Theoretical Study on the Influence of Building Blocks in Benzotrithiophene-Based Covalent Organic Frameworks for Optoelectronic Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Benchmarking
2.2. Optimized Geometries of BTT-COFs
2.3. Frontier Molecular Orbitals
2.4. Optical Properties of BTT-COFs
2.5. IP, EA, and Reorganization Energies
2.6. Hole–Electron Quantitative Analysis
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, L.; Xu, H.; Wu, X.; Yang, J. A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting. J. Am. Chem. Soc. 2020, 142, 4508–4516. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, Y.; Jiang, L.; Li, J.; Li, J.; Jia, J.; Yavuz, C.T.; Cui, F.; Jing, X.; Zhu, G. Ultrahigh Single Au Atoms Loaded Porous Aromatic Frameworks for Enhanced Photocatalytic Hydrogen Evolution. Adv. Mater. 2024, 36, 2404791. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, D. Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges. ACS Cent. Sci. 2020, 6, 869–879. [Google Scholar] [CrossRef]
- Li, W.; Huang, X.; Zeng, T.; Liu, Y.A.; Hu, W.; Yang, H.; Zhang, Y.B.; Wen, K. Thiazolo [5, 4-d] thiazole-based donor–acceptor covalent organic framework for sunlight-driven hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, L.; He, H.; Sun, L.; Wang, H.; Fang, X.; Zhao, Y.; Zheng, D.; Qi, Y.; Li, Z. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nat. Commun. 2022, 13, 1355. [Google Scholar] [CrossRef]
- Stegbauer, L.; Zech, S.; Savasci, G.; Banerjee, T.; Podjaski, F.; Schwinghammer, K.; Ochsenfeld, C.; Lotsch, B.V. Tailor-Made Photoconductive Pyrene-Based Covalent Organic Frameworks for Visible-Light Driven Hydrogen Generation. Adv. Energy Mater. 2018, 8, 1703278. [Google Scholar] [CrossRef]
- Qin, C.; Wu, X.; Tang, L.; Chen, X.; Li, M.; Mou, Y.; Su, B.; Wang, S.; Feng, C.; Liu, J. Dual donor-acceptor covalent organic frameworks for hydrogen peroxide photosynthesis. Nat. Commun. 2023, 14, 5238. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, M.; Liu, K.; Cao, H.; Yan, H. Covalent organic frameworks for photocatalytic applications. Appl. Catal. B Environ. 2020, 276, 119174. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Zhang, L.; Zhang, Q. Covalent Organic Frameworks for Photocatalytic Reduction of Carbon Dioxide: A Review. ACS Nano 2024, 18, 21804–21835. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Li, Y.; Xu, Y.; Nie, W.; Cheng, Z.; Zhou, Q.; Wang, L.; Fan, Z. Molecular-Level Regulation Strategies Toward Efficient Charge Separation in Donor− Acceptor Type Conjugated Polymers for Boosted Energy-Related Photocatalysis. Adv. Energy Mater. 2024, 14, 2303346. [Google Scholar] [CrossRef]
- Gao, P.; Wang, M.; Chen, Y.; Pan, W.; Zhou, P.; Wan, X.; Li, N.; Tang, B. A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis. Chem. Sci. 2020, 11, 6882–6888. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Wang, Z.; Tang, L.; Zeng, G.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C.; Li, X. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165. [Google Scholar] [CrossRef]
- Wang, G.-B.; Li, S.; Yan, C.-X.; Zhu, F.-C.; Lin, Q.-Q.; Xie, K.-H.; Geng, Y.; Dong, Y.-B. Covalent organic frameworks: Emerging high-performance platforms for efficient photocatalytic applications. J. Mater. Chem. A 2020, 8, 6957–6983. [Google Scholar] [CrossRef]
- Sun, R.; Yang, X.; Hu, X.; Guo, Y.; Zhang, Y.; Shu, C.; Yang, X.; Gao, H.; Wang, X.; Hussain, I. Unprecedented photocatalytic hydrogen peroxide production via covalent triazine frameworks constructed from fused building blocks. Angew. Chem. Int. Ed. 2025, 137, e202416350. [Google Scholar] [CrossRef]
