and fuel cells. Their synthesis, however, is far from being sustainable, affecting safety, health [...] Read more.
Cation exchange membranes (CEMs) play a significant role in the transition to a more sustainable/green society. They are important components for applications such as water electrolysis, artificial photosynthesis, electrodialysis and fuel cells. Their synthesis, however, is far from being sustainable, affecting safety, health and the environment. This review discusses and evaluates the possibilities of synthesizing CEMs that are more sustainable and green. First, the concepts of green and sustainable chemistry are discussed. Subsequently, this review discusses the fabrication of conventional perfluorinated CEMs and how they violate the green/sustainability principles, eventually leading to environmental and health incidents. Furthermore, the synthesis of green CEMs is presented by dividing the synthesis into three parts: sulfonation, material selection and solvent selection. Innovations in using gaseous SO3 or gas–liquid interfacial plasma technology can make the sulfonation process more sustainable. Regarding the selection of polymers, chitosan, cellulose, polylactic acid, alginate, carrageenan and cellulose are promising alternatives to fossil fuel-based polymers. Finally, water is the most sustainable solvent and many biopolymers are soluble in it. For other polymers, there are a limited number of studies using green solvents. Promising solvents are found back in other membrane, such as dimethyl sulfoxide, Cyrene™, Rhodiasolv® PolarClean, TamiSolve NxG and γ-valerolactone. Full article
Show Figures

Graphical abstract

18 pages, 35282 KiB  
Article
Synthesis and Characterization of Polymer-Based Membranes for Methotrexate Drug Delivery
by Ionela-Amalia Bradu, Titus Vlase, Mădălin Bunoiu, Mădălina Grădinaru, Alexandru Pahomi, Dorothea Bajas, Mihaela Maria Budiul and Gabriela Vlase
Polymers 2023, 15(21), 4325; https://doi.org/10.3390/polym15214325 - 4 Nov 2023
Cited by 1 | Viewed by 1957
Abstract
Methotrexate or amethopterin or 4-amino-N10-methyl pteroylglutamic acid is used for treating autoimmune diseases, as well as certain malignancies. Drug delivery systems, which are based on biopolymers, can be developed to improve the therapeutic and pharmacological properties of topically administered drugs. Biopolymers improve the [...] Read more.
Methotrexate or amethopterin or 4-amino-N10-methyl pteroylglutamic acid is used for treating autoimmune diseases, as well as certain malignancies. Drug delivery systems, which are based on biopolymers, can be developed to improve the therapeutic and pharmacological properties of topically administered drugs. Biopolymers improve the therapeutic effect of drugs, mainly by improving their biodistribution and modulating drug release. This study presents the synthesis of membranes based on anionic polysaccharides and cationic polysaccharides for transdermal delivery of the active ingredient methotrexate, as well as a compatibility study between methotrexate and each of the components used in the prepared membranes. The obtained membranes based on different marine polysaccharides, namely κ-carrageenan and chitosan, for the release of the active ingredient methotrexate were characterized using techniques such as TG, FTIR, UV–Vis spectrophotometry, FTIR microscopy, water absorption capacity, water vapor permeability, and biodegradation rate. Following the studies, the membranes suitable for the transdermal release of the active substance were validated. Full article
(This article belongs to the Special Issue Polymers for Drug Release and Drug Delivery)
Show Figures

