Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = chiral quark model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 679 KB  
Article
Study of Singly Charmed Dibaryons in Quark Model
by Yuxuan Du, Yao Cui, Zhiyun Tan, Jin Tao, Hongxia Huang and Jialun Ping
Universe 2025, 11(10), 351; https://doi.org/10.3390/universe11100351 - 20 Oct 2025
Viewed by 193
Abstract
We perform a systematic investigation of low-lying singly charmed dibaryon systems with J=1, I=0,12,1,32,2,52 and strangeness [...] Read more.
We perform a systematic investigation of low-lying singly charmed dibaryon systems with J=1, I=0,12,1,32,2,52 and strangeness S=1,2,3,4,5 in the chiral quark model. According to the analysis of effective potentials, dibaryon systems characterized by lower isospin and magnitude of strangeness exhibit stronger attractive interactions, which may enhance their tendency to form bound states. Experimental efforts may therefore prioritize the search for such configurations. The bound-state calculation results indicate that we have obtained some single-channel bound states, which are ΣΣc, ΣΣc*, Σ*Σc, Σ*Σc* with I=0,S=1; ΣcΔ, Σc*Δ with I=12,S=0; ΣΣc with I=1,S=1; ΣcΔ with I=32,S=0; and Ξ*Σc* with I=32,S=2. However, these states can decay through open channels. We have listed both these single-channel bound states and their corresponding decay channels in this work for experimental reference and search. In the future, we need to study the scattering processes of the open channels further to confirm whether these states are resonance states. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

11 pages, 285 KB  
Article
Diquark Study in Quark Model
by Xinmei Zhu, Hongxia Huang and Jialun Ping
Particles 2025, 8(4), 83; https://doi.org/10.3390/particles8040083 - 2 Oct 2025
Viewed by 281
Abstract
To investigate diquark correlation in baryons, the baryon spectra with different light–heavy quark combinations are calculated using Gaussian expansion method within both the naive quark model and the chiral quark model. By computing the diquark energies and separations between any two quarks in [...] Read more.
To investigate diquark correlation in baryons, the baryon spectra with different light–heavy quark combinations are calculated using Gaussian expansion method within both the naive quark model and the chiral quark model. By computing the diquark energies and separations between any two quarks in baryons, we analyze the diquark effect in the ud-q/Q, us-Q, ss-q/Q, and QQ-q/Q systems (where q=u,d, or s; Q=c,b). The results show that diquark correlations exist in baryons. In particular, for qq-Q and QQ-q systems, the same type of diquark exhibits nearly identical energy and size across different baryons. In the orbital ground states of baryons, scalar–isoscalar diquarks have lower energy and a smaller size compared to vector–isovector diquark, which qualifies them as “good diquarks”. In QQ-q systems, a larger mass of Q leads to a smaller diquark separation and a more pronounced diquark effect. In qq-Q systems, the separation between the two light quarks remains larger than that between a light and a heavy quark, indicating that the internal structure of such diquarks must be taken into account. A comparison between the naive quark model and the chiral quark model reveals that the introduction of meson exchange slightly increases the diquark size in most systems. Full article
(This article belongs to the Special Issue Strong QCD and Hadron Structure)
12 pages, 366 KB  
Article
Stability Analysis of Magnetized Quark Matter in Tsallis Statistics
by Jia Zhang and Xin-Jian Wen
Universe 2025, 11(9), 312; https://doi.org/10.3390/universe11090312 - 12 Sep 2025
Viewed by 511
Abstract
In this work, we employ the nonextensive Nambu–Jona-Lasinio model to analyze the thermodynamic properties of magnetized quark matter. The nonequilibrium state is described in Tsallis distribution by a dimensionless parameter q. We find that within a reasonable temperature range, the system undergoes [...] Read more.
In this work, we employ the nonextensive Nambu–Jona-Lasinio model to analyze the thermodynamic properties of magnetized quark matter. The nonequilibrium state is described in Tsallis distribution by a dimensionless parameter q. We find that within a reasonable temperature range, the system undergoes a crossover transition at the critical chemical potential, which is decreased by the increase of both the temperature and q value. In contrast to the enhanced stability by magnetic field in Boltzmann statistics, it is found that the stability of chiral restored matter in Tsallis statistics would be reduced by an increase of the magnetic field. Conversely, the increase of the q would enhance the stability of quark matter. Finally, we display the different magnetic effects on the stability in the chiral broken and restored regions. Full article
Show Figures

