Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (112)

Search Parameters:
Keywords = charge delocalization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1594 KiB  
Article
Molecular-Level Insights into Meta-Phenylenediamine and Sulfonated Zinc Phthalocyanine Interactions for Enhanced Polyamide Membranes: A DFT and TD-DFT Study
by Ameni Gargouri and Bassem Jamoussi
Polymers 2025, 17(15), 2019; https://doi.org/10.3390/polym17152019 - 24 Jul 2025
Viewed by 277
Abstract
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such [...] Read more.
Access to clean water is a pressing global concern and membrane technologies play a vital role in addressing this challenge. Thin-film composite membranes prepared via interfacial polymerization (IPol) using meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) exhibit excellent separation performance, but face limitations such as fouling and low hydrophilicity. This study investigated the interaction between MPD and sulfonated zinc phthalocyanine, Zn(SO2)4Pc, as a potential strategy for enhancing membrane properties. Using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT), we analyzed the optimized geometries, electronic structures, UV–Vis absorption spectra, FT-IR vibrational spectra, and molecular electrostatic potentials of MPD, Zn(SO2)4Pc, and their complexes. The results show that MPD/Zn(SO2)4Pc exhibits reduced HOMO-LUMO energy gaps and enhanced charge delocalization, particularly in aqueous environments, indicating improved stability and reactivity. Spectroscopic features confirmed strong interactions via hydrogen bonding and π–π stacking, suggesting that Zn(SO2)4Pc can act as a co-monomer or additive during IPol to improve polyamide membrane functionality. A conformational analysis of MPD/Zn(SO2)4Pc was conducted using density functional theory (DFT) to evaluate the impact of dihedral rotation on molecular stability. The 120° conformation was identified as the most stable, due to favorable π–π interactions and intramolecular hydrogen bonding. These findings offer computational evidence for the design of high-performance membranes with enhanced antifouling, selectivity, and structural integrity for sustainable water treatment applications. Full article
(This article belongs to the Special Issue Nanocomposite Polymer Membranes for Advanced Water Treatment)
Show Figures

Figure 1

23 pages, 4276 KiB  
Article
First-Principles Insights into Mo and Chalcogen Dopant Positions in Anatase, TiO2
by W. A. Chapa Pamodani Wanniarachchi, Ponniah Vajeeston, Talal Rahman and Dhayalan Velauthapillai
Computation 2025, 13(7), 170; https://doi.org/10.3390/computation13070170 - 14 Jul 2025
Viewed by 235
Abstract
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where [...] Read more.
This study employs density functional theory (DFT) to investigate the electronic and optical properties of molybdenum (Mo) and chalcogen (S, Se, Te) co-doped anatase TiO2. Two co-doping configurations were examined: Model 1, where the dopants are adjacent, and Model 2, where the dopants are farther apart. The incorporation of Mo into anatase TiO2 resulted in a significant bandgap reduction, lowering it from 3.22 eV (pure TiO2) to range of 2.52–0.68 eV, depending on the specific doping model. The introduction of Mo-4d states below the conduction band led to a shift in the Fermi level from the top of the valence band to the bottom of the conduction band, confirming the n-type doping characteristics of Mo in TiO2. Chalcogen doping introduced isolated electronic states from Te-5p, S-3p, and Se-4p located above the valence band maximum, further reducing the bandgap. Among the examined configurations, Mo–S co-doping in Model 1 exhibited most optimal structural stability structure with the fewer impurity states, enhancing photocatalytic efficiency by reducing charge recombination. With the exception of Mo–Te co-doping, all co-doped systems demonstrated strong oxidation power under visible light, making Mo-S and Mo-Se co-doped TiO2 promising candidates for oxidation-driven photocatalysis. However, their limited reduction ability suggests they may be less suitable for water-splitting applications. The study also revealed that dopant positioning significantly influences charge transfer and optoelectronic properties. Model 1 favored localized electron density and weaker magnetization, while Model 2 exhibited delocalized charge density and stronger magnetization. These findings underscore the critical role of dopant arrangement in optimizing TiO2-based photocatalysts for solar energy applications. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

