Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = chemotherapy-induced nephrotoxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 703 KiB  
Review
A Practical Narrative Review on the Role of Magnesium in Cancer Therapy
by Daniela Sambataro, Giuseppina Scandurra, Linda Scarpello, Vittorio Gebbia, Ligia J. Dominguez and Maria Rosaria Valerio
Nutrients 2025, 17(14), 2272; https://doi.org/10.3390/nu17142272 - 9 Jul 2025
Viewed by 889
Abstract
Magnesium (Mg2+) has gained oncologists’ attention due to its wide range of biological functions and frequent use as a complementary or integrative agent. This review outlines Mg’s actions, its complex role in carcinogenesis and tumor risk, and clinical issues. Mg2+ [...] Read more.
Magnesium (Mg2+) has gained oncologists’ attention due to its wide range of biological functions and frequent use as a complementary or integrative agent. This review outlines Mg’s actions, its complex role in carcinogenesis and tumor risk, and clinical issues. Mg2+ is essential in numerous biochemical processes, including adenosine triphosphate production, cellular signal transduction, DNA, RNA and protein synthesis, and bone formation. Pertinent full-text articles were thoroughly examined, and the most relevant ones were selected for inclusion in this review. There is conflicting scientific evidence about the relationship between Mg2+ changes and cancer risk, apart from colorectal cancer. Chronic Mg2+ deficiency leads to immune dysfunctions and enhanced baseline inflammation associated with oxidative stress related to various age-associated morbidities and cancer. On the other hand, Mg2+ deficiency is associated with drug or chemotherapy-related hypomagnesemia, postoperative pain, cachexia, opioid-induced constipation, normal tissue protection from radiation damage, and prevention of nephrotoxicity. A balanced diet usually provides sufficient Mg2+, but supplementation may be necessary in some clinical settings. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

28 pages, 20644 KiB  
Article
Mechanisms of Cisplatin-Induced Acute Kidney Injury: The Role of NRF2 in Mitochondrial Dysfunction and Metabolic Reprogramming
by Jihan Liu, Yiming Wang, Panshuang Qiao, Yi Ying, Simei Lin, Feng Lu, Cai Gao, Min Li, Baoxue Yang and Hong Zhou
Antioxidants 2025, 14(7), 775; https://doi.org/10.3390/antiox14070775 - 24 Jun 2025
Viewed by 740
Abstract
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally [...] Read more.
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally injected with 20 mg/kg cisplatin to establish an AKI model. Serum creatinine, urea nitrogen, and tubular injury biomarkers (NGAL, KIM-1) progressively increased, indicating kidney dysfunction. Mitochondrial ATP levels significantly decreased, along with reduced mitochondrial fission and fusion, suggesting mitochondrial dysfunction. Increased oxidases and reduced antioxidants indicated redox imbalance, and metabolic reprogramming was observed, with lipid deposition, impaired fatty acid oxidation (FAO), and enhanced glycolysis in proximal tubular epithelial cells (PTECs). Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcriptional regulator of redox homeostasis and mitochondrial function. We found NRF2 levels increased early in AKI, followed by a decrease in vivo and in vitro, suggesting activation in the stress response. Nfe2l2 knockout mice showed aggravated kidney injury, characterized by worsened kidney function and histopathological damage. Mechanistically, Nfe2l2 knockout resulted in redox imbalance, reduced ATP synthesis, mitochondrial dysfunction and metabolic dysregulation. Furthermore, we activated NRF2 using dimethyl fumarate (DMF), observing a reduction in kidney damage and lipid deposition in mice. In conclusion, activating NRF2-dependent antioxidant pathways plays a crucial role in protecting against cisplatin-induced AKI. NRF2 may serve as a potential target for developing therapeutic strategies to prevent cisplatin nephrotoxicity. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