- Nicolas, Y.; Blanchard, P.; Levillain, E.; Allain, M.; Mercier, N.; Roncali, J. Planarized star-shaped oligothiophenes with enhanced π-electron delocalization. Org. Lett. 2004, 6, 273–276. [Google Scholar] [CrossRef]
- Wei, H.; Ning, J.; Cao, X.; Li, X.; Hao, L. Benzotrithiophene-Based Covalent Organic Frameworks: Construction and Structure Transformation under Ionothermal Condition. J. Am. Chem. Soc. 2018, 140, 11618–11622. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Ding, X.; Wang, H.; Cao, W.; Jin, Y.; Yu, B.; Jiang, J. Covalent organic frameworks with imine proton acceptors for efficient photocatalytic H2 production. Chin. Chem. Lett. 2023, 34, 108148. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Nie, R.; Li, C.; Sun, Q.; Shi, W.; Chu, W.; Long, Y.; Li, H.; Liu, X. Construction of stable donor–acceptor type covalent organic frameworks as functional platform for effective perovskite solar cell enhancement. Adv. Funct. Mater. 2022, 32, 2112553. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, X.; Xu, J.; Jia, X.; Chao, M.; Wang, D.; Zhao, Y. Structural regulation of thiophene-based two-dimensional covalent organic frameworks toward highly efficient photocatalytic hydrogen generation. ACS Appl. Mater. Inter. 2023, 15, 16794. [Google Scholar] [CrossRef]
- Kou, J.; Wang, G.; Guo, H.; Li, L.; Fang, J.; Ma, J.; Dong, Z. Photocatalytic benzylamine coupling dominated by modulation of linkers in donor-acceptor covalent organic frameworks. Appl. Catal. B Environ. 2024, 352, 124020. [Google Scholar] [CrossRef]
- Liu, M.; He, P.; Gong, H.; Zhao, Z.; Li, Y.; Zhou, K.; Lin, Y.; Li, J.; Bao, Z.; Yang, Q. Benzotrithiophene-based covalent organic frameworks as efficient catalysts for artificial photosynthesis of H2O2 in pure water. Chem. Eng. J. 2024, 482, 148922. [Google Scholar] [CrossRef]
- Che, Q.; Li, C.; Chen, Z.; Yang, S.; Zhang, W.; Yu, G. High Performance Memristors Based on Imine-Linked Covalent Organic Frameworks Obtained Using a Protonation Modification Strategy. Angew. Chem. Int. Ed. 2024, 136, e202409926. [Google Scholar] [CrossRef]
- Luo, B.; Zhang, Y.; Chen, Y.; Huo, J. Photocatalytic conversion of arylboronic acids to phenols by a new 2D donor–acceptor covalent organic framework. Mater. Adv. 2022, 3, 4699–4706. [Google Scholar] [CrossRef]
- Cui, W.-R.; Li, Y.-J.; Jiang, Q.-Q.; Wu, Q.; Liang, R.-P.; Luo, Q.-X.; Zhang, L.; Liu, J.; Qiu, J.-D. Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers. Cell Rep. Phys. Sci. 2022, 3, 100630. [Google Scholar] [CrossRef]
- Jeon, J.P.; Kim, Y.J.; Joo, S.H.; Noh, H.J.; Kwak, S.K.; Baek, J.B. Benzotrithiophene-based Covalent Organic Framework Photocatalysts with Controlled Conjugation of Building Blocks for Charge Stabilization. Angew. Chem. Int. Ed. 2023, 135, e202217416. [Google Scholar] [CrossRef]
- Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J.-H.; Wang, J.; Li, Y.; Corma, A.; Xu, R. Accelerated crystallization of zeolites via hydroxyl free radicals. Science 2016, 351, 1188. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Liu, J.; Duan, F.; Yu, J. In silico prediction and screening of modular crystal structures via a high-throughput genomic approach. Nat. Commun. 2015, 6, 8328. [Google Scholar] [CrossRef]
- Li, X.; Jiang, J. Methanol-to-olefin conversion in ABC-6 zeolite cavities: Unravelling the role of cavity shape and size from density functional theory calculations. Phys. Chem. Chem. Phys. 2018, 20, 14322. [Google Scholar] [CrossRef]