15 pages, 1943 KiB  
Article
Theoretical Study on the Influence of Building Blocks in Benzotrithiophene-Based Covalent Organic Frameworks for Optoelectronic Properties
by Xu Li, Yue Niu, Kexin Ma, Xin Huang, Qingji Wang and Zhiqiang Liang
Catalysts 2025, 15(7), 647; https://doi.org/10.3390/catal15070647 - 2 Jul 2025
Viewed by 416
Abstract
Covalent organic frameworks (COFs) have emerged as unique catalysts for photocatalysis; however, the relationship between their building block units and optoelectronic properties remains elusive. Herein, we explored the influence of building blocks on the optoelectronic properties of benzotrithiophene-based COFs (BTT-COFs) using density functional [...] Read more.
Covalent organic frameworks (COFs) have emerged as unique catalysts for photocatalysis; however, the relationship between their building block units and optoelectronic properties remains elusive. Herein, we explored the influence of building blocks on the optoelectronic properties of benzotrithiophene-based COFs (BTT-COFs) using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The calculation results suggested that three critical factors—the conjugated structure, planarity, and the introduction of nitrogen heteroatoms—significantly influenced charge separation and transfer within BTT-COFs. Structure–property relationships were established through several critical quantitative parameters, such as Sr, t, and CT. Among seven BTT-COFs, BTT-Tpa (Tpa: 4,4′,4″-triaminotriphenylamine) exhibited the most efficient charge separation and the highest charge transfer capability due to the electronegativity of triphenylamine, the delocalization of its lone pair electrons, and its unique star-shaped configuration. These theoretical results will provide an essential foundation for selecting donor–acceptor units in the design of novel COF materials for photocatalytic reaction applications. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

15 pages, 2389 KiB  
Article
Tracking Photoinduced Charge Redistribution in a Cu(I) Diimine Donor–Bridge–Acceptor System with Time-Resolved Infrared Spectroscopy
by Sean A. Roget, Wade C. Henke, Maxwell Taub, Pyosang Kim, Jonathan T. Yarranton, Xiaosong Li, Karen L. Mulfort and Lin X. Chen
Photochem 2025, 5(2), 16; https://doi.org/10.3390/photochem5020016 - 19 Jun 2025
Viewed by 416
Abstract
Understanding electron density migration along excited-state pathways in photochemical systems is critical for optimizing solar energy conversion processes. In this study, we investigate photoinduced electron transfer (PET) in a covalently linked donor–bridge–acceptor (D-B-A) system, where [Cu(I)-bis(1,10-phenanthroline)]+ acts as an electron donor, and [...] Read more.
Understanding electron density migration along excited-state pathways in photochemical systems is critical for optimizing solar energy conversion processes. In this study, we investigate photoinduced electron transfer (PET) in a covalently linked donor–bridge–acceptor (D-B-A) system, where [Cu(I)-bis(1,10-phenanthroline)]+ acts as an electron donor, and anthraquinone, tethered to one of the phenanthroline ligands via a vibrationally active ethyne bridge, behaves as an electron acceptor. Visible transient absorption spectroscopy revealed the dynamic processes occurring in the excited state, including PET to the acceptor species. This was indicated by the spectral features of the anthraquinone radical anion that appeared on a timescale of 30 ps in polar solvents. Time-resolved infrared (TRIR) spectroscopy of the alkyne vibration (CC stretch) of the ethyne bridge provided insight into electronic structural changes in the metal-to-ligand charge transfer (MLCT) state and along the PET reaction coordinate. The observed spectral shift and enhanced transition dipole moment of the CC stretch demonstrated that there was already partial delocalization to the anthraquinone acceptor following MLCT excitation, verified by DFT calculations. An additional excited-state TRIR signal unrelated to the vibrational mode highlighted delocalization between the phenanthroline ligands in the MLCT state. This signal decayed and the CC stretch narrowed and shifted towards the ground-state frequency following PET, indicating a degree of localization onto the acceptor species. This study experimentally elucidates charge redistribution during PET in a Cu(I) diimine D-B-A system, yielding important information on the ligand design for optimizing PET reactions. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry, 3rd Edition)
Show Figures

