Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = chemically bonded ceramics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5796 KiB  
Article
Investigation of Microstructure and Hydrogen Barrier Behavior in Epoxy Resin-Based Ceramic/Graphene Composite Coatings
by Nongzhao Mao, Heping Wang, Bin Liu, Hongbo Zhao, Lei Wang, Ayu Zhang, Jiarui Deng and Keren Zhang
Coatings 2025, 15(7), 764; https://doi.org/10.3390/coatings15070764 - 27 Jun 2025
Viewed by 427
Abstract
This study addresses the critical challenges of hydrogen permeation and embrittlement in metallic pipelines for hydrogen storage and transportation by developing an epoxy resin-based composite coating with enhanced hydrogen barrier properties. Using cold spray technology, the fabricated coatings with controlled 250–320 μm thicknesses [...] Read more.
This study addresses the critical challenges of hydrogen permeation and embrittlement in metallic pipelines for hydrogen storage and transportation by developing an epoxy resin-based composite coating with enhanced hydrogen barrier properties. Using cold spray technology, the fabricated coatings with controlled 250–320 μm thicknesses incorporating graphene/ceramic composite particles uniformly dispersed in the epoxy matrix. Microstructural characterization revealed dense morphology and excellent interfacial bonding. Electrochemical hydrogen charging tests demonstrated remarkable hydrogen permeation reduction, showing a strong positive correlation between coating thickness and barrier performance. The optimal 320 μm-thick coating achieved a hydrogen content of only 0.28 ± 0.09 ppm, representing an 89% reduction compared to that in uncoated substrates. The superior performance originates from the Al2O3/SiO2 networks providing physical barriers, graphene offering high-surface-area adsorption sites, and MgO chemically trapping hydrogen atoms. Post-charging analysis identified interfacial stress concentration and hydrogen-induced plasticization as primary causes of ceramic particle delamination. This work provides both fundamental insights and practical solutions for designing high-performance protective coatings in long-distance hydrogen pipelines. Full article
(This article belongs to the Special Issue Ceramic-Based Coatings for High-Performance Applications)
Show Figures

Figure 1

13 pages, 3660 KiB  
Article
The Microhardness and Chemical Composition of Different Ceramic Self-Ligating Brackets: An In Vitro Study
by Mallaury Martinez, Paul Fawaz, Patrick El Sayegh, Christophe Rapin and Bart Vande Vannet
Dent. J. 2025, 13(7), 285; https://doi.org/10.3390/dj13070285 - 23 Jun 2025
Viewed by 293
Abstract
Objectives: The aim of this study was to compare the hardness, chemical composition, and microstructure of various self-ligating ceramic orthodontic brackets and enamel. Methods: Sixty ceramic brackets (0.022″ × 0.028″) from six different orthodontic firms (Damon® Clear 2, Genius® Crystal, Empower [...] Read more.
Objectives: The aim of this study was to compare the hardness, chemical composition, and microstructure of various self-ligating ceramic orthodontic brackets and enamel. Methods: Sixty ceramic brackets (0.022″ × 0.028″) from six different orthodontic firms (Damon® Clear 2, Genius® Crystal, Empower® 2 Clear, Clarity® Ultra, Alpine SL® Clear, and Experience Ceramic®) were tested using a microhardness tester and a scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy (EDS). Results: The hardness of the ceramic brackets ranged from 1969.8 to 2567.3 VH. The statistical analysis using the Kruskal–Wallis and Mann–Whitney tests revealed significant differences in microhardness between most of the ceramic brackets. Additionally, this study found that passive self-ligating brackets exhibited a significantly higher hardness than that of active self-ligating brackets (p = 0.01). The SEM analysis showed that the variations in the oxygen and alumina composition between the six bracket types were also statistically significant (p = 0.01). Conclusions: Among all of the ceramic brackets tested, Alpine® brackets displayed the lowest hardness values, making them a potential choice for minimizing enamel damage. Notably, the hardness of self-ligating ceramic brackets was found to be at least six times greater than that of enamel, raising concerns about their potential to cause trauma to the enamel of antagonistic teeth. Consequently, the researchers recommend avoiding bonding ceramic brackets to the mandibular teeth or elevating occlusion with turbo-bites to prevent traumatic contact during treatment. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

