Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (199)

Search Parameters:
Keywords = chemical disintegration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3861 KiB  
Article
Investigating the Rheological Impact of USP Warm Mix Modifier on Asphalt Binder
by Yali Liu, Jingfei Ping, Hao Guo, Yikai Kang and Yali Ye
Coatings 2025, 15(7), 784; https://doi.org/10.3390/coatings15070784 - 3 Jul 2025
Viewed by 440
Abstract
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway [...] Read more.
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway engineering. This article systematically investigates the impact of different dosages of USP warm mix modifier on asphalt binders through rheological and microstructural analysis. Base asphalt and SBS-modified asphalt were blended with USP at varying ratios. Conventional tests (penetration, softening point, ductility) were combined with dynamic shear rheometry (DSR, AASHTO T315) and bending beam rheometry (BBR, AASHTO T313) to characterize temperature/frequency-dependent viscoelasticity. High-temperature performance was quantified via multiple stress creep recovery (MSCR, ASTM D7405), while fluorescence microscopy and FTIR spectroscopy elucidated modification mechanisms. Key findings reveal that (1) optimal USP thresholds exist at 4.0% for base asphalt and 4.5% for SBS modified asphalt, beyond which the rutting resistance factor (G*/sin δ) decreases by 20–31% due to plasticization effects; (2) USP significantly improves low-temperature flexibility, reducing creep stiffness at −12 °C by 38% (USP-modified) and 35% (USP/SBS composite) versus controls; (3) infrared spectroscopy displays that no new characteristic peaks appeared in the functional group region of 4000–1300 cm−1 for the two types of modified asphalt after the incorporation of USP, indicating that no chemical changes occurred in the asphalt; and (4) fluorescence imaging confirmed that the incorporation of USP led to disintegration of the spatial network structure of the control asphalt, explaining the reason for the deterioration of high-temperature performance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

35 pages, 1062 KiB  
Review
Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
by Anna Kochanek, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta and Jacek Łapiński
Toxics 2025, 13(7), 564; https://doi.org/10.3390/toxics13070564 - 2 Jul 2025
Viewed by 2048
Abstract
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary [...] Read more.
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary microplastics. Microplastics, or particles smaller than 5 mm, and nanoplastics, or particles smaller than 1 μm, are the products of degradation and, in particular, disintegration processes that occur in nature as a result of several physical, chemical, and biological variables. Polypropylene, polyethylene, polyvinyl chloride (PVC), polystyrene, polyurethane, and polyethylene terephthalate (PET) are among the chemicals included in this contamination in decreasing order of quantity. Micro- and nanoplastics have been detected in the air, water, and soil, confirming their ubiquitous presence in natural environments. Their widespread distribution poses significant threats to human health, including oxidative stress, inflammation, cellular damage, and potential carcinogenic effects. The aim of this article is to review the current literature on the occurrence of micro- and nanoplastics in various environmental compartments and to analyze the associated health consequences. The article also discusses existing legal regulations and highlights the urgent need for intensified research into the toxicological mechanisms of microplastics and the development of more effective strategies for their mitigation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

17 pages, 2898 KiB  
Article
Selective Laser Sintering of Atomoxetine Tablets: An Innovative Approach for Small-Scale, Personalized Production
by Gordana Stanojević, Ivana Adamov, Snežana Mugoša, Veselinka Vukićević and Svetlana Ibrić
Pharmaceutics 2025, 17(6), 794; https://doi.org/10.3390/pharmaceutics17060794 - 18 Jun 2025
Viewed by 526
Abstract
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing [...] Read more.
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing it with conventional direct compression. Methods: Atomoxetine tablets were produced using SLS 3D printing with varying laser scanning speeds and compared to tablets made via a compaction simulator. Formulations were based on hydroxypropyl methylcellulose (HPMC) as the primary matrix former. The physical properties, drug content, disintegration time, and dissolution profiles were evaluated. The structural and chemical integrity were assessed using SEM, FTIR, DSC, and XRPD. Results: The SLS tablets exhibited comparable mechanical properties and drug content to those made by compaction. Lower laser speeds produced harder tablets with slower disintegration, while higher speeds yielded more porous tablets with ultra-rapid drug release (>85% in 15 min). All tablets met the European Pharmacopoeia dissolution criteria. No significant drug–excipient interactions or changes in crystallinity were detected. Conclusions: SLS printing is a viable alternative to traditional tablet manufacturing, offering control over drug release profiles through parameter adjustment. The technique supports the development of high-quality, patient-specific dosage forms and shows promise for broader implementation in personalized pharmaceutical therapy. Full article
Show Figures