Graphical abstract

24 pages, 1874 KiB  
Article
Application of Hansen Solubility Parameters in the Aqueous-Ethanol Extraction of Genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside from Derris scandens and Its Molecular Orbital Study on Antioxidant Activity
by Thitiporn Tantinithiphong, Wanna Eiamart, Sarin Tadtong, Suwanna Vorarat and Weerasak Samee
Int. J. Mol. Sci. 2025, 26(12), 5740; https://doi.org/10.3390/ijms26125740 - 15 Jun 2025
Viewed by 480
Abstract
This study explored the extraction of genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (GTG) from Derris scandens using an aqueous-ethanol solvent system, aiming to optimize yield and antioxidant activity. Hansen solubility parameters (HSP) were employed to determine the optimal solvent composition, with the highest GTG yield (6.83 ± 0.06 [...] Read more.
This study explored the extraction of genistein-7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (GTG) from Derris scandens using an aqueous-ethanol solvent system, aiming to optimize yield and antioxidant activity. Hansen solubility parameters (HSP) were employed to determine the optimal solvent composition, with the highest GTG yield (6.83 ± 0.06 mg/g dried weight) obtained from 50% ethanol—correlating well with HSP predictions. Ultrasonic extraction was most effective with solvents having a dielectric constant between 50 and 60. The antioxidant potential of isolated GTG was evaluated using the DPPH assay, which yielded an IC50 of 87.86 ± 1.85 μM, and the FRAP assay, with a value of 34.23 ± 2.75 mg FeSO4 equivalents. Molecular orbital analysis revealed HOMO and LUMO energy gaps (ΔE = 10.6715 eV) similar to known antioxidants such as gallic acid, ascorbic acid, Trolox, and quercetin. These findings demonstrate that HSP effectively guided solvent selection for ultrasound-assisted extraction of GTG. The antioxidant activity is attributed to GTG’s capacity to donate electrons and stabilize radicals via extended charge delocalization within the aglycone structure, confirming its potential as a natural antioxidant agent. Full article
Show Figures

Figure 1

13 pages, 2773 KiB  
Article
Effect of Rare-Earth Co-Doping on the Trap Level Concentrations in Silica Glasses: Experimental and Theoretical Study of the Light Emission Under X-Rays for Dosimetry Applications
by Ismail Zghari, Hicham El Hamzaoui, Adriana Morana, Youcef Ouerdane, Bruno Capoen, Sarah Garzandat, Sylvain Girard, Aziz Boukenter, Franck Mady, Mourad Benabdesselam, Gilles Mélin and Mohamed Bouazaoui
Sensors 2025, 25(10), 3005; https://doi.org/10.3390/s25103005 - 9 May 2025
Viewed by 429
Abstract
In this paper, an experimental and theoretical study was undertaken to assess the impact of rare-earth co-doping of silica glasses on the light emission under X-rays. To this aim, radioluminescence (RL), phosphorescence (PP), and thermoluminescence (TL) signals of Ce3+/Gd3+ co-doped [...] Read more.
In this paper, an experimental and theoretical study was undertaken to assess the impact of rare-earth co-doping of silica glasses on the light emission under X-rays. To this aim, radioluminescence (RL), phosphorescence (PP), and thermoluminescence (TL) signals of Ce3+/Gd3+ co-doped silica glasses have been successively measured and combined at different dose rates and irradiation temperatures. The RL response of the weakly co-doped sample was found to be temperature-independent between 273 K and 353 K. This result suggests that, based on this RL response, it is possible to design ionizing radiation sensors independent of the irradiation temperature in the corresponding range. Moreover, a model that considers the electron–hole pair generation, the charge carrier trapping–detrapping, and the electron–hole recombination in the localized and delocalized bands has been developed to reproduce these optical signals. The theoretical model also explains the temperature independence of the RL response between 273 K and 353 K for the weakly co-doped sample and, therefore, the operating principle of an X-ray sensor independent of the irradiation temperature. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