25 pages, 3478 KiB  
Article
Silicon Oxycarbide Thin Films Produced by Hydrogen-Induced CVD Process from Cyclic Dioxa-Tetrasilacyclohexane
by Agnieszka Walkiewicz-Pietrzykowska, Krzysztof Jankowski, Jan Kurjata, Rafał Dolot, Romuald Brzozowski, Joanna Zakrzewska and Paweł Uznanski
Materials 2025, 18(12), 2911; https://doi.org/10.3390/ma18122911 - 19 Jun 2025
Viewed by 535
Abstract
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide [...] Read more.
Silicon oxycarbide coatings are the subject of research due to their exceptional optical, electronic, anti-corrosion, etc., properties, which make them attractive for a number of applications. In this article, we present a study on the synthesis and characterization of thin SiOC:H silicon oxycarbide films with the given composition and properties from a new organosilicon precursor octamethyl-1,4-dioxatetrasilacyclohexane (2D2) and its macromolecular equivalent—poly(oxybisdimethylsily1ene) (POBDMS). Layers from 2D2 precursor with different SiOC:H structure, from polymeric to ceramic-like, were produced in the remote microwave hydrogen plasma by CVD method (RHP-CVD) on a heated substrate in the temperature range of 30–400 °C. SiOC:H polymer layers from POEDMS were deposited from solution by spin coating and then crosslinked in RHP via the breaking of the Si-Si silyl bonds initiated by hydrogen radicals. The properties of SiOC:H layers obtained by both methods were compared. The density of the cross-linked materials was determined by the gravimetric method, elemental composition by means of XPS, chemical structure by FTIR spectroscopy, and NMR spectroscopy (13C, 29Si). Photoluminescence analyses and ellipsometric measurements were also performed. Surface morphology was characterized by AFM. Based on the obtained results, a mechanism of initiation, growth, and cross-linking of the CVD layers under the influence of hydrogen radicals was proposed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

22 pages, 8327 KiB  
Article
Surface Evaluation of a Novel Acid-Etching Solution for Zirconia and Lithium Disilicate
by Clint Conner, Fabio Andretti, Alfredo I. Hernandez, Silvia Rojas-Rueda, Francisco X. Azpiazu-Flores, Brian R. Morrow, Franklin Garcia-Godoy, Carlos A. Jurado and Abdulrahman Alshabib
Materials 2025, 18(12), 2912; https://doi.org/10.3390/ma18122912 - 19 Jun 2025
Cited by 1 | Viewed by 457
Abstract
The current investigation evaluated a novel acid-etching solution containing hydrochloric acid (HCl), hydrofluoric acid (HF), nitric acid (HNO3), orthophosphoric acid (H3PO4), and sulfuric acid (H2SO4) designed for etching zirconia ceramics. Achieving reliable bonding [...] Read more.
The current investigation evaluated a novel acid-etching solution containing hydrochloric acid (HCl), hydrofluoric acid (HF), nitric acid (HNO3), orthophosphoric acid (H3PO4), and sulfuric acid (H2SO4) designed for etching zirconia ceramics. Achieving reliable bonding to zirconia is challenging due to its chemical inertia, unlike lithium disilicate, which can be effectively conditioned with HF etching. One hundred and twenty specimens of zirconia and lithium disilicate underwent etching with the experimental solution for six different durations: control, 20 s, 60 s, 5 min, 30 min, and 1 h. Surface roughness was assessed using 3D optical profilometry and scanning electron microscopy (SEM). The roughness of both materials increased with etching time; however, lithium disilicate demonstrated a significantly greater response, with Ra values rising from 0.18 µm (control) to 1.26 µm (1 h), while zirconia increased from 0.21 µm to 0.60 µm. ANOVA revealed significant effects depending on the ceramic type, time, and their interaction (p < 0.001). SEM images revealed non-selective etching of lithium disilicate, suggesting potential over-etching. The novel acid-etching solution improved surface roughness, especially in lithium disilicate ceramics. An application duration of one hour appears optimal for zirconia, improving surface characteristics while reducing damage; however, further research is required to assess its clinical safety and long-term effects on the mechanical properties of this dental ceramic. Full article
(This article belongs to the Special Issue Characteristics of Dental Ceramics)
Show Figures