18 pages, 3463 KiB  
Review
Advances in Isorhamnetin Treatment of Malignant Tumors: Mechanisms and Applications
by Chen Mei, Ying Liu, Xueze Lyu, Zhaoling Jiang, Zhenyi Liu, Yan Zhi, Xiaolong Xu and Hongjun Wang
Nutrients 2025, 17(11), 1853; https://doi.org/10.3390/nu17111853 - 29 May 2025
Cited by 1 | Viewed by 757
Abstract
Isorhamnetin (ISO) is a natural flavonoid compound that has become a main research topic in recent years due to its multitargeted antitumor properties. In this paper, we systematically review the molecular basis of the inhibition of malignant tumors by ISO, including through the [...] Read more.
Isorhamnetin (ISO) is a natural flavonoid compound that has become a main research topic in recent years due to its multitargeted antitumor properties. In this paper, we systematically review the molecular basis of the inhibition of malignant tumors by ISO, including through the regulation of the cell cycle, PI3K/AKT/mTOR pathway, MAPK pathway, apoptosis/autophagy-related pathways, and the tumor microenvironment. We also explore its synergistic effects with chemotherapy/targeted therapies and its potential for clinical translation. Experimental studies have shown that ISO can not only directly inhibit tumor proliferation by inducing tumor cell cycle arrest, mitochondria-dependent apoptosis, and endoplasmic reticulum stress, but also enhance antitumor immune responses by regulating the immune microenvironment. Pharmacokinetic studies have shown that novel delivery systems, such as nano-formulations, significantly enhance the bioavailability of ISO. Notably, ISO has demonstrated unique advantages in attenuating the nephrotoxicity of chemotherapeutic agents, protecting normal cells, and reversing tumor resistance. However, the optimal dosing regimen, dose–effect relationship, and cross-species applicability need to be further validated by large-scale preclinical animal experiments and clinical trials. This paper provides a theoretical basis for the development and application of ISO for the treatment of malignant tumors and highlights its potential value in animal models. Full article
Show Figures

Graphical abstract

24 pages, 2444 KiB  
Review
The CXCL1-CXCR2 Axis as a Component of Therapy Resistance, a Source of Side Effects in Cancer Treatment, and a Therapeutic Target
by Jan Korbecki, Mateusz Bosiacki, Maciej Pilarczyk, Marcin Kot, Piotr Defort, Ireneusz Walaszek, Dariusz Chlubek and Irena Baranowska-Bosiacka
Cancers 2025, 17(10), 1674; https://doi.org/10.3390/cancers17101674 - 15 May 2025
Viewed by 1240
Abstract
CXCL1 (Gro-α, MGSA) is a chemokine functionally similar to CXCL8/IL-8, as both activate the same receptor, CXCR2. CXCL1 levels are frequently elevated in tumors compared to healthy tissue, where they play a key role in promoting cancer cell migration, angiogenesis, and neutrophil recruitment. [...] Read more.
CXCL1 (Gro-α, MGSA) is a chemokine functionally similar to CXCL8/IL-8, as both activate the same receptor, CXCR2. CXCL1 levels are frequently elevated in tumors compared to healthy tissue, where they play a key role in promoting cancer cell migration, angiogenesis, and neutrophil recruitment. While the involvement of CXCL1 in tumor progression is well established, its relevance to cancer therapy remains underexplored. This review examines the therapeutic potential of targeting CXCL1 and its receptor, CXCR2, in cancer treatment. It discusses anti-CXCL1 antibodies and CXCR2 antagonists, including AZD5069, SB225002, SCH-479833, navarixin/SCH-527123, ladarixin/DF2156A, and reparixin, as well as strategies to enhance CXCR2 expression in lymphocytes during adoptive cell therapy to improve immunotherapy outcomes. Particular attention is given to the role of CXCL1 in treatment resistance, including resistance to chemotherapy, radiotherapy, and anti-angiogenic therapy. Cancer therapies often upregulate CXCL1 expression, which in turn drives treatment resistance. Additionally, this review explores the contribution of CXCL1 to therapy-induced side effects, such as chemotherapy-induced metastasis, neuropathy, nephrotoxicity, diarrhea, and cardiotoxicity. CXCR2 inhibitors are well tolerated by patients in clinical trials. However, the limited number of studies evaluating these agents in combination with standard chemotherapy precludes any definitive conclusions. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