15 pages, 10805 KiB  
Article
DFT-Based Investigation of Pd-Modified WO3/Porous Silicon Composites for NO2 Gas Sensors: Enhanced Synergistic Effect and High-Performance Sensing
by Xiaoyong Qiang, Zhipeng Wang, Yongliang Guo and Weibin Zhou
Coatings 2025, 15(5), 570; https://doi.org/10.3390/coatings15050570 - 9 May 2025
Viewed by 453
Abstract
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental [...] Read more.
Pd-WO3 coatings on porous silicon (PSi) substrates are engineered to enhance interfacial charge transfer and surface reactivity through atomic-scale structural tailoring. This study combines first-principles calculations and experimental characterization to elucidate how Pd nanoparticles (NPs) optimize the coating’s electronic structure and environmental stability. The hierarchical PSi framework with uniform nanopores (200–500 nm) serves as a robust substrate for WO3 nanorod growth (50–100 nm diameter), while Pd decoration (15%–20% surface coverage) strengthens Pd–O–W interfacial bonds, amplifying electron density at the Fermi level by 2.22-fold. Systematic computational analysis reveals that Pd-induced d-p orbital hybridization near the Fermi level (−2 to +1 eV) enhances charge delocalization, optimizing interfacial charge transfer. Experimentally, these modifications enhance the coating’s response to environmental degradation, showing less than 3% performance decay over 30 days under cyclic humidity (45 ± 3% RH). Although designed for gas sensing, the coating’s high surface-to-volume ratio and delocalized charge transport channels demonstrate broader applicability in catalytic and high-stress environments. This work provides a paradigm for designing multifunctional coatings through synergistic interface engineering. Full article
Show Figures

Figure 1

17 pages, 3000 KiB  
Article
Tetraanion of Tetracyclopentatetraphenylene Derivative: Global Versus Local Conjugation Modes
by Hirokazu Miyoshi, Ryosuke Sugiura, Ryohei Kishi, Atsuya Muranaka, Masanobu Uchiyama, Nagao Kobayashi, Yutaka Ie, Masayoshi Nakano and Yoshito Tobe
Chemistry 2025, 7(2), 51; https://doi.org/10.3390/chemistry7020051 - 31 Mar 2025
Viewed by 500
Abstract
Multiple reduced π-conjugated hydrocarbons exhibit π-electron conjugation modes different from neutral species due to the distinct number of electrons. Herein, we report the generation of a 32 π-electron tetraanion of a derivative of a doubly cyclic π-conjugated system with 28 π-electrons, tetracyclopentatetraphenylene (TCPTP), [...] Read more.
Multiple reduced π-conjugated hydrocarbons exhibit π-electron conjugation modes different from neutral species due to the distinct number of electrons. Herein, we report the generation of a 32 π-electron tetraanion of a derivative of a doubly cyclic π-conjugated system with 28 π-electrons, tetracyclopentatetraphenylene (TCPTP), through an exhaustive reduction with potassium. Although aggregation causes some complications, based on spectroscopic and theoretical investigations, it is revealed that negative charges are located at the outer and inner peripheries, suggesting that the tetraanion adopts a globally delocalized double annulenoid (annulene-within-an-annulene, AWA) mode, with 22 π-electron outer and 10 π-electron inner aromatic perimeters. On the other hand, excess charges of the outer perimeter are mainly located at the apical position of the pentagonal rings, indicating a significant contribution of the cyclopentadienide form. The theoretical analysis of magnetically induced ring current tropicities reveals counter-rotating ring currents at the outer and inner rings, supporting the predominant contribution of the cyclopentadienide form. Full article
Show Figures

