Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (553)

Search Parameters:
Keywords = charge carrier transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5152 KiB  
Article
Grain Boundary Regulation in Aggregated States of MnOx Nanofibres and the Photoelectric Properties of Their Nanocomposites Across a Broadband Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(8), 920; https://doi.org/10.3390/coatings15080920 - 6 Aug 2025
Abstract
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was [...] Read more.
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was prepared. The effects of GO content and bias on the optoelectronic properties were studied. Representative light sources at 405, 650, 780, 808, 980, and 1064 nm were used to examine the photoelectric signals. The results indicate that the MnOx/GO nanocomposites have photocurrent switching behaviours from the visible region to the NIR (near-infrared) when the amount of GO added is optimised. It was also found that even with zero bias and storage of the nanocomposite sample at room temperature for over 8 years, a good photoelectric signal could still be extracted. This demonstrates that the MnOx/GO nanocomposites present a strong built-in electric field that drives the directional motion of photogenerated carriers, avoids the photogenerated carrier recombination, and reflect a good photophysical stability. The strength of the built-in electric field is strongly affected by the component ratios of the resulting nanocomposite. The formation of the built-in electric field results from interfacial charge transfer in the nanocomposite. Modulating the charge behaviour of nanocomposites can significantly improve the physicochemical properties of materials when excited by light with different wavelengths and can be used in multidisciplinary applications. Since the recombination of photogenerated electron–hole pairs is the key bottleneck in multidisciplinary fields, this study provides a simple, low-cost method of tailoring defects at grain boundaries in the aggregated state of nanocomposites. These results can be used as a reference for multidisciplinary fields with low energy consumption. Full article
Show Figures

Figure 1

27 pages, 4070 KiB  
Article
Quantum Transport in GFETs Combining Landauer–Büttiker Formalism with Self-Consistent Schrödinger–Poisson Solutions
by Modesto Herrera-González, Jaime Martínez-Castillo, Pedro J. García-Ramírez, Enrique Delgado-Alvarado, Pedro Mabil-Espinosa, Jairo C. Nolasco-Montaño and Agustín L. Herrera-May
Technologies 2025, 13(8), 333; https://doi.org/10.3390/technologies13080333 - 1 Aug 2025
Viewed by 273
Abstract
The unique properties of graphene have allowed for the development of graphene-based field-effect transistors (GFETs) for applications in biosensors and chemical devices. However, the modeling and optimization of GFET performance exhibit great challenges. Herein, we propose a quantum transport simulation model for graphene-based [...] Read more.
The unique properties of graphene have allowed for the development of graphene-based field-effect transistors (GFETs) for applications in biosensors and chemical devices. However, the modeling and optimization of GFET performance exhibit great challenges. Herein, we propose a quantum transport simulation model for graphene-based field-effect transistors (GFETs) implemented in the open-source Octave programming language. The proposed simulation model (named SimQ) combines the Landauer–Büttiker formalism with self-consistent Schrödinger–Poisson solutions, enabling reliable simulations of transport phenomena. Our approach agrees well with established models, achieving Landauer–Büttiker transmission and tunneling transmission of 0.28 and 0.92, respectively, which are validated against experimental data. The model can predict key GFET characteristics, including carrier mobilities (500–4000 cm2/V·s), quantum capacitance effects, and high-frequency operation (80–100 GHz). SimQ offers detailed insights into charge distribution and wave function evolution, achieving an enhanced computational efficiency through optimized algorithms. Our work contributes to the modeling of graphene-based field-effect transistors, providing a flexible and accessible simulation platform for designing and optimizing GFETs with potential applications in the next generation of electronic devices. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 - 1 Aug 2025
Viewed by 276
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