Graphical abstract

27 pages, 3258 KiB  
Article
Production and Evaluation of Lime Fertilizers with the Addition of Biomass Combustion Waste
by Sławomir Obidziński, Paweł Cwalina, Aneta Sienkiewicz, Małgorzata Kowczyk-Sadowy, Jolanta Piekut, Jacek Mazur and Michał Panasewicz
Materials 2025, 18(12), 2732; https://doi.org/10.3390/ma18122732 - 11 Jun 2025
Viewed by 624
Abstract
The study identified the optimal material, e.g., raw composition and moisture content, and process parameters for the non-pressure agglomeration of carbonate lime combined with biomass waste, e.g., calcium sulfate (ECO-ZEC), post-production residue (PPR), and fly ash using a molasses-based binder. The chemical analysis [...] Read more.
The study identified the optimal material, e.g., raw composition and moisture content, and process parameters for the non-pressure agglomeration of carbonate lime combined with biomass waste, e.g., calcium sulfate (ECO-ZEC), post-production residue (PPR), and fly ash using a molasses-based binder. The chemical analysis revealed that the CaO content in the granules ranged from 34% to 52%, with the highest calcium concentration observed in formulations containing carbonate limestone. Among the waste-based additives, PPR exhibited a calcium content only 7% lower than that of pure carbonate lime, whereas ECO-ZEC and fly ash contained 20% and 30% less calcium, respectively. Due to the low MgO levels in the tested granules, they cannot be classified as calcium–magnesium fertilizers. Regarding heavy metal content, concentrations of cadmium and lead remained below the permissible regulatory limits. The highest levels of these elements were detected in the fly ash-enriched granules, consistent with the known chemical composition of this waste type. The tested waste materials ECO-ZEC, PPR, and fly ash demonstrated alkaline pH values ranging from 12.37 for fly ash and 12.28 for PPR to 8.84 for ECO-ZEC. The reference carbonate lime showed a slightly lower pH of 8.82. Mechanical strength testing indicated that the addition of PPR improved the mechanical resistance of the granules compared to the reference sample. Conversely, the inclusion of ECO-ZEC and fly ash reduced this parameter. Notably, granules containing fly ash and PPR exhibited prolonged disintegration times in water, suggesting their potential application as slow-release fertilizers. The findings of this study demonstrate that industrial waste materials generated from biomass combustion can serve as effective components in the production of innovative lime-based fertilizers. This innovative approach not only promotes the recycling of by-products but also supports the development of sustainable agriculture by reducing the environmental burdens associated with waste disposal and encouraging resource efficiency. Full article
Show Figures

Figure 1

20 pages, 6542 KiB  
Article
Diclofenac-Loaded Orodispersible Nanofibers Prepared by Double-Needle Electrospinning
by Luca Éva Uhljar, Tekla Jáger, Csongor Hajdu, Anett Motzwickler-Németh, Orsolya Jójárt-Laczkovich, Martin Cseh, Katalin Burian and Rita Ambrus
Polymers 2025, 17(9), 1262; https://doi.org/10.3390/polym17091262 - 6 May 2025
Viewed by 666
Abstract
The main aim of this study was to develop a diclofenac-loaded, orodispersible formulation prepared by double-needle electrospinning. For the use of two needles, one above the other, a new needle holder was designed and 3D printed. During the optimization of the drug-free PVP [...] Read more.
The main aim of this study was to develop a diclofenac-loaded, orodispersible formulation prepared by double-needle electrospinning. For the use of two needles, one above the other, a new needle holder was designed and 3D printed. During the optimization of the drug-free PVP carrier, the effect of the polymer concentration on the morphology and average fiber diameter was investigated. Electrospinning was possible for solutions with a PVP concentration between 7.5 and 15 w/w%. Too low viscosity led to smooth-surfaced nanoparticles, since electrospraying occurred. The optimal material properties and process parameters were used to prepare drug-loaded nanofibers. The morphology, crystallinity, chemical interactions, encapsulation efficiency, drug distribution, in vitro disintegration, in vitro dissolution, cytocompatibility, and 6-month stability were tested. According to the results, the electrospun formulation was an amorphous solid dispersion with excellent encapsulation efficiency. The drug distribution was homogeneous within the nanofiber matrix. The disintegration was completed in about 5 s in artificial saliva and about 41 s on an artificial tongue. The dissolution in artificial saliva was complete within 10 min. Overall, a promising formulation was developed with rapid disintegration, immediate drug release, and good stability. Additionally, a new in vitro dissolution method (“AS-to-FaSSGF”) was developed to obtain a bigger picture of drug dissolution throughout the gastrointestinal tract. Full article
(This article belongs to the Special Issue Multifunctional Application of Electrospun Fiber)
Show Figures