Figure 1

21 pages, 13954 KiB  
Article
Interfacial Modulation of Laser-Deposited Ti6Al4V-TiC Wear-Resistant Coatings: Surface Ni-P Metallization of TiC Particles
by Yiming Wu, Yingfei Yang, Jie Li, Chuanyong Yu, Xinwei Du, Hu Zhao, Dexin Chen, Wei Li, Qiwei Wang and Peng Zhang
Coatings 2025, 15(6), 629; https://doi.org/10.3390/coatings15060629 - 24 May 2025
Viewed by 374
Abstract
Prior to the laser processing, the surface of the TiC-reinforced particles underwent a metallization process with Ni-P, with the objective of enhancing the wettability between the TiC and the Ti6Al4V, thereby ensuring enhanced wear resistance of the titanium-based composite (TMC) coatings. In this [...] Read more.
Prior to the laser processing, the surface of the TiC-reinforced particles underwent a metallization process with Ni-P, with the objective of enhancing the wettability between the TiC and the Ti6Al4V, thereby ensuring enhanced wear resistance of the titanium-based composite (TMC) coatings. In this study, the chemical deposition method was utilized to synthesize three types of metallized TiC with varying phosphorus contents. The P contents of these samples were determined to be 9.12 wt.% (HP metallized TiC), 6.55 wt.% (MP metallized TiC), and 1.71 wt.% (LP metallized TiC). It was observed that the thickness of the coatings increased in a gradual manner with the decrease in P. Furthermore, the coating of the LP metallized TiC was found to possess the highest degree of crystallinity and a microcrystalline structure. The 50 wt.% TiC-Ti6Al4V composite coatings (TMC-Nickel-free, TMC-HP, TMC-MP, and TMC-LP) were produced by laser fusion deposition using untreated TiC and three metallized TiC enhancements. The findings indicate that TMC-LP exhibits cracking only during the initial processing stage. Surface metallization has been shown to enhance the wear resistance of composite coatings through several mechanisms, including increased bonding of the ceramic phase to the metal matrix and the formation of hard Ti2Ni compounds. The wear rates of TMC-HP, TMC-MP, and TMC-LP were reduced by 22%, 43%, and 72%, respectively, in comparison to TMC-Nickel-free. Full article
(This article belongs to the Special Issue Laser Surface Engineering and Additive Manufacturing)
Show Figures

Graphical abstract

18 pages, 27554 KiB  
Article
Comparative Evaluation of Shear Bond Strength of Aesthetic Orthodontic Brackets Bonded to Aged Composite Restorative Resin Materials
by Mohammed E. Sayed
Polymers 2025, 17(5), 621; https://doi.org/10.3390/polym17050621 - 26 Feb 2025
Viewed by 887
Abstract
Patient demands for aesthetic orthodontic brackets (OBs) has increased since orthodontic treatments are of long duration. Clinicians encounter old composite restorations frequently, against which OBs need to be bonded. This study aims to determine the shear bond strength (SBS) of two aesthetic OBs [...] Read more.
Patient demands for aesthetic orthodontic brackets (OBs) has increased since orthodontic treatments are of long duration. Clinicians encounter old composite restorations frequently, against which OBs need to be bonded. This study aims to determine the shear bond strength (SBS) of two aesthetic OBs (ceramic and resin) against aged composite resins (flowable and packable) after standard surface treatment. A total of 96 disk-shaped specimens of two aged (A) composite resins [flowable (F) and packable (P)] were divided into eight groups, using ceramic (C) and plastic (P) brackets, out of which four subgroups served as the control [non-aged (N)FC, NPC, NFR, NPR] and four as experimental [AFC, APC, AFR, APR]. Surface treatment included mechanical [air abrasion] and chemical [Assure Plus and Transbond XT]. After 24 h of storage, the specimens were tested for SBS and observed for failure mode using adhesive remnant index scores. Mean values of SBS in each subgroup were analyzed statistically using a one-way analysis of variance test and Tukey post hoc test. All probability ‘p’ differences were significant at a value of 0.05 and less. All aged composite resin subgroups had decreased bond strength than controls, with all subgroups bonded with plastic brackets having the least bond strengths that were clinically nonacceptable [≤7 to 10 MPa]. Flowable composites when bonded with either ceramic or plastic brackets had higher strength than packable composites. Ceramic brackets had higher SBS than plastic brackets for both flowable and packable composites. Significant differences in bond strength were observed among subgroups of plastic brackets. Ceramic brackets were associated with a higher residue of adhesives on the composite surface. Aged composite resins exhibit significantly lower SBS than fresh composites, with ceramic brackets and flowable composites producing better bond strength values than plastic brackets and packable composites. Full article
Show Figures