11 pages, 4452 KiB  
Article
The Frequency and Risk Factors of Acute Kidney Injury in Children with Oncological Diseases: A Single-Center Study in Bulgaria
by Petya Markova, Antoniya Yaneva, Stoyan Markov, Mariya Spasova and Neofit Spasov
Children 2025, 12(5), 540; https://doi.org/10.3390/children12050540 - 23 Apr 2025
Viewed by 411
Abstract
Background: Progress in the treatment of childhood oncological diseases has led to the prolonged survival of patients with this severe diagnosis. On the other hand, the prolonged chemotherapy courses that achieve this outcome also bring a number of complications, with acute kidney injury [...] Read more.
Background: Progress in the treatment of childhood oncological diseases has led to the prolonged survival of patients with this severe diagnosis. On the other hand, the prolonged chemotherapy courses that achieve this outcome also bring a number of complications, with acute kidney injury being one of them. Its occurrence in patients not only affects their quality of life but also prolongs and increases the cost of hospitalization, burdens the body with additional treatment, and impacts the ability to manage the underlying disease. Aim: The aim of this study is to determine the frequency of acute kidney injury among children hospitalized in the Pediatric Oncohematology Unit in Plovdiv during the period 2016–2020, as well as to identify the risk factors for its occurrence, its severity, and its dependence on tumor type, gender, and age. Patients and Methods: During the five-year period under review, a total of 213 newly diagnosed children with hematological diseases were admitted to our Pediatric Oncohematology Unit—122 boys and 91 girls. Results: Acute kidney injury was identified in 94 (44.1%) of the children—54 with solid tumors and 40 with malignant hemopathies. The main cause of acute kidney injury diagnosed was drug-induced nephrotoxicity, especially due to nephrotoxic chemotherapeutic agents. No statistically significant association was found between the type of tumor and the occurrence of acute kidney injury. Of the children with documented episodes of AKI, 11 were found to have CKD according to the KDIGO criteria. Conclusions: Acute kidney injury is a common complication that occurs during the medical treatment of children with malignant diseases. Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
Show Figures

Figure 1

13 pages, 4273 KiB  
Article
Diagnostic and Prognostic Potential of SH3YL1 and NOX4 in Muscle-Invasive Bladder Cancer
by Mingyu Kim, Euihyun Jung, Geehyun Song, Jaeyoung Joung, Jinsoo Chung, Hokyung Seo and Hyungho Lee
Int. J. Mol. Sci. 2025, 26(9), 3959; https://doi.org/10.3390/ijms26093959 - 22 Apr 2025
Viewed by 534
Abstract
Bladder cancer, especially muscle-invasive bladder cancer (MIBC), poses significant treatment challenges due to its aggressive nature and poor prognosis, often necessitating cisplatin-based chemotherapy. While cisplatin effectively reduces tumor burden, its nephrotoxic effects, specifically cisplatin-induced acute kidney injury (AKI), limit its clinical use. This [...] Read more.
Bladder cancer, especially muscle-invasive bladder cancer (MIBC), poses significant treatment challenges due to its aggressive nature and poor prognosis, often necessitating cisplatin-based chemotherapy. While cisplatin effectively reduces tumor burden, its nephrotoxic effects, specifically cisplatin-induced acute kidney injury (AKI), limit its clinical use. This study investigates SH3YL1 as a potential biomarker for bladder cancer progression and AKI. Plasma and urine SH3YL1 levels were measured in bladder cancer patients undergoing cisplatin treatment, showing elevated baseline levels compared to controls, suggesting a link with bladder cancer pathology rather than cisplatin-induced AKI. Functional network and Gene Ontology (GO) enrichment analyses identified SH3YL1’s interactions with NADPH oxidase pathways, particularly NOX family genes, and highlighted its roles in cell adhesion, migration, and cytoskeletal organization—processes critical for tumor invasiveness. Notably, SH3YL1 and NOX4 expression were significantly higher in MIBC than in non-muscle-invasive bladder cancer (NMIBC), with a strong correlation between SH3YL1 and NOX4 (r = 0.62) in MIBC, suggesting a subtype-specific interaction. Kaplan–Meier survival analysis using The Cancer Genome Atlas bladder cancer (TCGA-BLCA) data further demonstrated that low SH3YL1 expression is significantly associated with poor overall and disease-specific survival in MIBC patients, reinforcing its role as a prognostic biomarker. In conclusion, SH3YL1 is a promising biomarker for identifying the invasive characteristics of MIBC and predicting patient outcomes. These findings underscore the importance of SH3YL1–NOX4 pathways in MIBC and suggest the need for further research into targeted biomarkers for bladder cancer progression and cisplatin-induced AKI to improve patient outcomes in high-risk cases. Full article
Show Figures