34 pages, 6142 KiB  
Review
Grain Boundary Engineering for High-Mobility Organic Semiconductors
by Zhengran He, Kyeiwaa Asare-Yeboah and Sheng Bi
Electronics 2025, 14(15), 3042; https://doi.org/10.3390/electronics14153042 - 30 Jul 2025
Viewed by 157
Abstract
Grain boundaries are among the most influential structural features that control the charge transport in polycrystalline organic semiconductors. Acting as both charge trapping sites and electrostatic barriers, they disrupt molecular packing and introduce energetic disorder, thereby limiting carrier mobility, increasing threshold voltage, and [...] Read more.
Grain boundaries are among the most influential structural features that control the charge transport in polycrystalline organic semiconductors. Acting as both charge trapping sites and electrostatic barriers, they disrupt molecular packing and introduce energetic disorder, thereby limiting carrier mobility, increasing threshold voltage, and degrading the stability of organic thin-film transistors (OTFTs). This review presents a detailed discussion of grain boundary formation, their impact on charge transport, and experimental strategies for engineering their structure and distribution across several high-mobility small-molecule semiconductors, including pentacene, TIPS pentacene, diF-TES-ADT, and rubrene. We explore grain boundary engineering approaches through solvent design, polymer additives, and external alignment methods that modulate crystallization dynamics and domain morphology. Then various case studies are discussed to demonstrate that optimized processing can yield larger, well-aligned grains with reduced boundary effects, leading to great mobility enhancements and improved device stability. By offering insights from structural characterization, device physics, and materials processing, this review outlines key directions for grain boundary control, which is essential for advancing the performance and stability of organic electronic devices. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials)
Show Figures

Figure 1

14 pages, 3224 KiB  
Article
Impact of Charge Carrier Trapping at the Ge/Si Interface on Charge Transport in Ge-on-Si Photodetectors
by Dongyan Zhao, Yali Shao, Shuo Zhang, Tanyi Li, Boming Chi, Yaxing Zhu, Fang Liu, Yingzong Liang and Sichao Du
Electronics 2025, 14(15), 2982; https://doi.org/10.3390/electronics14152982 - 26 Jul 2025
Viewed by 234
Abstract
The performance of optoelectronic devices is affected by various noise sources. A notable factor is the 4.2% lattice mismatch at the Ge/Si interface, which significantly influences the efficiency of Ge-on-Si photodetectors. These noise sources can be analyzed by examining the impact of the [...] Read more.
The performance of optoelectronic devices is affected by various noise sources. A notable factor is the 4.2% lattice mismatch at the Ge/Si interface, which significantly influences the efficiency of Ge-on-Si photodetectors. These noise sources can be analyzed by examining the impact of the Ge/Si interface and deep traps on dark and photocurrents. This study evaluates the impact of these charge traps on key photodetector performance metrics, including responsivity, photo-to-dark current ratio, noise equivalent power (NEP), and specific detectivity (D*). The trapping effects on charge transport under both forward and reverse bias conditions are monitored through hysteresis analysis. When illuminated with an unmodulated 1550 nm laser, all the key performance metrics exhibit maximum variations at a specific reverse bias. This critical bias marks the transition from saturated to exponential charge transport regimes, where intensified electric fields enhance trap-assisted recombination and thus maximize metric fluctuations. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

10 pages, 2398 KiB  
Article
APTES-Modified Interface Optimization in PbS Quantum Dot SWIR Photodetectors and Its Influence on Optoelectronic Properties
by Qian Lei, Lei Rao, Wencan Deng, Xiuqin Ao, Fan Fang, Wei Chen, Jiaji Cheng, Haodong Tang and Junjie Hao
Colloids Interfaces 2025, 9(4), 49; https://doi.org/10.3390/colloids9040049 - 22 Jul 2025
Viewed by 303
Abstract
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing [...] Read more.
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing on the interface between QDs and electrodes remain limited, which hinders further improvement in device performance. In this work, we propose an interface engineering strategy based on 3-aminopropyltriethoxysilane (APTES) to enhance the interfacial contact between PbS QD films and ITO interdigitated electrodes, thereby significantly boosting the overall performance of SWIR photodetectors. Experimental results demonstrate that the optimal 0.5 h APTES treatment duration significantly enhances responsivity by achieving balanced interface passivation and charge carrier transport. Moreover, The APTES-modified device exhibits a controllable dark current and faster photo-response under 1310 nm illumination. This interface engineering approach provides an effective pathway for the development of high-performance PbS QD-based SWIR photodetectors, with promising applications in infrared imaging, spectroscopy, and optical communication. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Figure 1