Figure 1

19 pages, 5644 KiB  
Article
3D Printing of PVA Capsular Devices for Applications in Compounding Pharmacy: Stability Evaluation and In Vivo Performance
by Juan Francisco Peña, Daniel Andrés Real, Juan Pablo Real, Santiago Daniel Palma, María del Pilar Zarazaga, Nicolás Javier Litterio, Loreana Gallo and Ivana Maria Cotabarren
Pharmaceutics 2025, 17(5), 613; https://doi.org/10.3390/pharmaceutics17050613 - 5 May 2025
Cited by 1 | Viewed by 663
Abstract
Background: The personalization of medication through 3D printing enables the development of capsular devices (CDs) tailored to patient-specific needs. This study aimed to evaluate the stability and in vivo performance of 3D-printed polyvinyl alcohol (PVA) CDs with 0.4 and 0.9 mm width [...] Read more.
Background: The personalization of medication through 3D printing enables the development of capsular devices (CDs) tailored to patient-specific needs. This study aimed to evaluate the stability and in vivo performance of 3D-printed polyvinyl alcohol (PVA) CDs with 0.4 and 0.9 mm width wall thicknesses (WT) compared to traditional hard gelatin capsules (HGCs). Methods: Capsules were tested for swelling, erosion, adhesion, water sorption, and in vitro disintegration. Additionally, the release of the model drug (losartan potassium) from CDs was evaluated. In vivo capsule opening times were assessed in dogs using X-ray imaging. Stability studies were conducted under natural (25 ± 2 °C, 60 ± 5% RH) and accelerated (40 ± 2 °C, 75 ± 5% RH) storage conditions. Results: CDs with 0.4 mm WT (CD–0–0.4) exhibited higher swelling and erosion, lower adhesion, and faster disintegration, leading to a more immediate drug release, comparable to HGCs. A strong correlation was found between in vitro and in vivo disintegration behavior. Water sorption tests revealed lower moisture affinity for PVA CDs compared to HGC. Stability studies showed that CD–0–0.4 retained its physical and chemical properties. Instead, CDs with 0.9 mm WT (CD–0–0.9) were sensitive to storage, particularly under accelerated aging, which affected their integrity and release profile. Conclusions: These findings highlight the potential of PVA-CDs, especially the 0.4 mm design, as a promising and stable alternative for compounding pharmacy applications, offering an effective platform for personalized oral drug delivery. Full article
Show Figures