Figure 1

20 pages, 849 KiB  
Review
Exploring the Biological Activities of Ionic Liquids and Their Potential to Develop Novel Vaccine Adjuvants
by Snehitha Akkineni, Mutasem Rawas-Qalaji, Samir A. Kouzi, Christiane Chbib and Mohammad N. Uddin
Vaccines 2025, 13(4), 365; https://doi.org/10.3390/vaccines13040365 - 28 Mar 2025
Viewed by 962
Abstract
Ionic liquids (ILs) are salts with poorly coordinated ions, allowing them to exist in a liquid phase below 100 °C or at room temperature. Therefore, they are best described as room temperature ionic liquids (RTILs). In ionic liquids, the presence of a delocalized [...] Read more.
Ionic liquids (ILs) are salts with poorly coordinated ions, allowing them to exist in a liquid phase below 100 °C or at room temperature. Therefore, they are best described as room temperature ionic liquids (RTILs). In ionic liquids, the presence of a delocalized charge in at least one ion, coupled with an organic component, inhibits the establishment of a stable solid crystal lattice. Due to their flexible properties and several distinctive characteristics, such as high ionic conductivity, high solvation power, thermal stability, low volatility, and recyclability, ILs have been extensively used in chemical industries. In addition to their various other applications, they also hold potential for drug formulation development. Ionic liquids can be used as solubility enhancers, permeability enhancers, stabilizers, targeted delivery inducers, stealth property providers, or bioavailability enhancers. Moreover, ILs hold significant potential in vaccine formulation. Many new vaccines are in the pipeline with different types of antigens; however, the existence of only a limited number of adjuvants hinder their potential use. Thus, developing new, highly effective, low-cost adjuvant preparations is a central interest among formulation scientists. With their unique properties and biological functions, ILs can be highly promising candidates for new types of vaccines. Full article
(This article belongs to the Special Issue Novel Adjuvants and Delivery Systems for Vaccines)
Show Figures

Figure 1

12 pages, 5015 KiB  
Article
6-(4-Pyridyl)Azulene Derivatives as Hole Transport Materials for Perovskite Solar Cells
by Yuanqing Sun, Zhangyan Wang, Tianyi Geng, Xinyue Liu, Yangyang Su, Yi Tian, Ming Cheng and Hongping Li
Materials 2025, 18(7), 1400; https://doi.org/10.3390/ma18071400 - 21 Mar 2025
Viewed by 499
Abstract
Azulene has been attracting much attention as a charge transfer material in organic electronics due to its inherent large dipole moment and small band gap, but its application in perovskite solar cells (PSCs) is very limited. Herein, azulene was applied as the core [...] Read more.
Azulene has been attracting much attention as a charge transfer material in organic electronics due to its inherent large dipole moment and small band gap, but its application in perovskite solar cells (PSCs) is very limited. Herein, azulene was applied as the core acceptor for hole transport materials (HTMs), and two molecules named Azu-Py-DF and Azu-Py-OMeTPA were designed and synthesized, in which 4-pyridyl was introduced on the 6-position of the 1,3-substituted azulene core to adjust energy levels. The different spatial orientations of pyridine and the azulene core improve the solubility and reduce the crystallinity of the material, which is conducive to creating a thin film morphology. Azu-Py-OMeTPA exhibited good hole and electron mobility compared with standard Spiro-OMeTAD. Applied as an HTM in PSCs, the Azu-Py-OMeTPA-based device achieved a power conversion efficiency (PCE) of 18.10%, which is higher than that of the 6-position unsubstituted counterpart. Nevertheless, the anticipated passivation effect of the 4-pyridyl group was diminished due to the electron-deficient nature of azulene’s seven-membered ring. These results demonstrate that optimizing the structure of azulene-based HTMs can significantly alter molecular spatial structure, film formation properties, electron delocalization characteristics and charge transport, and can lead to improved device performance, providing insights for the future design of novel HTMs. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

17 pages, 5520 KiB  
Article
Insights of Density Functional Theory into JP-10 Tetrahydrodicyclopentadiene Fuel Properties
by Dilip Rijal, Vladislav Vasilyev, Yunxia Yang and Feng Wang
Processes 2025, 13(2), 543; https://doi.org/10.3390/pr13020543 - 14 Feb 2025
Viewed by 999
Abstract
This study aims to investigate the structural, spectroscopic, and electronic properties of the synthetic missile fuel exo- and endo-tetrahydrodicyclopentadiene (THDCPD, JP-10) using density functional theory (DFT). It is to understand the dominance of the liquid exo-isomer (96%) of the jet fuel from the [...] Read more.
This study aims to investigate the structural, spectroscopic, and electronic properties of the synthetic missile fuel exo- and endo-tetrahydrodicyclopentadiene (THDCPD, JP-10) using density functional theory (DFT). It is to understand the dominance of the liquid exo-isomer (96%) of the jet fuel from the subtle differences between the isomers. The present DFT calculations reveal that the exo-isomer is 15.51 kJ/mol more stable than the endo-isomer, attributed to the flipping of the triangular ΔC8-C10-C9 ring in its norbornane skeleton. Calculated nuclear magnetic resonance (13C-NMR) and infrared (IR) spectra, validated by experimental data, reveal larger chemical shifts for junction carbons (C1/C2 and C3/C4) due to reduced electron shielding and show distinct vibrational patterns. Charge analysis indicates that all carbon atoms are negatively charged except for the C1/C2 carbons which are positively charged in both isomers. While overall IR spectra of the isomers appear similar, bands near 3000 cm−1 correspond to distinctly different vibrational modes. The exo-isomer’s electronic structure features a more delocalized HOMO and a larger HOMO-LUMO gap (7.63 eV) than the endo-isomer (7.37 eV). All such differences contribute to the properties of exo-THDCPD and, therefore, why the exo-isomer dominates JP-10 fuel. Full article
(This article belongs to the Special Issue Novel Fuel Technologies: Synthesis, Production and Property Analysis)
Show Figures