13 pages, 2686 KiB  
Article
Synergistic Energy Level Alignment and Light-Trapping Engineering for Optimized Perovskite Solar Cells
by Li Liu, Wenfeng Liu, Qiyu Liu, Yongheng Chen, Xing Yang, Yong Zhang and Zao Yi
Coatings 2025, 15(7), 856; https://doi.org/10.3390/coatings15070856 - 20 Jul 2025
Viewed by 364
Abstract
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of [...] Read more.
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of photo-generated carriers and reduce the probability of electron–hole recombination. We designed a dual-transition perovskite solar cell (PSC) with the structure of FTO/TiO2/Nb2O5/CH3NH3PbI3/MoO3/Spiro-OMeTAD/Au by finite element analysis methods. Compared with the pristine device (FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au), the open-circuit voltage of the optimized cell increases from 0.98 V to 1.06 V. Furthermore, the design of a circular platform light-trapping structure makes up for the light loss caused by the transition at the interface. The short-circuit current density of the optimized device increases from 19.81 mA/cm2 to 20.36 mA/cm2, and the champion device’s power conversion efficiency (PCE) reaches 17.83%, which is an 18.47% improvement over the planar device. This model provides new insight for the optimization of perovskite devices. Full article
Show Figures

Figure 1

15 pages, 1099 KiB  
Article
Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation
by Ibtisam S. Almalki, Tamader H. Alenazi, Lina A. Mansouri, Zainab H. Al Mubarak, Zainab T. Al Nahab, Sultan M. Alenzi, Yahya A. Alzahrani, Ghazal S. Yafi, Abdulmajeed Almutairi, Abdurhman Aldukhail, Bader Alharthi, Abdulaziz Aljuwayr, Faisal S. Alghannam, Anas A. Almuqhim, Huda Alkhaldi, Fawziah Alhajri, Nouf K. AL-Saleem, Masfer Alkahtani, Anwar Q. Alanazi and Masaud Almalki
Nanomaterials 2025, 15(14), 1078; https://doi.org/10.3390/nano15141078 - 11 Jul 2025
Viewed by 555
Abstract
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium [...] Read more.
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium iodide (PEAI) surface passivation layer is introduced on the perovskite to form a two-dimensional capping layer, and its impact on device performance and stability is systematically studied. The champion PEAI-passivated flexible device achieves a power conversion efficiency (PCE) of ~16–17%, compared to ~14% for the control device without PEAI. The improvement is primarily due to an increased open-circuit voltage and fill factor, reflecting effective surface defect passivation and improved charge carrier dynamics. Importantly, mechanical bending tests demonstrate robust flexibility: the PEAI-passivated cells retain ~85–90% of their initial efficiency after 700 bending cycles (radius ~5 mm), significantly higher than the ~70% retention of unpassivated cells. This work showcases that integrating a PEAI surface treatment with optimized electron (SnO2) and hole (spiro-OMeTAD) transport layers (ETL and HTL) can simultaneously enhance the efficiency and mechanical durability of FPSCs. These findings pave the way for more reliable and high-performance flexible solar cells for wearable and portable energy applications. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