Figure 1

27 pages, 15329 KiB  
Review
Research Status and Development Trends of Joining Technologies for Ceramic Matrix Composites
by Biao Chen, Hang Sun, Yuchen Ye, Chunming Ji, Shidong Pan and Bing Wang
Materials 2025, 18(4), 871; https://doi.org/10.3390/ma18040871 - 17 Feb 2025
Viewed by 978
Abstract
Ceramic matrix composites (CMCs) are composite materials made by using structural ceramics as matrix and reinforcing components such as high-strength fibers, whiskers, or particles. These materials are combined in a specific way to achieve a composite structure. With their excellent properties, including high [...] Read more.
Ceramic matrix composites (CMCs) are composite materials made by using structural ceramics as matrix and reinforcing components such as high-strength fibers, whiskers, or particles. These materials are combined in a specific way to achieve a composite structure. With their excellent properties, including high specific strength, high specific stiffness, good thermal stability, oxidation resistance, and corrosion resistance, CMCs are widely used in the aerospace, automotive, energy, defense, and bio-medical fields. However, large and complex-shaped ceramic matrix composite parts are greatly influenced by factors such as the molding process, preparation costs, and consistency of quality, which makes the joining technology for CMCs increasingly important and a key trend for future development. However, due to the anisotropic nature of CMCs, the design of structural components varies, with different properties in different directions. Additionally, the chemical compatibility and physical matching between dissimilar materials in the joining process lead to much more complex joint design and strength analysis compared to traditional materials. This paper categorizes the joining technologies for CMCs into mechanical joining, bonding, soldering joining, and hybrid joining. Based on different joining techniques, the latest research progress on the joining of CMCs with themselves or with metals is reviewed. The advantages and disadvantages of each joining technology are summarized, and the future development trends of these joining technologies are analyzed. Predicting the performance of joining structures is currently a hot topic and challenge in research. Therefore, the study systematically reviews research combining failure mechanisms of ceramic matrix composite joining structures with finite element simulation techniques. Finally, the paper highlights the breakthroughs achieved in current research, as well as existing challenges, and outlines future research and application directions for ceramic matrix composite joining. Full article
Show Figures

Figure 1

10 pages, 1883 KiB  
Proceeding Paper
Analyzing the Thermal Behavior and Phase Transitions of ZnSnO3 Prepared via Chemical Precipitation
by Ragupathi Indhumathi, Arumugasamy Sathiya Priya and Baskar Sumathi Samyuktha
Eng. Proc. 2025, 87(1), 4; https://doi.org/10.3390/engproc2025087004 - 14 Feb 2025
Viewed by 652
Abstract
ZnSnO3 ceramics were prepared via chemical precipitation at various calcination temperatures of 200, 300, 400, 500, and 600 °C. The prepared ceramics were analyzed using thermogravimetric analysis–differential scanning calorimetry (TGA–DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy (UV-Vis). [...] Read more.
ZnSnO3 ceramics were prepared via chemical precipitation at various calcination temperatures of 200, 300, 400, 500, and 600 °C. The prepared ceramics were analyzed using thermogravimetric analysis–differential scanning calorimetry (TGA–DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy (UV-Vis). Thermal analysis identified critical phase transitions, including the decomposition of ZnSn(OH)6 into ZnSnO3 and its subsequent transformation into Zn2SnO4 at elevated temperatures. XRD confirmed the orthorhombic crystal structure of the prepared ceramics. Further, increasing calcination temperatures led to enhanced crystallinity and reduced crystallite sizes, with the average crystallite size ranging from 22 to 45 nm. FTIR analysis revealed the chemical bonding and functional groups present in ZnSnO3. The energy band gap values observed from UV-Vis spectroscopy ranged from 3.64 eV to 3.53 eV. These findings show the role of calcination temperature in tailoring the structural and optical properties of ZnSnO3 ceramics, with potential applications in energy conversion technologies, including solar cells and optoelectronic devices. The optimization and development of ZnSnO3-based materials hold promise for efficient energy harvesting and storage applications. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