Figure 1

15 pages, 408 KB  
Article
Pseudoscalar Meson Parton Distributions Within Gauge-Invariant Nonlocal Chiral Quark Model
by Parada T. P. Hutauruk
Symmetry 2025, 17(6), 971; https://doi.org/10.3390/sym17060971 - 19 Jun 2025
Viewed by 482
Abstract
In this paper, I investigate the gluon distributions for the kaon and pion, as well as the improvement of the valence-quark distributions, in the framework of the gauge-invariant nonlocal chiral quark model (NLχQM), where the momentum dependence is taken into account. [...] Read more.
In this paper, I investigate the gluon distributions for the kaon and pion, as well as the improvement of the valence-quark distributions, in the framework of the gauge-invariant nonlocal chiral quark model (NLχQM), where the momentum dependence is taken into account. I then compute the gluon distributions for the kaon and pion that are dynamically generated from the splitting functions in the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) QCD evolution. In a comparison with the recent lattice QCD and JAM global analysis results, it is found that the results for the pion gluon distributions at Q= 2 GeV, which is set based on the lattice QCD, have a good agreement with the recent lattice QCD data; this is followed up with the up valence-quark distribution of the pion results at Q= 5.2 GeV in comparison with the reanalysis experimental data. The prediction for the kaon gluon distributions at Q=2 GeV is consistent with the recent lattice QCD calculation. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

57 pages, 2571 KB  
Review
Heavy–Heavy and Heavy–Light Mesons in Cold Nuclear Matter
by J. J. Cobos-Martínez, Guilherme N. Zeminiani and Kazuo Tsushima
Symmetry 2025, 17(5), 787; https://doi.org/10.3390/sym17050787 - 19 May 2025
Viewed by 812
Abstract
We review the in-medium modifications of effective masses (Lorentz scalar potentials or phenomenon of mass shift) of the heavy–heavy and heavy–light mesons in symmetric nuclear matter and their nuclear bound states. We use a combined approach with the quark–meson coupling (QMC) model and [...] Read more.
We review the in-medium modifications of effective masses (Lorentz scalar potentials or phenomenon of mass shift) of the heavy–heavy and heavy–light mesons in symmetric nuclear matter and their nuclear bound states. We use a combined approach with the quark–meson coupling (QMC) model and an effective Lagrangian. As demonstrated by the cases of pionic and kaonic atoms, studies of the meson–nucleus bound state can provide us with important information on chiral symmetry in a dense nuclear medium. In this review, we examine the mesons, K,K,D,D,B,B,η,η,ϕ,ηc,J/ψ,ηb,Υ, and Bc, where our emphasis is on the heavy mesons. In addition, we also present some new results for the Bc-nucleus bound states. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

23 pages, 10902 KB  
Article
Bayesian Analysis of Hybrid Neutron Star EOS Constraints Within an Instantaneous Nonlocal Chiral Quark Matter Model
by Alexander Ayriyan, David Blaschke, Juan Pablo Carlomagno, Gustavo A. Contrera and Ana Gabriela Grunfeld
Universe 2025, 11(5), 141; https://doi.org/10.3390/universe11050141 - 29 Apr 2025
Cited by 12 | Viewed by 1248
Abstract
We present a physics-informed Bayesian analysis of equation of state constraints using observational data for masses, radii and tidal deformability of pulsars and a generic class of hybrid neutron star equation of state with color superconducting quark matter on the basis of a [...] Read more.
We present a physics-informed Bayesian analysis of equation of state constraints using observational data for masses, radii and tidal deformability of pulsars and a generic class of hybrid neutron star equation of state with color superconducting quark matter on the basis of a recently developed nonlocal chiral quark model. The nuclear matter phase is described within a relativistic density functional model of the DD2 class and the phase transition is obtained by a Maxwell construction. We find the region in the two-dimensional parameter space spanned by the vector meson coupling and the scalar diquark coupling, where three conditions are fulfilled: (1) the Maxwell construction can be performed, (2) the maximum mass of the hybrid neutron star is not smaller than 2.0 M and (3) the onset density of the phase transition is not below the nuclear saturation density n0=0.15 fm−3. The result of this study shows that the favorable neutron star equation of state has low onset masses for the occurrence of a color superconducting quark matter core between 0.5–0.7 M and maximum masses in the range 2.15–2.22 M. In the typical mass range of 1.2–2.0 M, the radii of these stars are between 11.9 and 12.4 km, almost independent of the mass. In principle, hybrid stars would allow for larger maximum masses than provided by the hadronic reference equation of state. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