Figure 1

17 pages, 9218 KiB  
Article
Blockade of the STAT3/BCL-xL Axis Leads to the Cytotoxic and Cisplatin-Sensitizing Effects of Fucoxanthin, a Marine-Derived Carotenoid, on Human Bladder Urothelial Carcinoma Cells
by Wen-Chyi Dai, Tzu-Hsuan Chen, Tzu-Ching Peng, Yung-Ching He, Chao-Yu Hsu and Chia-Che Chang
Mar. Drugs 2025, 23(2), 54; https://doi.org/10.3390/md23020054 - 22 Jan 2025
Viewed by 1589
Abstract
Bladder cancer is a globally prevalent urological malignancy, with transitional carcinoma (TCC) representing the majority of cases. Cisplatin is the primary drug for metastatic bladder cancer chemotherapy; however, its application is limited by nephrotoxicity and resistance. Signal Transducer and Activator of Transcription 3 [...] Read more.
Bladder cancer is a globally prevalent urological malignancy, with transitional carcinoma (TCC) representing the majority of cases. Cisplatin is the primary drug for metastatic bladder cancer chemotherapy; however, its application is limited by nephrotoxicity and resistance. Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogenic transcription factor often overactivated in various cancers, making it an appealing drug target. Fucoxanthin, a marine carotenoid, has significant anticancer properties. This study explored Fucoxanthin’s cytotoxic effects and its potential to potentiate the efficacy of Cisplatin, along with the mechanisms underlying these effects, on human bladder TCC cells. We demonstrated that Fucoxanthin is cytotoxic to bladder TCC cells by inducing apoptosis, evidenced by z-VAD-fmk-mediated annulment of Fucoxanthin’s cytotoxicity. Furthermore, Fucoxanthin reduced the levels of inherent or interleukin-6-induced tyrosine 705-phosphorylated STAT3 accompanied by downregulating BCL-xL, a well-established STAT3 target. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, or BCL-xL thwarted Fucoxanthin’s proapoptotic and cytotoxic actions. Moreover, Fucoxanthin at subtoxic dosages enhanced the susceptibility to Cisplatin-induced apoptosis of bladder TCC cells initially resistant to Cisplatin. Remarkably, this Cisplatin-sensitizing effect of Fucoxanthin was abrogated when cells ectopically expressed STAT3-C or BCL-xL. Overall, for the first time, we proved that the proapoptotic, cytotoxic, and Cisplatin-sensitizing effects of Fucoxanthin on human bladder TCC cells are attributed to the blockade of the STAT3/BCL-xL axis. Our findings highlight that targeting the STAT3/BCL-xL axis is a promising strategy to eliminate bladder TCC cells and facilitate Cisplatin sensitization, and further support the potential of incorporating Fucoxanthin into Cisplatin-based chemotherapy for treating bladder cancer. Full article
(This article belongs to the Special Issue Marine Natural Products as Regulators in Cell Signaling Pathway)
Show Figures

Figure 1

14 pages, 14355 KiB  
Article
JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice
by Merlin Airik, Kacian Clayton, Peter Wipf and Rannar Airik
Antioxidants 2024, 13(12), 1534; https://doi.org/10.3390/antiox13121534 - 15 Dec 2024
Cited by 2 | Viewed by 1600
Abstract
Cisplatin is a commonly used chemotherapeutic agent in the treatment of a wide array of cancers. Due to its active transport into the kidney proximal tubule cells, cisplatin treatment can cause a buildup of this nephrotoxic compound in the kidney, resulting in acute [...] Read more.
Cisplatin is a commonly used chemotherapeutic agent in the treatment of a wide array of cancers. Due to its active transport into the kidney proximal tubule cells, cisplatin treatment can cause a buildup of this nephrotoxic compound in the kidney, resulting in acute kidney injury (AKI). About 30% of patients receiving cisplatin chemotherapy develop cisplatin-induced AKI. JP4-039 is a mitochondria-targeted reactive oxygen species (ROS) and electron scavenger. Recent studies have shown that JP4-039 mitigates a variety of genotoxic insults in preclinical studies in rodents by suppressing oxidative stress-mediated tissue damage and blocking apoptosis and ferroptosis. However, the benefits of JP4-039 treatment have not been tested in the setting of AKI. In this study, we investigated the potential renoprotective effect of JP4-039 on cisplatin-induced AKI. To address this goal, we treated mice with JP4-039 before or after cisplatin administration and analyzed them for functional and molecular changes in the kidney. JP4-039 co-administration attenuated cisplatin-induced renal dysfunction and histopathological changes. Upregulation of tubular injury markers was also suppressed by JP4-039. Mechanistically, JP4-039 suppressed lipid peroxidation, prevented tissue oxidative stress, and preserved the glutathione levels in cisplatin-injected mice. An increase in cisplatin-induced apoptosis and ferroptosis was also alleviated by the compound. Moreover, JP4-039 inhibited cytokine overproduction in cisplatin-injected mice. Together, our findings demonstrate that JP4-039 is a promising therapeutic agent against cisplatin-induced kidney injury. Full article
(This article belongs to the Special Issue Oxidative Stress in Renal Health)
Show Figures