Figure 1

15 pages, 4270 KiB  
Article
The Homopolyatomic Sulfur Cation [S20]2+
by Janis Derendorf, Lara Heiderich, Carsten Jenne and Marc C. Nierstenhöfer
Inorganics 2025, 13(1), 23; https://doi.org/10.3390/inorganics13010023 - 15 Jan 2025
Viewed by 1211
Abstract
Homopolyatomic cations of the main group elements and of the element sulfur, in particular, are used as tutorial examples to teach structure and bonding in inorganic chemistry. So far, the cations [S4]2+, [S8]2+, [S19 [...] Read more.
Homopolyatomic cations of the main group elements and of the element sulfur, in particular, are used as tutorial examples to teach structure and bonding in inorganic chemistry. So far, the cations [S4]2+, [S8]2+, [S19]2+, [S5]•+, and [S8]•+ are known experimentally. In this report, the generation and crystal structure determination of the salt Na2[S20]2[B12Cl12]3, containing the new homopolyatomic sulfur cation [S20]2+, is reported. The structure of the latter cation consists of two seven-membered homocycles, which are bridged by a six-membered sulfur chain. This structure is strongly related to that of [S19]2+. The heptasulfur rings show pronounced bond alternation. Comparison with the experimental structures of [S7X]+ (X = I, Br) and the application of quantum chemical calculations show unambiguously that the observed structural features are intrinsic properties of the cationic cyclo-heptasulfur moieties. The latter can occupy different conformations, which only slightly differ in energy. Charge delocalization and negative hyperconjugation contribute to the stability of the observed structures. The discovery of the [S20]2+ cation fits well into range of known homopolyatomic sulfur cations, which can be classified by their averaged oxidation state of sulfur. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Germany)
Show Figures

Graphical abstract

19 pages, 1809 KiB  
Article
Quantum Chemical Topological Analysis of [2Fe2S] Core in Novel [FeFe]-Hydrogenase Mimics
by Piotr Matczak
Crystals 2025, 15(1), 52; https://doi.org/10.3390/cryst15010052 - 3 Jan 2025
Viewed by 945
Abstract
Synthetic mimics of the active site of [FeFe]-hydrogenase enzymes are important in the context of catalytic hydrogen production for future energetic applications. Providing a detailed quantum chemical description of the catalytic center of such mimics contributes to a better understanding of their behavior [...] Read more.
Synthetic mimics of the active site of [FeFe]-hydrogenase enzymes are important in the context of catalytic hydrogen production for future energetic applications. Providing a detailed quantum chemical description of the catalytic center of such mimics contributes to a better understanding of their behavior in hydrogen production processes. In this work, the analysis of bonds in the butterfly [2Fe2S] core in a series of complexes based on recently synthesized [FeFe]-hydrogenase mimics has been carried out using a wide range of quantum chemical topological methods. This series includes hexacarbonyl diiron dithiolate-bridged complexes with the bridging ligand bearing a five-membered carbon ring functionalized with diverse groups. The quantum theory of atoms in molecules (QTAIM) and the electron localization function (ELF) provided detailed characteristics of Fe–Fe and Fe–S bonds in the [2Fe2S] core of the complexes. A relatively small amount of strongly delocalized electron charge is attributed to the Fe–Fe bond. It was established how the topological parameters of the Fe–Fe and Fe–S bonds are affected by the five-membered carbon ring and its functionalization in the bridging dithiolate ligand. Next, one of the first applications of the interacting quantum atoms (IQA) method to [FeFe]-hydrogenase mimics was presented. The pairwise interaction between the metal centers in the [2Fe2S] core turns out to be destabilizing in contrast to the Fe–S interactions responsible for the stabilization of the entire core. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