25 pages, 4188 KiB  
Article
Enhanced Charge Transport in Inverted Perovskite Solar Cells via Electrodeposited La-Modified NiOx Layers
by Lina Aristizábal-Duarte, Martín González-Hernández, Sergio E. Reyes, J. A. Ramírez-Rincón, Pablo Ortiz and María T. Cortés
Energies 2025, 18(14), 3590; https://doi.org/10.3390/en18143590 - 8 Jul 2025
Viewed by 444
Abstract
This work explored an electrochemical approach for synthesizing lanthanum-modified nickel oxide (NiOx:La) as a hole transport layer (HTL) in inverted perovskite solar cells (IPSCs). By varying the La3+ concentration, the chemical, charge transport, structural, and morphological properties of the NiO [...] Read more.
This work explored an electrochemical approach for synthesizing lanthanum-modified nickel oxide (NiOx:La) as a hole transport layer (HTL) in inverted perovskite solar cells (IPSCs). By varying the La3+ concentration, the chemical, charge transport, structural, and morphological properties of the NiOx:La film and the HTL/PVK interface were evaluated to enhance photovoltaic performance. X-ray photoelectron spectroscopy (XPS) confirmed La3+ incorporation, a higher Ni3+/Ni3+ ratio, and a valence band shift, improving p-type conductivity. Electrochemical impedance spectroscopy and Mott–Schottky analyses indicated that NiOx:La 0.5% exhibited the lowest resistance and the highest carrier density, correlating with higher recombination resistance. The NiOx:La 0.5% based cell achieved a PCE of 20.08%. XRD and SEM confirmed no significant changes in PVK structure, while photoluminescence extinction demonstrated improved charge extraction. After 50 days, this cell retained 80% of its initial PCE, whereas a pristine NiOx device retained 75%. Hyperspectral imaging revealed lower optical absorption loss and better homogeneity. These results highlight NiOx:La as a promising HTL for efficient and stable IPSCs. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 4230 KiB  
Article
Synergistic Cs/P Co-Doping in Tubular g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution
by Juanfeng Gao, Xiao Lin, Bowen Jiang, Haiyan Zhang and Youji Li
Hydrogen 2025, 6(3), 45; https://doi.org/10.3390/hydrogen6030045 - 3 Jul 2025
Viewed by 338
Abstract
Developing high-performance photocatalysts for solar hydrogen production requires the synergistic modulation of chemical composition, nanostructure, and charge carrier transport pathways. Herein, we report a Cs and P co-doped tubular graphitic carbon nitride (Cs/PTCN-x) photocatalyst synthesized via a strategy that integrates elemental doping with [...] Read more.
Developing high-performance photocatalysts for solar hydrogen production requires the synergistic modulation of chemical composition, nanostructure, and charge carrier transport pathways. Herein, we report a Cs and P co-doped tubular graphitic carbon nitride (Cs/PTCN-x) photocatalyst synthesized via a strategy that integrates elemental doping with morphological engineering. Structural characterizations reveal that phosphorus atoms substitute lattice carbon to form P-N bonds, while Cs+ ions intercalate between g-C3N4 layers, collectively modulating surface electronic states and enhancing charge transport. Under visible-light irradiation (λ ≥ 400 nm), the optimized Cs/PTCN-3 catalyst achieves an impressive hydrogen evolution rate of 8.085 mmol·g−1·h−1—over 33 times higher than that of pristine g-C3N4. This remarkable performance is attributed to the multidimensional synergy between band structure tailoring and hierarchical porous tubular architecture, which together enhance light absorption, charge separation, and surface reaction kinetics. This work offers a versatile approach for the rational design of g-C3N4-based photocatalysts toward efficient solar-to-hydrogen energy conversion. Full article
Show Figures

Figure 1

12 pages, 2165 KiB  
Article
Flexible Piezoresistive Sensors Based on PANI/rGO@PDA/PVDF Nanofiber for Wearable Biomonitoring
by Hong Pan, Yuxiao Wang, Guangzhong Xie, Chunxu Chen, Haozhen Li, Fang Wu and Yuanjie Su
J. Compos. Sci. 2025, 9(7), 339; https://doi.org/10.3390/jcs9070339 - 30 Jun 2025
Viewed by 425
Abstract
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) [...] Read more.
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) nanofiber piezoresistive sensor (PNPS) capable of versatile wearable biomonitoring. The PNPS was fabricated by integrating rGO sheets and PANI particles into a PDA-modified PVDF nanofiber network, where PDA was implemented to boost the interaction between the nanofiber networks and functional materials, PANI particles were deposited on a nanofiber substrate to construct electroactive nanofibers, and rGO sheets were utilized to interconnect nanofibers to strengthen in-plane charge carrier transport. Benefitting from the synergistic effect of multi-dimensional electroactive materials in piezoresistive membranes, the as-fabricated PNPS exhibits a high sensitivity of 13.43 kPa−1 and a fast response time of 9 ms, which are significantly superior to those without an rGO sheet. Additionally, a wide pressure detection range from 0 to 30 kPa and great mechanical reliability over 12,000 cycles were attained. Furthermore, the as-prepared PNPS demonstrated the capability to detect radial arterial pulses, subtle limb motions, and diverse respiratory patterns, highlighting its potential for wearable biomonitoring and healthcare assessment. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