18 pages, 13259 KiB  
Article
Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films
by Ying Wang, Xu Wang, Hailong Shang, Xiaotong Liu, Yu Qi, Xiaoben Qi and Ning Zhong
Nanomaterials 2025, 15(3), 229; https://doi.org/10.3390/nano15030229 - 31 Jan 2025
Cited by 1 | Viewed by 952
Abstract
The TiB2 film exhibits exceptional hardness and chemical stability due to its unique crystal structure and robust covalent bonds, but it also demonstrates high brittleness and poor toughness, which restricts its practical applications in engineering. By appropriately incorporating metal dopants, the toughness [...] Read more.
The TiB2 film exhibits exceptional hardness and chemical stability due to its unique crystal structure and robust covalent bonds, but it also demonstrates high brittleness and poor toughness, which restricts its practical applications in engineering. By appropriately incorporating metal dopants, the toughness of the ceramic matrix can be enhanced without compromising its inherent hardness. In this study, TiB2 films with different nickel contents (0–32.22 at.%) were fabricated through radio frequency magnetron sputtering. The microstructure, chemical composition, phase structure, and mechanical properties were analyzed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and nanoindentation tester. The pure TiB2 film exhibited (0001) and (0002) peaks; however, the addition of nickel resulted in broadening of the (0001) peak and disappearance of the (0002) peak, and no crystalline nickel or other nickel-containing phases could be identified. It was found that the incorporation of nickel refines the grain structure of titanium diboride, with nickel present in an amorphous form at the boundaries of titanium diboride, thereby forming a wrapped structure. The enrichment of nickel at the grain boundary becomes more pronounced as the nickel content is further increased, which hinders the growth of TiB2 grains, resulting in the thinning of columnar crystals and formation of nanocrystalline in the film, and the coating hardness remains above 20 GPa, when the nickel content is less than 10.83 at.%. With the increase in nickel content, titanium diboride exhibited a tendency to form an amorphous structure, while nickel became increasingly enriched at the boundaries, and the coating hardness and elastic modulus decreased. The wrapped microstructure could absorb the energy generated by compressive shear stress through plastic deformation, which should be beneficial to improve the toughness of the coatings. The addition of nickel enhanced the adhesion between the film and substrate while reducing the friction coefficient of the film. Specifically, when the nickel content reached 4.26 at.%, a notable enhancement in both nanohardness and toughness was observed for nanocomposite films. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

14 pages, 9070 KiB  
Article
Behavior of YSZ (High Y2O3 Content) Layer on Inconel to Electro-Chemical Corrosion
by Ionut Adomniței, Ramona Cimpoeșu, Daniela Lucia Chicet, Margareta Coteață, Fabian Cezar Lupu, Costică Bejinariu, Liviu Andrușcă, Petronela Paraschiv, Mihai Axinte, Gheorghe Bădărău and Nicanor Cimpoeșu
Materials 2025, 18(2), 400; https://doi.org/10.3390/ma18020400 - 16 Jan 2025
Cited by 1 | Viewed by 898
Abstract
The high yttria content of a stabilized zirconia (YSZ) (38 wt% Y2O3) coating was deposited by atmospheric plasma spraying (APS) from Metco 207 powders on an Inconel 718 (Ni-based superalloy) substrate. As a metal coating connection, a layer of [...] Read more.
The high yttria content of a stabilized zirconia (YSZ) (38 wt% Y2O3) coating was deposited by atmospheric plasma spraying (APS) from Metco 207 powders on an Inconel 718 (Ni-based superalloy) substrate. As a metal coating connection, a layer of cermet powder (Ni-20% Al—410NS) was used before the ceramic layer deposition. The electro-chemical corrosion resistance of these materials was tested using Inconel cylinders with a diameter of 10 mm and a thickness of 1 mm, with and without the ceramic layer. Linear and cyclic measurements were obtained in H2SO4 electrolyte media at pH = 2. Electro-impedance spectroscopy (EIS) experiments were performed on the sample covered with the ceramic layer to evaluate the interface behavior. Scanning electron microscopy (SEM), along with equipment to determine chemical composition, and an energy dispersive spectrometry (EDS) detector were used to characterize the material surface before and after corrosion tests. It was observed that the corrosion resistance of Inconel was influenced by the bonding layer and the ceramic coating. Full article
(This article belongs to the Special Issue Corrosion and Formation of Surface Films on Metals and Alloys)
Show Figures