Figure 1

19 pages, 6046 KiB  
Article
Activation of Yes-Associated Protein Is Indispensable for Transformation of Kidney Fibroblasts into Myofibroblasts during Repeated Administration of Cisplatin
by Jia-Bin Yu, Babu J. Padanilam and Jinu Kim
Cells 2024, 13(17), 1475; https://doi.org/10.3390/cells13171475 - 2 Sep 2024
Cited by 1 | Viewed by 1704
Abstract
Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of [...] Read more.
Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of CKD induced by repeated administration of low-dose cisplatin (RAC) has been established, its underlying mechanisms remain poorly understood. Here, we compared single administration of high-dose cisplatin (SAC) to repeated administration of low-dose cisplatin (RAC) in myofibroblast transformation and cellular morphology in a normal rat kidney fibroblast NRK-49F cell line. RAC instead of SAC transformed the fibroblasts into myofibroblasts as determined by α-smooth muscle actin, enlarged cell size as represented by F-actin staining, and increased cell flattening as expressed by the semidiameter ratio of attached cells to floated cells. Those phenomena, as well as cellular senescence, were significantly detected from the time right before the second administration of cisplatin. Interestingly, inhibition of the interaction between Yes-associated protein (YAP) and the transcriptional enhanced associated domain (TEAD) using Verteporfin remarkedly reduced cell size, cellular senescence, and myofibroblast transformation during RAC. These findings collectively suggest that YAP activation is indispensable for cellular hypertrophy, senescence, and myofibroblast transformation during RAC in kidney fibroblasts. Full article
Show Figures

Figure 1

18 pages, 4998 KiB  
Article
Unraveling the Nephroprotective Potential of Papaverine against Cisplatin Toxicity through Mitigating Oxidative Stress and Inflammation: Insights from In Silico, In Vitro, and In Vivo Investigations
by Shimaa A. Abass, Abdullah A. Elgazar, Sanad S. El-kholy, Amal I. El-Refaiy, Reem A. Nawaya, Mashooq Ahmad Bhat, Foad A. Farrag, Abdelrahman Hamdi, Marwa Balaha and Mohammed A. El-Magd
Molecules 2024, 29(9), 1927; https://doi.org/10.3390/molecules29091927 - 23 Apr 2024
Cited by 16 | Viewed by 2264
Abstract
Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related [...] Read more.
Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related to cisplatin renal toxicity; notably, mitogen-activated protein kinase 1 (MAPK1) signaling. We validated protective effects in normal kidney cells without interfering with cisplatin cytotoxicity on a cancer cell line. Concurrent in vivo administration of papaverine alongside cisplatin in rats prevented elevations in nephrotoxicity markers, including serum creatinine, blood urea nitrogen, and renal oxidative stress markers (malondialdehyde, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines), as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). Papaverine also reduced apoptosis markers such as Bcl2 and Bcl-2–associated X protein (Bax) and kidney injury molecule-1 (KIM-1), and histological damage. In addition, it upregulates antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) while boosting anti-inflammatory signaling interleukin-10 (IL-10). These effects were underlined by the ability of Papaverine to downregulate MAPK-1 expression. Overall, these findings show papaverine could protect against cisplatin kidney damage without reducing its cytotoxic activity. Further research would allow the transition of these results to clinical practice. Full article
Show Figures