12 pages, 3952 KiB  
Article
Rationally Designed 2D CZIS/2D Ti3CNTx Heterojunctions for Photocatalytic Hydrogen Evolution Reaction
by Peize Li, Zhiying Wang and Xiaofei Yang
Catalysts 2025, 15(7), 632; https://doi.org/10.3390/catal15070632 - 27 Jun 2025
Viewed by 479
Abstract
Highly efficient photocatalysts for solar energy conversion require effective charge carrier separation and rapid interfacial transport kinetics to maximize electron availability. Two-dimensional Ti3CNTx, a novel conductive material in the MXene family with exceptional electrical conductivity, has emerged as an [...] Read more.
Highly efficient photocatalysts for solar energy conversion require effective charge carrier separation and rapid interfacial transport kinetics to maximize electron availability. Two-dimensional Ti3CNTx, a novel conductive material in the MXene family with exceptional electrical conductivity, has emerged as an ideal electron transfer mediator due to its large specific surface area and abundant active terminal groups. In this work, we strategically integrated the 2D multi-metal sulfide Cu-Zn-In-S (CZIS) with 2D Ti3CNTx nanosheets through physical mixture, constructing a heterostructured 2D/2D CZIS/Ti3CNTx composite photocatalyst for the hydrogen evolution reaction. The unique architecture significantly accelerates electron migration from CZIS to Ti3CNTx, while synergistically promoting the spatial separation and directional transfer of photogenerated electron–hole pairs (e/h+). When the hydrogen evolution reaction is carried out under identical conditions, the hydrogen yield rate is 4.3 mmol g−1 h−1 with pristine CZIS but is improved dramatically to 14.3 mmol g−1 h−1 when the composite containing an adequate amount of 2D Ti3CNTx is used. This study offers new insight into the rational design and controllable synthesis of Ti3CNTx-based composite photocatalytic systems for efficient photocatalytic hydrogen production. Full article
Show Figures

Graphical abstract

16 pages, 4233 KiB  
Article
Doping Effects on Magnetic and Electronic Transport Properties in (Ba1−xRbx)(Zn1−yMny)2As2 (0.1 ≤ x, y ≤ 0.25)
by Guoqiang Zhao, Yi Peng, Kenji M. Kojima, Yipeng Cai, Xiang Li, Kan Zhao, Shengli Guo, Wei Han, Yongqing Li, Fanlong Ning, Xiancheng Wang, Bo Gu, Gang Su, Sadamichi Maekawa, Yasutomo J. Uemura and Changqing Jin
Nanomaterials 2025, 15(13), 975; https://doi.org/10.3390/nano15130975 - 23 Jun 2025
Viewed by 419
Abstract
Diluted magnetic semiconductors (DMSs) represent a significant area of interest for research and applications in spintronics. Recently, DMSs derived from BaZn2As2 have garnered significant interest due to the record Curie temperature (TC) of 260 K. However, the [...] Read more.
Diluted magnetic semiconductors (DMSs) represent a significant area of interest for research and applications in spintronics. Recently, DMSs derived from BaZn2As2 have garnered significant interest due to the record Curie temperature (TC) of 260 K. However, the influence of doping on their magnetic evolution and transport characteristics has not been thoroughly investigated. This study aims to fill this gap through susceptibility and magnetization measurements, electric transport analysis, and muon spin relaxation and rotation (µSR) measurements on (Ba1−xRbx)(Zn1−yMny)2As2 (0.1 ≤ x, y ≤ 0.25, BRZMA). Key findings include the following: (1) BRZMA showed a maximum TC of 138 K, much lower than (Ba,K)(Zn,Mn)2As, because of a reduced carrier concentration. (2) A substantial electromagnetic coupling is evidenced by a negative magnetoresistance of up to 34% observed in optimally doped BRZMA. (3) A 100% static magnetic ordered volume fraction is achieved in the low-temperature region, indicating a homogeneous magnet. (4) Furthermore, a systematic and innovative methodology has been initially proposed, characterized by clear step-by-step instructions aimed at enhancing TC, grounded in robust experimental findings. The findings presented provide valuable insights into the spin–charge interplay concerning magnetic and electronic transport properties. Furthermore, they offer clear direction for the investigation of higher TC DMSs. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