Figure 1

104 pages, 6379 KiB  
Review
Quasi-Classical Models of Nonlinear Relaxation Polarization and Conductivity in Electric, Optoelectric, and Fiber Optic Elements Based on Materials with Ionic–Molecular Chemical Bonds
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aliya Alkina, Yelena Senina, Arkadiy Bilichenko, Yelena Sidorina, Akylbek Beissekov, Galina Tatkeyeva and Yermek Sarsikeyev
Appl. Sci. 2024, 14(24), 11830; https://doi.org/10.3390/app142411830 - 18 Dec 2024
Viewed by 1310
Abstract
A generalized scientific review with elements of additions and clarifications has been carried out on the methods of theoretical research on the electrophysical properties of crystals with ionic–molecular chemical bonds (CIMBs). The main theoretical tools adopted are the methods of quasi-classical kinetic theory [...] Read more.
A generalized scientific review with elements of additions and clarifications has been carried out on the methods of theoretical research on the electrophysical properties of crystals with ionic–molecular chemical bonds (CIMBs). The main theoretical tools adopted are the methods of quasi-classical kinetic theory as applied to ionic subsystems relaxing in layered dielectrics (natural silicates, crystal hydrates, various types of ceramics, and perovskites) in an electric field. A universal (applicable for any CIMBs class crystals) nonlinear quasi-classical kinetic equation of theoretical and practical importance has been constructed. This equation describes, in complex with the Poisson equation, the mechanism of ion-relaxation polarization and conductivity in a wide range of polarizing field parameters (0.1–1000 MV/m) and temperatures (1–1550 K). The physical model is based on a system of non-interacting ions (due to the low concentration in the crystal) moving in a one-dimensional, spatially periodic crystalline potential field, perturbed by an external electric field. The energy spectrum of ions is assumed to be continuous. Elements of quantum mechanical theory in a quasi-classical model are used to mathematically describe the influence of tunnel transitions of hydrogen ions (protons) during the interaction of proton and anion subsystems in hydrogen-bonded crystals (HBC) on the polarization of the dielectric in the region of nitrogen (50–100 K) and helium (1–10 K) temperatures. The mathematical model is based on the solution of a system of nonlinear Fokker-Planck and Poisson equations, solved by perturbation theory methods (via expanding solutions into infinite power series in a small dimensionless parameter). Theoretical frequency and temperature spectra of the dielectric loss tangent were constructed and analyzed, the molecular parameters of relaxers were calculated, and the physical nature of the maxima of the experimental temperature spectra of dielectric losses for a number of HBC crystals was discovered. The low-temperature maximum, which is caused by the quantum tunneling of protons and is absent in the experimental spectra, was theoretically calculated and investigated. The most effective areas of scientific and technical application of the theoretical results obtained were identified. The application of the equations and recurrent formulas of the constructed model to the study of nonlinear optical effects in elements of laser technologies and nonlinear radio wave effects in elements of microwave signal control systems is of the greatest interest. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