Figure 1

29 pages, 8105 KiB  
Article
UV-C and UV-C/H₂O-Induced Abiotic Degradation of Films of Commercial PBAT/TPS Blends
by K. Gutiérrez-Silva, Antonio J. Capezza, O. Gil-Castell and J. D. Badia-Valiente
Polymers 2025, 17(9), 1173; https://doi.org/10.3390/polym17091173 - 25 Apr 2025
Viewed by 526
Abstract
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) [...] Read more.
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) on films of commercial poly(butylene adipate-co-terephthalate)-thermoplastic starch (PBAT/TPS) blends. Changes in structural, chemical, morphological, and thermal properties, as well as molar mass, were analyzed. The results showed distinct degradation mechanisms during exposure to UV-C irradiation either in dry or during water-immersion conditions. UV-C irradiation disrupted PBAT ester linkages, inducing photodegradation and chain scission, leading to a more pronounced molar mass decrease compared to that under water immersion, where a more restrained impact on the molar mass was ascribed to diffuse attenuation coefficient of irradiation. Nevertheless, under UV-C/H2O conditions, erosion and disintegration were enhanced by dissolving and leaching of mainly the TPS fraction, creating a porous structure that facilitated the degradation of the film. Blends with higher TPS content exhibited greater susceptibility, with pronounced reductions in PBAT molar mass. In conclusion, exposure of films of PBAT/TPS blends to ultraviolet/water-assisted environments effectively initiated abiotic degradation, in which fragmentation was accentuated by the contribution of water immersion. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 19377 KiB  
Article
Ancient Egyptian Granite Graffiti of Bigeh Island, Philae Archaeological Site (Aswan, Egypt): An Archaeometric and Decay Assessment for Their Conservation
by Abdelrhman Fahmy, Salvador Domínguez-Bella and Eduardo Molina-Piernas
Heritage 2025, 8(4), 137; https://doi.org/10.3390/heritage8040137 - 12 Apr 2025
Cited by 1 | Viewed by 1193
Abstract
This study investigates the deterioration of granite graffiti at the Philae Archaeological Site on Bigeh Island (Aswan, Egypt), attributed to Khaemwaset (1281–1225 BCE, 19th Dynasty). These graffiti, despite being carved into durable Aswan granite, are experiencing progressive degradation due to environmental and hydrological [...] Read more.
This study investigates the deterioration of granite graffiti at the Philae Archaeological Site on Bigeh Island (Aswan, Egypt), attributed to Khaemwaset (1281–1225 BCE, 19th Dynasty). These graffiti, despite being carved into durable Aswan granite, are experiencing progressive degradation due to environmental and hydrological factors. This research aims to analyze the mineralogical and chemical transformations affecting the graffiti to provide a comparative assessment of submerged and unsubmerged granite surfaces. A multi-analytical approach was employed, combining petrographical examination, X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) to identify compositional changes and deterioration patterns. The results indicate mineralogical transformations in submerged and periodically exposed surfaces. The granite primarily consists of quartz, feldspar, and biotite, with notable alterations including kaolinization and illitization and dissolution of feldspar minerals and biotite oxidation. These processes are directly linked to prolonged exposure to fluctuating water levels and recurrent wet–dry cycles, which accelerate granular disintegration, exfoliation, and surface loss. Additionally, salt crystallization, particularly halite, contributes to granite weathering, while sulfate interactions promote chemical weathering. In addition, biofilm colonization, facilitated by high moisture retention, further exacerbates surface deterioration by producing organic acids that weaken the mineral matrix. Finally, the results confirm the need for conservation interventions to mitigate ongoing damage. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

20 pages, 16629 KiB  
Article
Physicochemical Properties and In Vitro Dissolution of Orally Disintegrating Films Based on Polysaccharides: The Case of Acetaminophen
by Carolina Caicedo, Natalia Ramírez Giraldo, Leidy Portilla, Laura Saldaña, Giovanni González-Pérez and Abril Fonseca García
Appl. Sci. 2025, 15(8), 4084; https://doi.org/10.3390/app15084084 - 8 Apr 2025
Viewed by 917
Abstract
Due to advances in edible films based on polysaccharides that can carry an active pharmaceutical ingredient (API), these films now provide rapid and effective release upon consumption. These films provide an alternative to conventional drug delivery methods and are known as orally disintegrating [...] Read more.
Due to advances in edible films based on polysaccharides that can carry an active pharmaceutical ingredient (API), these films now provide rapid and effective release upon consumption. These films provide an alternative to conventional drug delivery methods and are known as orally disintegrating films (ODFs). This study aimed to evaluate the capacity of an edible film composed of starch, chitosan, and maltodextrin to carry an API while maintaining its physicochemical and surface properties. Acetaminophen, a hydrophilic drug, was selected as the model API and incorporated into the edible film. The film achieved an API loading capacity of approximately 4.37 mg—comparable to the standard doses of certain hydrophilic drugs. Chemical analysis using vibrational spectroscopy revealed strong intermolecular interactions between the components. X-ray diffraction analysis confirmed these interactions through a decrease in crystallinity within the biopolymeric compounds, while the model API retained its structural ordering. However, water absorption values increased by approximately 90% in the edible film. Scanning electron microscopy images showed a homogeneous dispersion of the model API throughout the film, without aggregation, demonstrating that the film can effectively accommodate this drug concentration. Furthermore, the elasticity remained comparable in both formulations, with a Young’s modulus of 9.27 MPa for the control film and 9.38 MPa for the API-loaded film. Overall, the edible film developed in this study represents a promising system for API delivery. Full article
(This article belongs to the Special Issue Advances in Biomaterials and Drug Technology)
Show Figures