- Li, X.; Jiang, J. Molecular design of chiral zirconium metal–organic frameworks for asymmetric transfer hydrogenation of imines. Catal. Sci. Technol. 2019, 9, 4888. [Google Scholar] [CrossRef]
- Xu Li, A.K.C. Jianwen Jiang, CO2 cycloaddition with propylene oxide to form propylene carbonate on a copper metal-organic framework: A density functional theory study. Mol. Catal. 2019, 463, 37. [Google Scholar]
- Dong, J.; Li, X.; Peh, S.B.; Yuan, Y.D.; Wang, Y.; Ji, D.; Peng, S.; Liu, G.; Ying, S.; Yuan, D.; et al. Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification. Chem. Mater. 2018, 31, 146. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Z.; Qiao, Z.; Li, X.; Liu, Y.; Dong, J.; Jiang, J.; Cui, Y. Design and self-assembly of hexahedral coordination cages for cascade reactions. Nat. Commun. 2018, 9, 4423. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, J.; Li, Y.; Yu, J. Roles of Hydroxyl Groups During Side-Chain Alkylation of Toluene with Methanol over Zeolite Na-Y: A Density Functional Theory Study. Chin. J. Chem. 2017, 35, 716–722. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, H.; Li, X.; Hou, B.; Gong, W.; Wu, X.; Han, X.; Zheng, F.; Liu, Y.; Jiang, J. Chiral phosphoric acids in metal–organic frameworks with enhanced acidity and tunable catalytic selectivity. Angew. Chem. Int. Ed. 2019, 131, 14890. [Google Scholar] [CrossRef]
- Yu, Y.; Li, X.; Krishna, R.; Liu, Y.; Cui, Y.; Du, J.; Liang, Z.; Song, X.; Yu, J. Enhancing CO2 adsorption and separation properties of aluminophosphate zeolites by isomorphous heteroatom substitutions. ACS Appl. Mater. Interfaces 2018, 10, 43570. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Yao, S.; Krishna, R.; Gu, J.; Li, G.; Liu, Y. A multifunctional double walled zirconium metal–organic framework: High performance for CO2 adsorption and separation and detecting explosives in the aqueous phase. J. Mater. Chem. A 2020, 8, 17106. [Google Scholar] [CrossRef]
- Liu, K.; Li, B.; Li, Y.; Li, X.; Yang, F.; Zeng, G.; Peng, Y.; Zhang, Z.; Li, G.; Shi, Z. An N-rich metal–organic framework with an rht topology: High CO2 and C2 hydrocarbons uptake and selective capture from CH4. Chem. Commun. 2014, 50, 5031. [Google Scholar] [CrossRef]
- Tang, H.; Duan, L.; Jiang, J. Leveraging Machine Learning for Metal–Organic Frameworks: A Perspective. Langmuir 2023, 39, 15849. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Li, L.; Shi, T. Effect of methyl trifluoride substitution on colorless transparency of polyimide: A DFT/TD-DFT study. J. Mol. Liq. 2024, 411, 125691. [Google Scholar] [CrossRef]
- Xun, S.; Li, H.; Sini, G.; Bredas, J.-L. Impact of Imine Bond Orientations on the Geometric and Electronic Structures of Imine-based Covalent Organic Frameworks. Chem. Asian J. 2021, 16, 3781. [Google Scholar] [CrossRef] [PubMed]
- Mourino, B.; Jablonka, K.M.; Ortega-Guerrero, A.; Smit, B. In Search of Covalent Organic Framework Photocatalysts: A DFT-Based Screening Approach. Adv. Funct. Mater. 2023, 33, 2301594. [Google Scholar] [CrossRef]
- Guan, X.; Qian, Y.; Zhang, X.; Jiang, H.L. Enaminone-Linked Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Production. Angew. Chem. 2023, 135, e202306135. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, H.; Sun, Z.; Zhao, W.; Sun, G.; Peng, Q. Optimal dihedral angle in twisted donor–acceptor organic emitters for maximized thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 2022, 134, e202213463. [Google Scholar] [CrossRef]