Graphical abstract

22 pages, 5129 KiB  
Article
Mixed Matrix Membranes Using Porous Organic Polymers (POPs)—Influence of Textural Properties on CO2/CH4 Separation
by Laura Matesanz-Niño, Jorge Moranchel-Pérez, Cristina Álvarez, Ángel E. Lozano and Clara Casado-Coterillo
Polymers 2023, 15(20), 4135; https://doi.org/10.3390/polym15204135 - 18 Oct 2023
Cited by 6 | Viewed by 2875
Abstract
Mixed matrix membranes (MMMs) provide the opportunity to test new porous materials in challenging applications. A series of low-cost porous organic polymer (POPs) networks, possessing tunable porosity and high CO2 uptake, has been obtained by aromatic electrophilic substitution reactions of biphenyl, 9,10-dihydro-9,10-dimethyl-9,10-ethanoanthracene [...] Read more.
Mixed matrix membranes (MMMs) provide the opportunity to test new porous materials in challenging applications. A series of low-cost porous organic polymer (POPs) networks, possessing tunable porosity and high CO2 uptake, has been obtained by aromatic electrophilic substitution reactions of biphenyl, 9,10-dihydro-9,10-dimethyl-9,10-ethanoanthracene (DMDHA), triptycene and 1,3,5-triphenylbenzene (135TPB) with dimethoxymethane (DMM). These materials have been characterized by FTIR, 13C NMR, WAXD, TGA, SEM, and CO2 uptake. Finally, different loadings of these POPs have been introduced into Matrimid, Pebax, and chitosan:polyvinyl alcohol blends as polymeric matrices to prepare MMMs. The CO2/CH4 separation performance of these MMMs has been evaluated by single and mixed gas permeation experiments at 4 bar and room temperature. The effect of the porosity of the porous fillers on the membrane separation behavior and the compatibility between them and the different polymer matrices on membrane design and fabrication has been studied by Maxwell model equations as a function of the gas permeability of the pure polymers, porosity, and loading of the fillers in the MMMs. Although the gas transport properties showed an increasing deviation from ideal Maxwell equation prediction with increasing porosity of the POP fillers and increasing hydrophilicity of the polymer matrices, the behavior of biopolymer-based CS:PVA MMMs approached that of Pebax-based MMMs, giving scope to not only new filler materials but also sustainable polymer choices to find a place in membrane technology. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

19 pages, 5806 KiB  
Article
Investigating the Sulfonated Chitosan/Polyvinylidene Fluoride-Based Proton Exchange Membrane with fSiO2 as Filler in Microbial Fuel Cells
by Gowthami Palanisamy, Ajmal P. Muhammed, Sadhasivam Thangarasu and Tae Hwan Oh
Membranes 2023, 13(9), 758; https://doi.org/10.3390/membranes13090758 - 25 Aug 2023
Cited by 16 | Viewed by 2601
Abstract
Chitosan (CS), a promising potential biopolymer with exquisite biocompatibility, economic viability, hydrophilicity, and chemical modifications, has drawn interest as an alternative material for proton exchange membrane (PEM) fabrication. However, CS in its original form exhibited low proton conductivity and mechanical stability, restricting its [...] Read more.
Chitosan (CS), a promising potential biopolymer with exquisite biocompatibility, economic viability, hydrophilicity, and chemical modifications, has drawn interest as an alternative material for proton exchange membrane (PEM) fabrication. However, CS in its original form exhibited low proton conductivity and mechanical stability, restricting its usage in PEM development. In this work, chitosan was functionalized (sulfonic acid (-SO3H) groups)) to enhance proton conductivity. The sulfonated chitosan (sCS) was blended with polyvinylidene fluoride (PVDF) polymer, along with the incorporation of functionalized SiO2 (–OH groups), for fabricating chitosan-based composite proton exchange membranes to enhance microbial fuel cell (MFC) performances. The results show that adding functionalized inorganic fillers (fSiO2) into the membrane enhances the mechanical, thermal, and anti-biofouling behavior. From the results, the PVDF/sCS/fSiO2 composite membrane exhibited enhanced proton conductivity 1.0644 × 10−2 S cm−1 at room temperature and increased IEC and mechanical and chemical stability. Furthermore, this study presents a revolutionary way to generate environmentally friendly natural polymer-based membrane materials for developing PEM candidates for enhanced MFC performances in generating bioelectricity and wastewater treatment. Full article
(This article belongs to the Special Issue Proton-Conducting Membranes - 2nd Edition)
Show Figures

Figure 1

Back to TopTop