12 pages, 370 KB  
Article
Explanation of the Mass Pattern of the Low-Lying Scalar Nonet
by Mihail Chizhov, Emanuil Chizhov, Momchil Naydenov and Daniela Kirilova
Symmetry 2025, 17(4), 600; https://doi.org/10.3390/sym17040600 - 15 Apr 2025
Viewed by 412
Abstract
The aim of this work is to propose an explanation of the inverse mass hierarchy of the low-lying nonet of the scalar mesons in the framework of the massless Nambu–Jona-Lasinio UR(3)×UL(3) quark model. [...] Read more.
The aim of this work is to propose an explanation of the inverse mass hierarchy of the low-lying nonet of the scalar mesons in the framework of the massless Nambu–Jona-Lasinio UR(3)×UL(3) quark model. The proposed explanation is based on symmetry principles. The collective meson states are described via quark–antiquark pairs, whose condensates lead simultaneously to spontaneous breaking of chiral and flavour symmetry. It is shown that, due to flavour symmetry breaking, two iso-doublets of K0*(700) mesons play the role of Goldstone bosons. It is also proven that there exists a solution with degenerate masses of the a0(980) and f0(980) mesons and a zero mass of the f0(500) meson. Full article
(This article belongs to the Special Issue Symmetry in Hadron Physics)
Show Figures

Figure 1

11 pages, 1117 KB  
Article
The Inhomogeneous Road to Chiral Symmetry Breaking: A Ginzburg–Landau–Langevin Analysis
by Theo F. Motta and Gastão Krein
Symmetry 2025, 17(4), 568; https://doi.org/10.3390/sym17040568 - 9 Apr 2025
Viewed by 525
Abstract
We investigate the time evolution of the quark condensate toward a chiral symmetry broken phase in hot and dense quark matter using a field-theoretic quark model with nonlocal chiral-invariant four-fermion coupling. By purposely selecting a parameter set in which inhomogeneous phases are energetically [...] Read more.
We investigate the time evolution of the quark condensate toward a chiral symmetry broken phase in hot and dense quark matter using a field-theoretic quark model with nonlocal chiral-invariant four-fermion coupling. By purposely selecting a parameter set in which inhomogeneous phases are energetically disfavored, we nonetheless observe the emergence of metastable patterned configurations that appear to persist for remarkably long timescales. These findings suggest that even when not fully stable, inhomogeneous phases may play a significant role in the dynamics of chiral symmetry breaking and restoration. To gain deeper insight into these phenomena, we also analyze the impact of the dimensionality of coordinate space on both the formation and stability of inhomogeneous chiral condensates. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

22 pages, 771 KB  
Article
Effects of Quark Core Sizes of Baryons in Neutron Star Matter
by Wolfgang Bentz and Ian C. Cloët
Symmetry 2025, 17(4), 505; https://doi.org/10.3390/sym17040505 - 26 Mar 2025
Viewed by 599
Abstract
We describe the quark substructure of hadrons and the equation of state of high-density neutron star matter by using the Nambu–Jona-Lasinio (NJL) model, which is an effective quark theory based on QCD. The interaction between quarks fully respects the chiral and flavor symmetries. [...] Read more.
We describe the quark substructure of hadrons and the equation of state of high-density neutron star matter by using the Nambu–Jona-Lasinio (NJL) model, which is an effective quark theory based on QCD. The interaction between quarks fully respects the chiral and flavor symmetries. Guided by the success of various low-energy theorems, we assume that the explicit breaking of these symmetries occurs only via the current quark masses, and all other symmetry breakings are of dynamical nature. In order to take into account the effects of the finite quark core sizes of the baryons on the equation of state, we make use of an excluded volume framework that respects thermodynamic consistency. The effects generated by the swelling quark cores generally act repulsively and lead to an increase in the pressure with increasing baryon density. On the other hand, in neutron star matter, these effects also lead to a decrease in the density window where hyperons appear because it becomes energetically more favorable to convert the faster moving nucleons into hyperons. Our quantitative analysis shows that the net effect of the excluded volume is too small to solve the long-standing “hyperon puzzle”, which is posed by the large observed masses of neutron stars. Thus, the puzzle persists in a relativistic effective quark theory which takes into account the short-range repulsion between baryons caused by their finite and swelling quark core sizes in a phenomenological way. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