- Calbo, J.; Viruela, R.; Aragó, J.; Ortí, E. Theoretical insights into the structural, electronic and optical properties of benzotrithiophene-based hole-transporting materials. Theor. Chem. Acc. 2017, 136, 73. [Google Scholar] [CrossRef]
- Dhiman, A.; Ramachandran, C.N. Stacking interaction and opto-electronic properties of star-shaped benzotrithiophene and its extended derivatives. Chem. Phys. Let. 2024, 852, 141503. [Google Scholar] [CrossRef]
- Tripathi, A.; Chetti, P. Optoelectronic properties of benzotrithiophene isomers: A density functional theory study. J. Chin. Chem. Soc. 2019, 66, 891. [Google Scholar] [CrossRef]
- Tripathi, A.; Kozaderov, O.; Shikhaliev, K.; Prabhakar, C. A DFT study on optical, electronic, and charge transport properties of star-shaped benzo [1, 2-b: 3, 4-b′: 5, 6-b′trithiophene oligomers. J. Phys. Org. Chem. 2020, 33, e4037. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, T.; Wei, Y.; Wang, L.; Lu, M.; Yuan, Y.; Yin, L.; Huang, L. Unravelling intramolecular charge transfer in donor–acceptor structured g-C3N4 for superior photocatalytic hydrogen evolution. J. Phys. Chem. A 2021, 9, 1207. [Google Scholar] [CrossRef]
- Song, X.-F.; Jiang, C.; Li, N.; Miao, J.; Li, K.; Yang, C. Simultaneously enhancing the planarity and electron-donating capability of donors for through-space charge transfer TADF towards deep-red emission. Chem. Sci. 2023, 14, 12246. [Google Scholar] [CrossRef]
- Shao, S.; Hu, J.; Wang, X.; Wang, L.; Jing, X.; Wang, F. Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. J. Am. Chem. Soc. 2017, 139, 17739. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.-G.; Nichols, J.A.; Dixon, D.A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. J. Phys. Chem. A 2003, 107, 4184. [Google Scholar] [CrossRef]
- Brunschwig, B.S.; Sutin, N. Energy surfaces, reorganization energies, and coupling elements in electron transfer. Coord. Chem. Rev. 1999, 187, 233. [Google Scholar] [CrossRef]
- Marcus, R.A. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 1965, 43, 679. [Google Scholar] [CrossRef]
- Tant, J.; Geerts, Y.H.; Lehmann, M.; De Cupere, V.; Zucchi, G.; Laursen, B.W.; Bjørnholm, T.; Lemaur, V.; Marcq, V.; Burquel, A. Liquid crystalline metal-free phthalocyanines designed for charge and exciton transport. J. Phys. Chem. B 2005, 109, 20315. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16; Gaussian. Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008, 41, 157. [Google Scholar] [CrossRef]
- Walker, M.; Harvey, A.J.; Sen, A.; Dessent, C.E. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J. Phys. Chem. A. 2013, 117, 12590. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.D.; Jacquemin, D. TD-DFT benchmarks: A review. Nt. J. Quantum Chem. 2013, 113, 2019. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378. [Google Scholar] [CrossRef]
- Tripathi, A.; Prabhakar, C. Optoelectronic and charge-transport properties of truxene, isotruxene, and its heteroatomic (N, O, Si, and S) analogs: A DFT study. J. Phys. Org. Chem. 2019, 32, 9. [Google Scholar] [CrossRef]
- Ren, X.F.; Ren, A.M.; Feng, J.K.; Sun, C.C. A density functional theory study on photophysical properties of red light-emitting materials: Meso-substituted porphyrins. J. Photoch. Photobio. A 2009, 203, 92. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Srivastava, A.; Kumar, P.; Tandon, P.; Maurya, R.; Singh, R. Vibrational spectroscopic, NBO, AIM, and multiwfn study of tectorigenin: A DFT approach. J. Mol. Struct. 2020, 1217, 128443. [Google Scholar] [CrossRef]