Figure 1

20 pages, 2510 KiB  
Article
Development of Vancomycin, a Glycopeptide Antibiotic, in a Suitable Nanoform for Oral Delivery
by Ali A. Amer, Lewis Bingle, Cheng Shu Chaw and Amal Ali Elkordy
Molecules 2025, 30(7), 1624; https://doi.org/10.3390/molecules30071624 - 5 Apr 2025
Viewed by 1264
Abstract
Bacterial infections caused by resistant strains have emerged as one of the most significant life-threatening challenges. Developing alternatives to conventional antibiotic formulations is crucial to overcoming these challenges. Vancomycin HCl (VCM) is a glycopeptide antibiotic used for Gram-positive bacterial infections that must be [...] Read more.
Bacterial infections caused by resistant strains have emerged as one of the most significant life-threatening challenges. Developing alternatives to conventional antibiotic formulations is crucial to overcoming these challenges. Vancomycin HCl (VCM) is a glycopeptide antibiotic used for Gram-positive bacterial infections that must be given intravenously for systemic infections since it cannot pass through the gut wall due to its chemical structure and characteristics. The aim of this research is to develop VCM in a niosomal nanoform to then be encapsulated in fast-disintegrating oral films for effective delivery to enhance the application of vancomycin-loaded niosomes for treating oral infections and to be used in dental treatments. The formulation of niosomes encapsulating VCM was conducted with various ratios of Span 40, Span 60, and cholesterol as well as Kolliphor RH40 and Kolliphor ELP as co-surfactants using the microfluidic technique. The prepared niosomes were characterised using dynamic light scattering (DLS) for their size determination; high-pressure liquid chromatography, HPLC, for drug encapsulation efficiency determination; and the agar diffusion method for the determination of the antibacterial efficacy of the VCM niosomes against Bacillus subtilis. The niosomal formulation was then incorporated into polyvinyl alcohol (PVA) film, and the properties of the oral film were characterised by in vitro assays. The vancomycin-loaded niosomes produced with optimal conditions exhibited small diameter with acceptable polydispersity index, and drug encapsulation efficiency. This study presents multifunctional niosomes loaded with VCM, which demonstrated efficient in vitro activity against Gram-positive bacteria upon the slow release of VCM from niosomes, as demonstrated by the dissolution test. Oral films containing VCM niosomes demonstrated uniform weights and excellent flexibility with high foldability and a rapid disintegration time of 105 ± 12 s to release the niosomal content. This study showed that the microfluidic approach could encapsulate VCM, a peptide in salt form, in surfactant-based niosomal vesicles with a narrow size distribution. The incorporation of niosomes into fast-disintegrating film provides a non-invasive and patient-friendly alternative for treating bacterial infections in the oral cavity, making it a promising approach for dental and systemic applications. Full article
(This article belongs to the Special Issue Molecular Approaches to Drug Discovery and Development)
Show Figures

Figure 1

26 pages, 1840 KiB  
Review
Green Catalysis: The Role of Medicinal Plants as Food Waste Decomposition Enhancers/Accelerators
by Liziwe L. Mugivhisa and Madira C. Manganyi
Life 2025, 15(4), 552; https://doi.org/10.3390/life15040552 - 28 Mar 2025
Cited by 1 | Viewed by 788
Abstract
The escalating global issue of food waste, valued at billions of USD annually and significantly impacting sustainability across social, economic, and environmental dimensions, necessitates innovative solutions to enhance waste management processes. Conventional decomposition techniques frequently encounter challenges related to inefficiencies and extended processing [...] Read more.
The escalating global issue of food waste, valued at billions of USD annually and significantly impacting sustainability across social, economic, and environmental dimensions, necessitates innovative solutions to enhance waste management processes. Conventional decomposition techniques frequently encounter challenges related to inefficiencies and extended processing durations. This investigation examines the potential contributions of medicinal plants as green catalysts in the decomposition of food waste, utilizing their bioactive compounds to mitigate these obstacles. Medicinal plants facilitate the decomposition process through various mechanisms as follows: they secrete enzymes and metabolites that aid in the disintegration of organic matter, enhancing microbial activity and soil pH and structure. Furthermore, they foster nitrogen cycling and generate growth regulators that further optimize the efficiency of decomposition. The symbiotic associations between medicinal plants and microorganisms, including mycorrhizal fungi and rhizobacteria, are also instrumental in enhancing nutrient cycling and improving rates of decomposition. The utilization of medicinal plants in food waste management not only accelerates the decomposition process but also underpins sustainable practices by converting waste into valuable compost, thereby enriching soil health and lessening dependence on chemical fertilizers. This methodology is congruent with the 2030 Agenda for Sustainable Development and presents a plausible trajectory toward a circular economy and improved environmental sustainability. Full article
(This article belongs to the Special Issue Plants as a Promising Biofactory for Bioactive Compounds: 2nd Edition)
Show Figures