43 pages, 9107 KiB  
Review
A Review on Pre-, In-Process, and Post-Synthetic Strategies to Break the Surface Area Barrier in g-C3N4 for Energy Conversion and Environmental Remediation
by Mingming Gao, Minghao Zhao, Qianqian Yang, Lan Bao, Liwei Chen, Wei Liu and Jing Feng
Nanomaterials 2025, 15(13), 956; https://doi.org/10.3390/nano15130956 - 20 Jun 2025
Viewed by 420
Abstract
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-C3N4 [...] Read more.
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-C3N4) has garnered significant attention in energy and environmental applications owing to its visible-light-responsive bandgap (~2.7 eV), exceptional thermal/chemical stability, and earth-abundant composition. However, the practical performance of g-C3N4 is fundamentally constrained by intrinsic limitations, including its inherently low SSA (<20 m2/g via conventional thermal polymerization), rapid recombination of photogenerated carriers, and inefficient charge transfer kinetics. Notably, the theoretical SSA of g-C3N4 reaches 2500 m2/g, yet achieving this value remains challenging due to strong interlayer van der Waals interactions and structural collapse during synthesis. Recent advances demonstrate that state-of-the-art strategies can elevate its SSA to 50–200 m2/g. To break this surface area barrier, advanced strategies achieve SSA enhancement through three primary pathways: pre-treatment (molecular and supramolecular precursor design), in process (templating and controlled polycondensation), and post-processing (chemical exfoliation and defect engineering). This review systematically examines controllable synthesis methodologies for high-SSA g-C3N4, analyzing how SSA amplification intrinsically modulates band structures, extends carrier lifetimes, and boosts catalytic efficiencies. Future research should prioritize synergistic multi-stage engineering to approach the theoretical SSA limit (2500 m2/g) while preserving robust optoelectronic properties. Full article
Show Figures

Graphical abstract

18 pages, 2436 KiB  
Article
Photoelectrochemical and Photocatalytic Properties of SnS/TiO2 Heterostructure Thin Films Prepared by Magnetron Sputtering Method
by Yaoxin Ding, Jiahao Leng, Mingyang Zhang and Jie Shen
Inorganics 2025, 13(7), 208; https://doi.org/10.3390/inorganics13070208 - 20 Jun 2025
Viewed by 357
Abstract
Tin(II) sulfide(SnS)/titanium(IV) oxide (TiO2) heterostructure thin films were prepared by radio-frequency magnetron sputtering to investigate the enhancement effect of the formed heterojunction on the photocatalytic performance. By adjusting the sputtering time to vary the thickness of the SnS layer, the crystallinity [...] Read more.
Tin(II) sulfide(SnS)/titanium(IV) oxide (TiO2) heterostructure thin films were prepared by radio-frequency magnetron sputtering to investigate the enhancement effect of the formed heterojunction on the photocatalytic performance. By adjusting the sputtering time to vary the thickness of the SnS layer, the crystallinity and light-absorption properties of the light-absorbing layer and the quality of the heterojunction interface were effectively controlled, thereby optimizing the fabrication process of the heterojunction. It was found that when the SnS layer thickness was 244 nm and the TiO2 layer thickness was 225 nm, the heterostructure film exhibited optimal photoelectrochemical performance, generating the highest photocurrent of 3.03 µA/cm2 under visible light, which was 13.8 times that of a pure TiO2 film and 2.4 times that of a pure SnS film of the same thickness. Additionally, it demonstrated the highest degradation efficiency for methylene blue dye. The improved photoelectrochemical performance of the SnS/TiO2 heterostructure film can be primarily attributed to the following: (1) the incorporation of narrow-bandgap SnS effectively broadens the light-absorption range, improving visible-light harvesting; (2) the staggered band alignment between SnS and TiO2 forms a type-II heterojunction, significantly enhancing the charge carrier separation and transport efficiency. The present work demonstrated the feasibility of magnetron sputtering for constructing high-quality SnS/TiO2 heterostructures, providing insights into the design and fabrication of photocatalytic heterojunctions. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

Back to TopTop