Figure 1

14 pages, 1309 KiB  
Article
Daily Caffeine Consumption May Increase the Risk of Acute Kidney Injury Related to Platinum-Salt Chemotherapy in Thoracic Cancer Patients: A Translational Study
by Aghiles Hamroun, Antoine Decaestecker, Romain Larrue, Sandy Fellah, David Blum, Cynthia Van der Hauwaert, Arnaud Scherpereel, Alexis Cortot, Rémi Lenain, Mehdi Maanaoui, Nicolas Pottier, Christelle Cauffiez and François Glowacki
Nutrients 2024, 16(6), 889; https://doi.org/10.3390/nu16060889 - 19 Mar 2024
Viewed by 2559
Abstract
Although their efficacy has been well-established in Oncology, the use of platinum salts remains limited due to the occurrence of acute kidney injury (AKI). Caffeine has been suggested as a potential pathophysiological actor of platinum-salt-induced AKI, through its hemodynamic effects. This work aims [...] Read more.
Although their efficacy has been well-established in Oncology, the use of platinum salts remains limited due to the occurrence of acute kidney injury (AKI). Caffeine has been suggested as a potential pathophysiological actor of platinum-salt-induced AKI, through its hemodynamic effects. This work aims to study the association between caffeine consumption and the risk of platinum-salt-induced AKI, based on both clinical and experimental data. The clinical study involved a single-center prospective cohort study including all consecutive thoracic cancer patients receiving a first-line platinum-salt (cisplatin or carboplatin) chemotherapy between January 2017 and December 2018. The association between daily caffeine consumption (assessed by a validated auto-questionnaire) and the risk of platinum-salt induced AKI or death was estimated by cause-specific Cox proportional hazards models adjusted for several known confounders. Cellular viability, relative renal NGAL expression and/or BUN levels were assessed in models of renal tubular cells and mice co-exposed to cisplatin and increasing doses of caffeine. Overall, 108 patients were included (mean age 61.7 years, 65% men, 80% tobacco users), among whom 34 (31.5%) experienced a platinum-salt-induced AKI (67% Grade 1) over a 6-month median follow-up. The group of high-caffeine consumption (≥386 mg/day) had a two-fold higher hazard of AKI (adjusted HR [95% CI], 2.19 [1.05; 4.57]), without any significant association with mortality. These results are consistent with experimental data confirming enhanced cisplatin-related nephrotoxicity in the presence of increasing doses of caffeine, in both in vitro and in vivo models. Overall, this study suggests a potentially deleterious effect of high doses of daily caffeine consumption on the risk of platinum-salt-related AKI, in both clinical and experimental settings. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Graphical abstract

25 pages, 13910 KiB  
Article
Optimization of the Flavonoid Extraction Process from the Stem and Leaves of Epimedium Brevicornum and Its Effects on Cyclophosphamide-Induced Renal Injury
by Meiling Shi, Hongyan Pei, Li Sun, Weijia Chen, Ying Zong, Yan Zhao, Rui Du and Zhongmei He
Molecules 2024, 29(1), 207; https://doi.org/10.3390/molecules29010207 - 29 Dec 2023
Cited by 3 | Viewed by 2510
Abstract
Cyclophosphamide (CTX) is a broad-spectrum alkylated antitumor drug. It is clinically used in the treatment of a variety of cancers, and renal toxicity is one of the adverse reactions after long-term or repeated use, which not only limits the therapeutic effect of CTX, [...] Read more.
Cyclophosphamide (CTX) is a broad-spectrum alkylated antitumor drug. It is clinically used in the treatment of a variety of cancers, and renal toxicity is one of the adverse reactions after long-term or repeated use, which not only limits the therapeutic effect of CTX, but also increases the probability of kidney lesions. The total flavonoids of Epimedium stem and leaf (EBF) and Icariin (ICA) are the main medicinal components of Epimedium, and ICA is one of the main active substances in EBF. Modern pharmacological studies have shown that EBF has a variety of biological activities such as improving osteoporosis, promoting cell proliferation, antioxidant and anti-inflammatory properties, etc. However, few studies have been conducted on the nephrotoxicity caused by optimized CTX extraction, and protein-ligand binding has not been involved. This research, through the response surface optimization extraction of EBF, obtained the best extraction conditions: ethanol concentration was 60%, solid-liquid ratio of 25:1, ultrasonic time was about 25 min. Combined with mass spectrometry (MS) analysis, EBF contained ICA, ichopidin A, ichopidin B, ichopidin C, and other components. In this study, we adopted a computational chemistry method called molecular docking, and the results show that Icariin was well bound to the antioxidant target proteins KEAP1 and NRF2, and the anti-inflammatory target proteins COX-2 and NF-κB, with free binding energies of −9.8 kcal/mol, −11.0 kcal/mol, −10.0 kcal/mol, and −8.1 kcal/mol, respectively. To study the protective effect of EBF on the nephrotoxicity of CTX, 40 male Kunming mice (weight 18 ± 22) were injected with CTX (80 mg/kg) for 7 days to establish the nephrotoxicity model and were treated with EBF (50 mg/kg, 100 mg/kg) for 8 days by gavage. After CTX administration, MDA, BUN, Cre, and IL-6 levels in serum increased, MDA increased in kidney, GPT/ALT and IL-6 increased in liver, and IL-6 increased in spleen and was significant ((p < 0.05 or (p < 0.01)). Histopathological observation showed that renal cortex glomerular atrophy necrosis, medullary inflammatory cell infiltration, and other lesions. After administration of EBF, CTX-induced increase in serum level of related indexes was reduced, and MDA in kidney, GPT/ALT and IL-6 in liver, and IL-6 in spleen were increased. At the same time, histopathological findings showed that the necrosis of medullary and corticorenal tubular epithelium was relieved at EBF (50 mg/kg) dose compared with the CTX group, and the glomerular tubular necrosis gradually became normal at EBF (100 mg/kg) dose. Western blot analysis of Keap1 and Nrf2 protein expression in kidney tissue showed that compared with model CTX group, the drug administration group could alleviate the high expression of Keap1 protein and low expression of Nrf2 protein in kidney tissue. Conclusion: After the optimal extraction of total flavonoids from the stems and leaves of Epimedium, the molecular docking technique combined with animal experiments suggested that the effective component of the total flavonoids of Epimedium might activate the Keap1-Nrf2 signaling pathway after treatment to reduce the inflammation and oxidative stress of kidney tissue, so as to reduce kidney damage and improve kidney function. Therefore, EBF may become a new natural protective agent for CTX chemotherapy in the future. Full article
Show Figures