Figure 1

24 pages, 2193 KiB  
Article
Extract from Rosa spp. as a Factor Influencing the Growth Rate of Coagulase-Negative Staphylococcus Strains
by Lidia Piekarska-Radzik, Joanna Milala, Robert Klewicki, Michał Sójka, Dorota Żyżelewicz, Bożena Matysiak and Elżbieta Klewicka
Molecules 2025, 30(7), 1443; https://doi.org/10.3390/molecules30071443 - 24 Mar 2025
Cited by 1 | Viewed by 407
Abstract
Coagulase-negative bacteria of the Staphylococcus genus are currently frequent food contaminants. The increase in antibiotic resistance means that these microorganisms are becoming the cause of many serious infections and toxications. Their resistance to routinely used chemical compounds has led to the search for [...] Read more.
Coagulase-negative bacteria of the Staphylococcus genus are currently frequent food contaminants. The increase in antibiotic resistance means that these microorganisms are becoming the cause of many serious infections and toxications. Their resistance to routinely used chemical compounds has led to the search for alternative methods to combat food-borne pathogens. For this purpose, plant extracts rich in phenolic compounds are increasingly used. The aim of this study was to assess the effect of extracts obtained from the pseudo-fruits and flesh of Rosa canina, Rosa rugosa and Rosa pomifera ‘Karpatia’ on the growth dynamics of bacterial strains of the Staphylococcus genus (72-h co-culture; plate inoculation method). The conducted studies allowed us to conclude that extracts from Rosa spp. show high antistaphylococcal activity. However, it is not proportional to the dose used. Rosa spp. extracts already at concentrations of ¼ MIC limit the growth of the biomass of bacteria of the Staphylococcus genus. The above-described dependencies are very individual—strain-specific, not species-specific. However, based on SEM analysis, it can be observed that the antistaphylococcal mechanism of action of Rosa spp. extracts is associated with the coating of cell walls by the extracts and the disintegration of cell membranes, as a result of which the cells are destroyed. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

23 pages, 3660 KiB  
Article
The Treatment of Iron-Containing Foundry Dusts with the Aim of Their Recycling and Their Effect on the Properties of Cast Iron
by Patrik Fedorko, Alena Pribulova, Peter Futas, Marcela Pokusova, Jozef Petrik, Peter Blasko, Marcin Brzeziński and Mariusz Łucarz
Metals 2025, 15(2), 214; https://doi.org/10.3390/met15020214 - 18 Feb 2025
Viewed by 1091
Abstract
The foundry industry is an industry with a large production of waste. One such type of waste is fine-grained to dust-like waste, depending on the stage of the foundry process in which it is generated. As part of this research, dust samples were [...] Read more.
The foundry industry is an industry with a large production of waste. One such type of waste is fine-grained to dust-like waste, depending on the stage of the foundry process in which it is generated. As part of this research, dust samples were collected from three Slovak foundries producing castings from gray iron, ductile iron, and steel. The aim of the experiments was to recycle iron from dust materials in the foundry process. Based on the chemical composition of the dust, samples with the highest iron content were selected and added to the charge of the electric induction furnace (EIF). Since it was not possible to add dust material directly into the EIF, the dust was modified by pelletizing and briquetting using three types of binders selected according to the foundries’ requirements. Pellets were prepared using dust from only one type of foundry waste and were used as part of the charge in the EIF. In the case of briquetting, different binder contents in the briquette mixture were tested to evaluate their effect on the strength and disintegration of the briquettes. Based on the foundries’ requirements that the binder had to be low-cost and that we had to not contaminate the melt (thus requiring a minimal amount), not affect the furnace operation, and not degrade the properties of the produced cast iron, briquettes with the best properties were selected and used as part of the charge for cast iron production. Samples of the cast iron produced this way were taken for chemical analysis, and specimens were prepared for tensile strength testing. The results showed that the use of briquettes, in limited amounts, did not have a negative impact on the chemical composition of the cast iron, the melting process, or its tensile strength. Full article
Show Figures