25 pages, 717 KB  
Review
Baryon Construction with η Meson Field
by Fan Lin and Yong-Liang Ma
Symmetry 2025, 17(4), 477; https://doi.org/10.3390/sym17040477 - 21 Mar 2025
Cited by 1 | Viewed by 711
Abstract
In the low-energy regime, baryons with Nf2 have long been constructed as skyrmions or through bag models, but such constructions for Nf=1 are hindered by the trivial topological structure of the meson field. Recent proposals suggest that [...] Read more.
In the low-energy regime, baryons with Nf2 have long been constructed as skyrmions or through bag models, but such constructions for Nf=1 are hindered by the trivial topological structure of the meson field. Recent proposals suggest that one-flavor baryons can instead be interpreted as quantum Hall droplets on the η domain wall, providing a potential link to quark–hadron continuity at high density. In retrospect, the qualitative or semi-qualitative construction of one-flavor baryons on the η domain wall reveals that these baryons can be described as quantum Hall droplets, resembling topological solitons akin to skyrmions. Using an effective theory on the η domain wall, which is conjectured to be the Chern–Simons–Higgs theory, it is discussed that its vortex solution with unit baryon numbers naturally has a spin of Nc/2, and thus can be interpreted as a baryon or multi-baryon structure. The particle–vortex duality suggests that quarks carry a fractional topological charge of 1/Nc and obey fractional statistics. In terms of chiral bag models, confinement can be attributed to the monopoles confined within the bag, and the vector meson fields on the bag surface are essential for ensuring the correct baryon number in the chiral bag framework, thereby providing deeper insights into baryons as non-trivial topological structures of the meson field. In this paper, we review the progress in this development, with a special focus on the η domain wall dynamics. Naive extensions to Nf2 are also discussed. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 323 KB  
Article
Derivation of Meson Masses in SU(3) and SU(4) Extended Linear Sigma Model at Finite Temperature
by Abdel Nasser Tawfik, Azar I. Ahmadov, Alexandra Friesen, Yuriy Kalinovsky, Alexey Aparin and Mahmoud Hanafy
Particles 2025, 8(1), 9; https://doi.org/10.3390/particles8010009 - 22 Jan 2025
Viewed by 1426
Abstract
The present study focused on the mesonic potential contributions to the Lagrangian of the extended linear sigma model (eLSM) for scalar and pseudoscalar meson fields across various quark flavors. The present study focused on the low-energy phenomenology associated with quantum chromodynamics (QCD), where [...] Read more.
The present study focused on the mesonic potential contributions to the Lagrangian of the extended linear sigma model (eLSM) for scalar and pseudoscalar meson fields across various quark flavors. The present study focused on the low-energy phenomenology associated with quantum chromodynamics (QCD), where mesons and their interactions serve as the pertinent degrees of freedom, rather than the fundamental constituents of quarks and gluons. Given that SU(4) configurations are completely based on SU(3) configurations, the possible relationships between meson states in SU(3) and those in SU(4) were explored at finite temperature. Meson states, which are defined by distinct chiral properties, were grouped according to their orbital angular momentum J, parity P, and charge conjugation C. Consequently, this organization yielded scalar mesons with quantum numbers JPC=0++, pseudoscalar mesons with JPC=0+, vector mesons with JPC=1, and axial vector mesons with JPC=1++. We accomplished the derivation of analytical expressions for a total of seventeen noncharmed meson states and twenty-nine charmed meson states so that an analytical comparison of the noncharmed and charmed meson states at different temperatures became feasible and the SU(3) and SU(4) configurations could be analytically estimated. Full article
(This article belongs to the Special Issue Infinite and Finite Nuclear Matter (INFINUM))
26 pages, 596 KB  
Review
Axial-Vector and Tensor Spin Polarization and Chiral Restoration in Quark Matter
by Tomoyuki Maruyama and Toshitaka Tatsumi
Symmetry 2024, 16(12), 1642; https://doi.org/10.3390/sym16121642 - 11 Dec 2024
Viewed by 1013
Abstract
We study spontaneous the spin polarization of quark matter with flavor SU(2) symmetry at zero temperature in the NJL model. In a relativistic framework, there are two types of spin–spin interactions: axial vector (AV) and tensor (T), which accordingly [...] Read more.
We study spontaneous the spin polarization of quark matter with flavor SU(2) symmetry at zero temperature in the NJL model. In a relativistic framework, there are two types of spin–spin interactions: axial vector (AV) and tensor (T), which accordingly give rise to different types of spin-polarized materials. When the spin–spin interaction is sufficiently strong, the spin-polarized phase emerges within a specific density region. As the spin–spin interaction becomes stronger, this phase extends over a higher-density region beyond the critical density of chiral restoration in normal quark matter. We show that the spin-polarized phase leads to another kind of spontaneous chiral symmetry breaking phase. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