20 pages, 5385 KiB  
Article
Studies on the Powerful Photoluminescence of the Lu2O3:Eu3+ System in the Form of Ceramic Powders and Crystallized Aerogels
by Alan D. Alcantar Mendoza, Antonieta García Murillo, Felipe de J. Carrillo Romo and José Guzmán Mendoza
Gels 2024, 10(11), 736; https://doi.org/10.3390/gels10110736 - 13 Nov 2024
Viewed by 1135
Abstract
This study compared the chemical, structural, and luminescent properties of xerogel-based ceramic powders (CPs) with those of a new series of crystallized aerogels (CAs) synthesized by the epoxy-assisted sol–gel process. Materials with different proportions of Eu3+ (2, 5, 8, and 10 mol%) [...] Read more.
This study compared the chemical, structural, and luminescent properties of xerogel-based ceramic powders (CPs) with those of a new series of crystallized aerogels (CAs) synthesized by the epoxy-assisted sol–gel process. Materials with different proportions of Eu3+ (2, 5, 8, and 10 mol%) were synthesized in Lu2O3 host matrices, as well as a Eu2O3 matrix for comparative purposes. The products were analyzed by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence analysis, and by the Brunauer–Emmett–Teller (BET) technique. The results show a band associated with the M-O bond, located at around 575 cm−1. XRD enabled us to check two ensembles: matrices (Lu2O3 or Eu2O3) and doping (Lu2O3:Eu3+) with appropriate chemical compositions featuring C-type crystal structures and intense reflections by the (222) plane, with an interplanar distance of around 0.3 nm. Also, the porous morphology presented by the materials consisted of interconnected particles that formed three-dimensional networks. Finally, emission bands due to the energy transitions (5DJ, where J = 0, 1, 2, and 3) were caused by the Eu3+ ions. The samples doped at 10 mol% showed orange-pink photoluminescence and had the longest disintegration times and greatest quantum yields with respect to the crystallized Eu2O3 aerogel. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization (2nd Edition))
Show Figures

Figure 1

28 pages, 6631 KiB  
Review
Recent Advances in Hybrid Nanocomposites for Aerospace Applications
by Beatriz Monteiro and Sónia Simões
Metals 2024, 14(11), 1283; https://doi.org/10.3390/met14111283 - 12 Nov 2024
Cited by 12 | Viewed by 3104
Abstract
Hybrid nanocomposites have emerged as a groundbreaking class of materials in the aerospace industry, offering exceptional mechanical, thermal, and functional properties. These materials, composed of a combination of metallic matrices (based on aluminum, magnesium, or titanium) reinforced with a mixture of nanoscale particles, [...] Read more.
Hybrid nanocomposites have emerged as a groundbreaking class of materials in the aerospace industry, offering exceptional mechanical, thermal, and functional properties. These materials, composed of a combination of metallic matrices (based on aluminum, magnesium, or titanium) reinforced with a mixture of nanoscale particles, such as carbon nanotubes (CNTs), graphene, and ceramic nanoparticles (SiC, Al2O3), provide a unique balance of high strength, low weight, and enhanced durability. Recent advances in developing these nanocomposites have focused on optimizing the dispersion and integration of nanoparticles within the matrix to achieve superior material performance. Innovative fabrication techniques have ensured uniform distribution and strong bonding between the matrix and the reinforcements, including advanced powder metallurgy, stir casting, in situ chemical vapor deposition (CVD), and additive manufacturing. These methods have enabled the production of hybrid nanocomposites with improved mechanical properties, such as increased tensile strength, fracture toughness, wear resistance, and enhanced thermal stability and electrical conductivity. Despite these advancements, challenges remain in preventing nanoparticle agglomeration due to the high surface energy and van der Walls forces and ensuring consistent quality and repeatability in large-scale production. Addressing these issues is critical for fully leveraging the potential of hybrid nanocomposites in aerospace applications, where materials are subjected to extreme conditions and rigorous performance standards. Ongoing research is focused on developing novel processing techniques and understanding the underlying mechanisms that govern the behavior of these materials under various operational conditions. This review highlights the recent progress in the design, fabrication, and application of hybrid nanocomposites for aerospace applications. It underscores their potential to revolutionize the industry by providing materials that meet the demanding requirements for lightweight, high-strength, and multifunctional components. Full article
(This article belongs to the Section Metal Matrix Composites)
Show Figures