Figure 1

30 pages, 9822 KiB  
Article
Exploring Antimycobacterial Potential: Safety Evaluation and Active Compound Isolation from Gymnopilus junonius
by Jenske Didloff, Gerhardt J. Boukes, Mutenta N. Nyambe, Denzil R. Beukes, Mookho S. Lerata, Velile Vilane, Michael Lee, Sharlene Govender and Maryna van de Venter
Antibiotics 2025, 14(2), 179; https://doi.org/10.3390/antibiotics14020179 - 11 Feb 2025
Viewed by 1203
Abstract
Background/Objectives: Tuberculosis remains a major public health crisis, and it is imperative to search for new antimycobacterial drugs. Natural products, including medicinal macrofungi, have been used as sources for the discovery of pharmaceuticals; however, research on their antimycobacterial activity remains limited. This study [...] Read more.
Background/Objectives: Tuberculosis remains a major public health crisis, and it is imperative to search for new antimycobacterial drugs. Natural products, including medicinal macrofungi, have been used as sources for the discovery of pharmaceuticals; however, research on their antimycobacterial activity remains limited. This study aimed to isolate and identify the bioactive compound responsible for antimycobacterial activity, thereby expanding on the limited knowledge regarding the antimicrobial activity and bioactive compounds present in Gymnopilus junonius. Methods: Bioassay-guided fractionation using column chromatography and preparative thin-layer chromatography were employed to isolate the active compound. Antimycobacterial activity against Mycobacterium tuberculosis H37 was assessed using a resazurin microplate assay (REMA). The chemical structure was determined by 1H nuclear magnetic resonance (NMR) spectroscopy, heteronuclear single quantum coherence (HSQC) spectroscopy, heteronuclear multiple bond correlation (HMBC) spectroscopy, and high-resolution electrospray ionization mass (HR-ESI-MS) spectrometry. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes in M. tuberculosis induced by the compound. Cytotoxicity was evaluated in African green monkey kidney cells (Vero), human liver cells (C3A), and zebrafish embryos/larvae. Results: Bioassay-guided fractionation led to the isolation of gymnopilene, which showed inhibitory activity against M. tuberculosis (MIC: 31.25 µg/mL). TEM analysis revealed that treatment with gymnopilene caused ultrastructural damage observed as the disruption and disintegration of the cell wall. While gymnopilene demonstrated cytotoxicity in Vero and C3A cells, no toxicity was observed in zebrafish embryos/larvae for the crude extract. Conclusions: This study highlights that macrofungi, such as G. junonius, could be a valuable resource of bioactive compounds. Full article
Show Figures

Figure 1

20 pages, 7199 KiB  
Article
Compatibility and Efficacy Evaluations of Organic Protective Coatings for Contemporary Muralism
by Laura Pagnin, Sara Goidanich, Francesca Caterina Izzo, Yezi Zhang, Dominique Scalarone and Lucia Toniolo
Coatings 2025, 15(2), 166; https://doi.org/10.3390/coatings15020166 - 2 Feb 2025
Cited by 1 | Viewed by 2959
Abstract
Contemporary muralism is a constantly expanding form of urban art, whose preservation is highly debated and for which no specific preventive conservation measures have been defined. The degradation of painting materials remains a dramatic issue as mural paintings undergo rapid and inevitable chemical–physical [...] Read more.
Contemporary muralism is a constantly expanding form of urban art, whose preservation is highly debated and for which no specific preventive conservation measures have been defined. The degradation of painting materials remains a dramatic issue as mural paintings undergo rapid and inevitable chemical–physical reactions, leading to their aesthetic decay and chemical–mechanical disintegration. This work started with interviews with, and questionnaires given to experts in the field from which various needs emerged, including defining a testing protocol for the study of the compatibility and effectiveness of organic coatings to protect street art painted surfaces. Five protective formulations available on the market were selected and applied on mock-ups realized with three different types of paintings (alkyd, acrylic, and styrenic). The efficacy and affinity of the five protective treatments in relation to the different underlying painting layers were investigated. The adopted testing protocol enabled understanding the protection efficacy and compatibility of the different tested formulations in relation to the type of painting and wall preparation. The typology of the underlying paint mainly influences the final aesthetic result, while the application of the primer may play a relevant role in terms of the protection effectiveness, confirming the importance of pre-treating the substrate before painting. The results clearly show that there is still no specific and effective protection system that is appropriate for all commercial paints used by street artists. Full article
Show Figures

Figure 1

Back to TopTop