11 pages, 2523 KiB  
Article
Chemical Bonding and Dynamic Structural Fluxionality of a Boron-Based B8Al3+ Cluster
by Shu-Juan Gao and Tan-Lai Yu
Molecules 2024, 29(24), 5961; https://doi.org/10.3390/molecules29245961 - 17 Dec 2024
Viewed by 842
Abstract
We studied the boron-based composite cluster B8Al3+ doped with Al atoms. The global minimum structure of the B8Al3+ cluster is a three-layer structure, consisting of three parts: an Al2 unit, a B8 ring [...] Read more.
We studied the boron-based composite cluster B8Al3+ doped with Al atoms. The global minimum structure of the B8Al3+ cluster is a three-layer structure, consisting of three parts: an Al2 unit, a B8 ring and an isolated Al atom. Charge calculations analysis shows that the cluster can be expressed as [Al]+[B8]2−[Al2]2+, has 6π/6σ double aromaticity and follows the (4n+2) Hückel rule. Born–Oppenheimer molecular dynamics (BOMD) simulation shows that the B8Al3+ cluster has dynamic fluxionality properties. Remarkably, at the single-point coupled cluster singles, doubles and triples (CCSD(T)) level, the energy barrier for intramolecular rotation is merely 0.19 kcal mol−1. [B8]2− molecular wheels have magical 6π/6σ double aromaticity properties, providing a continuous cloud of delocalized electrons, which is a key factor in the dynamic fluxionality of the cluster. The B8Al3+ cluster provides a new example of dynamic structural fluxionality in molecular systems. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

8 pages, 1848 KiB  
Proceeding Paper
Evaluation the Electronic Properties of Glu-Ureido Template via Ab-Initio Study as Target Specific for PSMA
by Mohd. Faheem, Vaibhav Pandey, Anjli Shrivastav, Manisha Prasad and Manish Dixit
Chem. Proc. 2024, 16(1), 9; https://doi.org/10.3390/ecsoc-28-20204 - 14 Nov 2024
Viewed by 557
Abstract
The Prostate cancer (PC) is a major problem all over worldwide and this is the second highest cancer-related mortality rate after lung cancer all over worldwide. At least 299,010 likely cases in men were reported in the US in 2024 and about 35,250 [...] Read more.
The Prostate cancer (PC) is a major problem all over worldwide and this is the second highest cancer-related mortality rate after lung cancer all over worldwide. At least 299,010 likely cases in men were reported in the US in 2024 and about 35,250 deaths are reported. The overexpression of prostate-specific membrane antigen (PSMA) is a key factor in the progression of prostate cancer and contributes to metastasis in lymph nodes, soft tissues and bones metastasis. The numerous studies have reported that, Glu-ureido-based molecules exhibit high binding affinity for PSMA. The earliest imaging agents developed from this structure were labeled with radioactive halogen isotopes and demonstrated nanomolar binding affinity, leading to exceptional imaging properties. Hence the Glu-ureido chemical moiety is a very important template as inhibitor of PSMA. In this study to explore the chemical structural and electronic features of Glu-Ureido structure with the aid of quantum chemistry computer simulations. In this study, first optimized the structure of this chemical structure using the B3LYP 6311-G (++, d, p) basis set. In this study investigated the maximal quantity of electronic charge transfer (Nmax), chemical hardness (η), electrostatic potential, chemical potential (µ) and electrophilicity (ω). By the using Natural Bond Orbital (NBO) analysis, the examination shows that the molecule’s chemically active regions π-electron-electron delocalization within the molecule that contribute to its stability. Full article
Show Figures

Figure 1

Back to TopTop