Figure 1

17 pages, 3754 KiB  
Article
The Protective Effect of Marsdenia tenacissima against Cisplatin-Induced Nephrotoxicity Mediated by Inhibiting Oxidative Stress, Inflammation, and Apoptosis
by Zhiguang Zhang, Boya Liang, Wugemo Jike, Runtian Li, Xinxin Su, Jie Yu and Tongxiang Liu
Molecules 2023, 28(22), 7582; https://doi.org/10.3390/molecules28227582 - 14 Nov 2023
Cited by 5 | Viewed by 2026
Abstract
Cisplatin (Cis) is considered to be one of the most effective drugs for killing cancer cells and remains a first-line chemotherapeutic agent. However, Cis’s multiple toxicities (especially nephrotoxicity) have limited its clinical use. Marsdenia tenacissima (Roxb.) Wight et Arn. (MT), a traditional Chinese [...] Read more.
Cisplatin (Cis) is considered to be one of the most effective drugs for killing cancer cells and remains a first-line chemotherapeutic agent. However, Cis’s multiple toxicities (especially nephrotoxicity) have limited its clinical use. Marsdenia tenacissima (Roxb.) Wight et Arn. (MT), a traditional Chinese medicine (TCM) employed extensively in China, not only enhances the antitumor effect in combination with Cis, but is also used for its detoxifying effect, as it reduces the toxic side effects of chemotherapy drugs. The aim of this study was to explore the therapeutic effect of MT on Cis-induced nephrotoxicity, along with its underlying mechanisms. In this study, liquid–mass spectrometry was performed to identify the complex composition of the extracts of MT. In addition, we measured the renal function, antioxidant enzymes, and inflammatory cytokines in mice with Cis-induced nephrotoxicity and conducted renal histology evaluations to assess renal injury. The expressions of the proteins related to antioxidant, anti-inflammatory, and apoptotic markers in renal tissues was detected by Western blotting (WB). MT treatment improved the renal function, decreased the mRNA expression of the inflammatory factors, and increased the antioxidant enzyme activity in mice. A better renal histology was observed after MT treatment. Further, MT inhibited the expression of the phospho-NFκB p65 protein/NFκB p65 protein (p-p65)/p65, phospho-inhibitor of nuclear factor kappa B kinase beta subunit/inhibitor of nuclear factor kappa B kinase beta subunit (p-IKKβ/IKKβ), Bcl-2-associated X (Bax), and Cleaved Caspase 3/Caspase 3 proteins, while the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Recombinant NADH Dehydrogenase, Quinone 1 (NQO1), and B-cell lymphoma-2 (Bcl-2) was increased. The present study showed that MT ameliorated renal injury, which mainly occurs through the regulation of the Nrf2 pathway, the NF-κB pathway, and the suppression of renal tissue apoptosis. It also suggests that MT can be used as an adjuvant to mitigate the nephrotoxicity of Cis chemotherapy. Full article
Show Figures