Graphical abstract

11 pages, 4539 KiB  
Article
Effect of Thermal Mismatch on Fracture Characteristics of Porcelain Veneered Lithia-Based Disilicate Posterior Ceramic Crown
by Ja-Young Kim, Yu-Kyoung Kim, Won-Suk Oh, Tae-Sung Bae, Jung-Jin Lee, Min-Ho Lee, Yong-Seok Jang and Seung-Geun Ahn
Appl. Sci. 2024, 14(21), 9682; https://doi.org/10.3390/app14219682 - 23 Oct 2024
Viewed by 1338
Abstract
(1) Background: Dental glass–ceramics shrink during crystallization, complicating restoration manufacturing. Thermo-pressure molding was introduced to address this, with lithium disilicate crystals providing high strength. Residual tensile stresses can influence the chipping strength of single tooth crowns. (2) Methods: Insync dentine was layered onto [...] Read more.
(1) Background: Dental glass–ceramics shrink during crystallization, complicating restoration manufacturing. Thermo-pressure molding was introduced to address this, with lithium disilicate crystals providing high strength. Residual tensile stresses can influence the chipping strength of single tooth crowns. (2) Methods: Insync dentine was layered onto three lithia-based disilicate core ceramics (Amber Press, IPS e.max Press) for microtensile bond strength tests. The Vickers test assessed the residual tensile stress and interfacial bonding. Porcelain-veneered posterior ceramic crowns were fabricated and subjected to axial loading, measuring fracture loads (three per group). (3) Results: A chemical bonding layer formed at the interface, which was thicker in the Insync-IPS e.max Press and increased with more firings. The ultimate tensile bond strength was 28.5 MPa for the four-times-fired Insync-Amber Press, similar to the twice-fired Insync-IPS e.max Press. No residual tensile stress was found in the Insync-Amber Press; the Insync-IPS e.max Press showed crack growth within 250 μm of the bonded interface. The average fracture resistance was twice as high for the Insync-Amber Press. (4) Conclusions: The Insync-Amber Press exhibited better thermal harmony with no crack growth, while the IPS e.max Press showed crack growth due to residual tensile stress. Insync-Amber Press posterior ceramic crowns had significantly greater fracture resistance than Insync-IPS e.max Press crowns. Full article
(This article belongs to the Special Issue Research on Restorative Dentistry and Dental Biomaterials)
Show Figures

Figure 1

14 pages, 8701 KiB  
Article
Impact of Different Surface Treatments on Shear Bond Strength between Two Zirconia Ceramics and a Composite Material
by Se-Hyoun Kim, Young-Jun Lim, Dae-Joon Kim, Myung-Joo Kim, Ho-Boem Kwon and Yeon-Wha Baek
Bioengineering 2024, 11(10), 1003; https://doi.org/10.3390/bioengineering11101003 - 7 Oct 2024
Cited by 1 | Viewed by 1884
Abstract
The purpose of this study was to compare the surface changes and shear bond strength between a resin composite and two zirconia ceramics subjected to sandblasting and forming gas (5% H2 in N2) plasma surface treatment. Two types of zirconia [...] Read more.
The purpose of this study was to compare the surface changes and shear bond strength between a resin composite and two zirconia ceramics subjected to sandblasting and forming gas (5% H2 in N2) plasma surface treatment. Two types of zirconia ceramic specimens (3Y-TZP and (Y,Nb)-TZP) were divided into groups based on the following surface treatment methods: polishing (Control), sandblasting (SB), sandblasting and plasma (SB-P), and plasma treatment (P). Subsequently, chemical surface modification was performed using Clearfil SE Bond (Kuraray, Tokyo, Japan), and the Filtek Z-250 (3M, Maplewood, MN, USA) resin composite was applied. Shear bond strengths (SBS) and surface characteristics were determined. Plasma treatment was effective in increasing the wettability. For SBS, there were significant differences among the groups, and the (Y,Nb)-TZP and SB-P groups showed the highest bond strength. Similarly, for the 3Y-TZP specimens, the shear bond strength increased with both plasma and sandblasting treatments, although no statistically significant change was observed. In the P group, both (Y,Nb)-TZP and 3Y-TZP showed a significant decrease in shear bond strength with the resin composite compared to the control group. Full article
Show Figures

Graphical abstract

Back to TopTop