- Zhan, H.; Wang, Y.; Li, Z.; Tang, Z.; Tian, J.; Fei, X. Investigating the influence of electronic effects of functional groups on the fluorescence mechanism of probes in water samples. J. Phys. Chem. A 2021, 125, 2866. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo [18] carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2021, 165, 461. [Google Scholar] [CrossRef]
BTT-COFs | State | ∠Φ1 | ∠Φ2 | μ |
---|---|---|---|---|
AnthDA | S0 | 177.6 | 2.2 | |
S1 | 178.4 | 1.9 | ||
BPhDA | S0 | 175.1 | 29.0 | 2.7 |
S1 | 177.2 | 38.2 | 2.4 | |
NDA | S0 | 177.7 | 2.9 | |
S1 | 178.4 | 3.1 | ||
PDA | S0 | 176.4 | 3.5 | |
S1 | 177.3 | 3.2 | ||
Tapb | S0 | 176.1 | 30.0 | 3.0 |
S1 | 176.3 | 39.7 | 2.6 | |
Tapt | S0 | 178.0 | 36.9 | 2.1 |
S2 | 177.7 | 40.9 | 2.1 | |
Tpa | S0 | 175.9 | 4.2 | |
S1 | 177.6 | 3.6 |
BTT-COFs | State | ƒ | Eex | λmax | Major Contribution | CT % | EL % |
---|---|---|---|---|---|---|---|
AnthDA | S0 → S1 | 0.66 | 2.4 | 524.2 | H → L 91.6% | 46.9 | 53.1 |
BPhDA | S0 → S1 | 1.04 | 2.8 | 446.1 | H → L 99.8% | 37.5 | 62.5 |
NDA | S0 → S1 | 1.03 | 2.7 | 454.9 | H → L 96.1% | 42.4 | 57.6 |
PDA | S0 → S1 | 1.01 | 2.9 | 428.6 | H → L 97.0% | 13.5 | 86.5 |
Tapb | S0 → S1 | 1.14 | 2.9 | 431.5 | H → L 94.1% | 35.8 | 64.2 |
Tapt | S0 → S2 | 0.73 | 2.7 | 461.7 | H → L 73.3% H-1 → L 20.5% | 54.8 | 45.2 |
Tpa | S0 → S1 | 0.60 | 2.2 | 571.4 | H → L 98.7% | 78.2 | 21.8 |
BTT-COFs | IP | EA | λhole | λelectron | λdiff |
---|---|---|---|---|---|
AnthDA | 4.91 | 2.94 | 0.14 | 0.20 | 0.06 |
BPhDA | 5.12 | 2.89 | 0.22 | 0.29 | 0.07 |
NDA | 5.12 | 2.90 | 0.18 | 0.27 | 0.09 |
PDA | 5.22 | 2.91 | 0.25 | 0.37 | 0.12 |
Tapb | 5.20 | 2.83 | 0.17 | 0.30 | 0.13 |
Tapt | 5.41 | 3.10 | 0.11 | 0.29 | 0.18 |
Tpa | 4.71 | 2.72 | 0.11 | 0.29 | 0.18 |
BTT-COFs | Sr (a.u) | HDI (Å) | EDI (Å) | D (Å) | t (Å) | CT (e) |
---|---|---|---|---|---|---|
AnthDA | 0.74 | 4.76 | 5.18 | 5.33 | 0.43 | 0.46 |
BPhDA | 0.62 | 5.18 | 7.40 | 3.85 | −0.66 | 0.38 |
NDA | 0.67 | 5.56 | 7.14 | 2.67 | −1.62 | 0.42 |
PDA | 0.69 | 5.34 | 7.14 | 0.74 | −3.01 | 0.14 |
Tapb | 0.65 | 4.88 | 7.51 | 1.95 | −2.42 | 0.36 |
Tapt | 0.49 | 5.76 | 5.93 | 7.75 | 3.66 | 0.55 |
Tpa | 0.45 | 8.62 | 7.54 | 6.69 | 3.57 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Niu, Y.; Ma, K.; Huang, X.; Wang, Q.; Liang, Z. Theoretical Study on the Influence of Building Blocks in Benzotrithiophene-Based Covalent Organic Frameworks for Optoelectronic Properties. Catalysts 2025, 15, 647. https://doi.org/10.3390/catal15070647
Li X, Niu Y, Ma K, Huang X, Wang Q, Liang Z. Theoretical Study on the Influence of Building Blocks in Benzotrithiophene-Based Covalent Organic Frameworks for Optoelectronic Properties. Catalysts. 2025; 15(7):647. https://doi.org/10.3390/catal15070647
Chicago/Turabian StyleLi, Xu, Yue Niu, Kexin Ma, Xin Huang, Qingji Wang, and Zhiqiang Liang. 2025. "Theoretical Study on the Influence of Building Blocks in Benzotrithiophene-Based Covalent Organic Frameworks for Optoelectronic Properties" Catalysts 15, no. 7: 647. https://doi.org/10.3390/catal15070647
APA StyleLi, X., Niu, Y., Ma, K., Huang, X., Wang, Q., & Liang, Z. (2025). Theoretical Study on the Influence of Building Blocks in Benzotrithiophene-Based Covalent Organic Frameworks for Optoelectronic Properties. Catalysts, 15(7), 647. https://doi.org/10.3390/catal15070647