Figure 1

17 pages, 1055 KiB  
Review
Redox Regulation of Nrf2 in Cisplatin-Induced Kidney Injury
by Kranti A. Mapuskar, Casey F. Pulliam, Diana Zepeda-Orozco, Benjamin R. Griffin, Muhammad Furqan, Douglas R. Spitz and Bryan G. Allen
Antioxidants 2023, 12(9), 1728; https://doi.org/10.3390/antiox12091728 - 6 Sep 2023
Cited by 14 | Viewed by 3024
Abstract
Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, [...] Read more.
Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, upregulating antioxidants and cytoprotective genes under oxidative stress. This review discusses the mechanisms underlying chemotherapy-induced kidney injury, focusing on the role of Nrf2 in cancer therapy and its redox regulation in cisplatin-induced kidney injury. We also explore Nrf2's signaling pathways, post-translational modifications, and its involvement in autophagy, as well as examine redox-based strategies for modulating Nrf2 in cisplatin-induced kidney injury while considering the limitations and potential off-target effects of Nrf2 modulation. Understanding the redox regulation of Nrf2 in cisplatin-induced kidney injury holds significant promise for developing novel therapeutic interventions. This knowledge could provide valuable insights into potential strategies for mitigating the nephrotoxicity associated with cisplatin, ultimately enhancing the safety and efficacy of cancer treatment. Full article
(This article belongs to the Special Issue Nrf2 in Kidney Injury and Physiology)
Show Figures

Figure 1

13 pages, 4002 KiB  
Article
Thymoquinone Ameliorates Carfilzomib-Induced Renal Impairment by Modulating Oxidative Stress Markers, Inflammatory/Apoptotic Mediators, and Augmenting Nrf2 in Rats
by Marwa M. Qadri, Mohammad Firoz Alam, Zenat A. Khired, Reem O. Alaqi, Amani A. Khardali, Moudi M. Alasmari, Ahmad S. S. Alrashah, Hisham M. A. Muzafar and Abdullah M. Qahl
Int. J. Mol. Sci. 2023, 24(13), 10621; https://doi.org/10.3390/ijms241310621 - 25 Jun 2023
Cited by 8 | Viewed by 2385
Abstract
Chemotherapy-induced kidney damage is an emerging problem that restricts cancer treatment effectiveness. The proteasome inhibitor carfilzomib (CFZ) is primarily used to treat multiple myeloma and has been associated with severe renal injury in humans. CFZ-induced nephrotoxicity remains an unmet medical need, and there [...] Read more.
Chemotherapy-induced kidney damage is an emerging problem that restricts cancer treatment effectiveness. The proteasome inhibitor carfilzomib (CFZ) is primarily used to treat multiple myeloma and has been associated with severe renal injury in humans. CFZ-induced nephrotoxicity remains an unmet medical need, and there is an urgent need to find and develop a nephroprotective and antioxidant therapy for this condition. Thymoquinone (TQ) is a bioactive compound that has been isolated from Nigella sativa seeds. It has a wide range of pharmacological properties. Therefore, this experimental design aimed to study the effectiveness of TQ against CFZ-induced renal toxicity in rats. The first group of rats was a normal control (CNT); the second group received CFZ (4 mg/kg b.w.); the third and fourth groups received TQ (10 and 20 mg/kg b.w.) 2 h before receiving CFZ; the fifth group received only TQ (20 mg/kg b.w.). This experiment was conducted for 16 days, and at the end of the experiment, blood samples and kidney tissue were collected for biochemical assays. The results indicated that administration of CFZ significantly enhanced serum marker levels such as BUN, creatinine, and uric acid in the CFZ group. Similarly, it was also noticed that CFZ administration induced oxidative stress by reducing antioxidants (GSH) and antioxidant enzymes (CAT and SOD) and increasing lipid peroxidation. CFZ treatment also enhanced the expression of IL-1β, IL-6, and TNF-α production. Moreover, CFZ increased caspase-3 concentrations and reduced Nrf2 expression in the CFZ-administered group. However, treatment with 10 and 20 mg/kg TQ significantly decreased serum markers and increased antioxidant enzymes. TQ treatment considerably reduced IL-1β, IL-6, TNF-α, and caspase-3 concentrations. Overall, this biochemical estimation was also supported by histopathological outcomes. This study revealed that TQ administration significantly mitigated the negative effects of CFZ treatment on Nrf2 expression. Thus, it indicates that TQ may have utility as a potential drug to prevent CFZ-induced nephrotoxicity in the future. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidants in Human Diseases)
Show Figures

Figure 1

Back to TopTop