12 pages, 337 KB  
Article
The Effective Baryon–Baryon Potential with Configuration Mixing in Quark Models
by Xinmei Zhu, Hongxia Huang and Jialun Ping
Universe 2024, 10(10), 382; https://doi.org/10.3390/universe10100382 - 29 Sep 2024
Viewed by 949
Abstract
The effective baryon–baryon potential can be derived in the framework of the quark model. The configurations with different quark spatial distributions are mixed naturally when two baryons get close. The effect of configuration mixing in the chiral quark model (ChQM) is studied by [...] Read more.
The effective baryon–baryon potential can be derived in the framework of the quark model. The configurations with different quark spatial distributions are mixed naturally when two baryons get close. The effect of configuration mixing in the chiral quark model (ChQM) is studied by calculating the effective potential between two non-strange baryons in the channels IJ=01,10 and 03. For comparison, the results of the color screening model (CSM) are also presented. Generally, configuration mixing will lower the potential when the separation between two baryons is small, and its effect will be ignorable when the separation becomes large. Due to the screened color confinement, the effect of configuration mixing is rather large, which leads to stronger intermediate-range attraction in the CSM, while the effect of configuration mixing is small in the ChQM due to the quadratic confinement and σ-meson exchange, which is responsible for the intermediate-range attraction. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

16 pages, 2282 KB  
Article
Hybrid Isentropic Twin Stars
by Juan Pablo Carlomagno, Gustavo A. Contrera, Ana Gabriela Grunfeld and David Blaschke
Universe 2024, 10(9), 336; https://doi.org/10.3390/universe10090336 - 23 Aug 2024
Cited by 7 | Viewed by 1083
Abstract
We present a study of hybrid neutron stars with color superconducting quark matter cores at a finite temperature that results in sequences of stars with constant entropy per baryon, s/nB=const. For the quark matter equation of state, [...] Read more.
We present a study of hybrid neutron stars with color superconducting quark matter cores at a finite temperature that results in sequences of stars with constant entropy per baryon, s/nB=const. For the quark matter equation of state, we employ a recently developed nonlocal chiral quark model, while nuclear matter is described with a relativistic density functional model of the DD2 class. The phase transition is obtained through a Maxwell construction under isothermal conditions. We find that traversing the mixed phase on a trajectory at low s/nB2 in the phase diagram shows a heating effect, while at larger s/nB the temperature drops. This behavior may be attributed to the presence of a color superconducting quark matter phase at low temperatures and the melting of the diquark condensate which restores the normal quark matter phase at higher temperatures. While the isentropic hybrid star branch at low s/nB2 is connected to the neutron star branch, it becomes disconnected at higher entropy per baryon so that the “thermal twin” phenomenon is observed. We find that the transition from connected to disconnected hybrid star sequences may be estimated with the Seidov criterion for the difference in energy densities. The radii and masses at the onset of deconfinement exhibit a linear relationship and thus define a critical compactness of the isentropic star configuration for which the transition occurs and which, for large enough s/nB2 values, is accompanied by instability. The results of this study may be of relevance for uncovering the conditions for the supernova explodability of massive blue supergiant stars using the quark deconfinement mechanism. The accretion-induced deconfinement transition with thermal twin formation may contribute to explaining the origin of eccentric orbits in some binary systems and the origin of isolated millisecond pulsars. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

10 pages, 267 KB  
Article
Estimate for the Neutrino Magnetic Moment from Pulsar Kick Velocities Induced at the Birth of Strange Quark Matter Neutron Stars
by Alejandro Ayala, Santiago Bernal-Langarica and Daryel Manreza-Paret
Universe 2024, 10(7), 301; https://doi.org/10.3390/universe10070301 - 20 Jul 2024
Cited by 4 | Viewed by 1392
Abstract
We estimate the magnetic moment of electron neutrinos by computing the neutrino chirality flip rate that can occur in the core of a strange quark matter neutron star at birth. We show that this process allows neutrinos to anisotropically escape, thus inducing the [...] Read more.
We estimate the magnetic moment of electron neutrinos by computing the neutrino chirality flip rate that can occur in the core of a strange quark matter neutron star at birth. We show that this process allows neutrinos to anisotropically escape, thus inducing the star kick velocity. Although the flip from left- to right-handed neutrinos is assumed to happen in equilibrium, the no-go theorem does not apply because right-handed neutrinos do not interact with matter and the reverse process does not happen, producing the loss of detailed balance. For simplicity, we model the star core as consisting of strange quark matter. We find that even when the energy released in right-handed neutrinos is a small fraction of the total energy released in left-handed neutrinos, the process describes kick velocities for natal conditions, which are consistent with the observed ones and span the correct range of radii, temperatures and chemical potentials for typical magnetic field intensities. The neutrino magnetic moment is estimated to be μν3.6×1018μB, where μB is the Bohr magneton. This value is more stringent than the bound found for massive neutrinos in a minimal extension of the standard model. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Back to TopTop