Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,024)

Search Parameters:
Keywords = characteristic defects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3072 KiB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 (registering DOI) - 31 Jul 2025
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

26 pages, 1576 KiB  
Article
Registry-Based Frequency and Clinical Characteristics of Inborn Errors of Immunity in Kazakhstan: A Retrospective Observational Cohort Study (2009–2023)
by Nurgul Sikhayeva, Elena Kovzel, Svetlana Volodchenko, Aiganym Toleuzhanova, Gulnar Tortayeva, Gulmira Bukibayeva, Zhanar Zhussupbayeva and Marina Morenko
J. Clin. Med. 2025, 14(15), 5353; https://doi.org/10.3390/jcm14155353 - 29 Jul 2025
Viewed by 257
Abstract
Background/Objectives: Inborn errors of immunity (IEIs) represent a wide spectrum of diseases characterized by a predisposition to recurrent infections, as well as increased susceptibility to autoimmune, atopic, and autoinflammatory diseases and malignancies. The aim of this study was to report the registry-based [...] Read more.
Background/Objectives: Inborn errors of immunity (IEIs) represent a wide spectrum of diseases characterized by a predisposition to recurrent infections, as well as increased susceptibility to autoimmune, atopic, and autoinflammatory diseases and malignancies. The aim of this study was to report the registry-based frequency and describe the clinical characteristics of IEIs among patients in the Republic of Kazakhstan. Methods: We analyzed data from 269 patients belonging to 204 families who were either self-referred or referred by healthcare providers to the University Medical Center of Nazarbayev University with suspected IEIs. All patients resided in various regions across Kazakhstan. Results: A total of 269 diagnosed cases were identified in the national registry. The estimated prevalence was 1.3 per 100,000 population. The gender ratio was nearly equal, with 139 males and 130 females. The median age at diagnosis was 5 years (range: 1 month to 70 years), while the mean age was 11.3 years. The most common diagnosis was humoral immunodeficiency, observed in 120 individuals (44.6%), followed by complement deficiencies in 83 individuals (30.8%). Combined immunodeficiencies with syndromic features were found in 35 patients (13%), and phagocytic cell defects were identified in 12 patients (4.5%). The predominant clinical manifestations included severe recurrent infections and autoimmune cytopenias, while atopic and autoinflammatory symptoms were reported less frequently. Conclusions: These findings contribute to a better understanding of the registry-based distribution and clinical spectrum of IEIs in Kazakhstan and underscore the importance of early diagnosis and targeted care for affected individuals. Full article
(This article belongs to the Special Issue Progress in Diagnosis and Treatment of Primary Immunodeficiencies)
Show Figures

Figure 1

22 pages, 5743 KiB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 187
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

11 pages, 3734 KiB  
Article
FMR1 Methylation Pattern and Repeat Expansion Screening in a Cohort of Boys with Autism Spectrum Disorders: Correlation of Genetic Findings with Clinical Presentations
by Maria Dobre, Gisela Gaina, Alina Erbescu, Adelina Glangher, Florentina Ionela Linca, Doina Ioana, Emilia Maria Severin, Florina Rad, Mihaela Catrinel Iliescu, Sorina Mihaela Papuc, Mihail Eugen Hinescu, Aurora Arghir and Magdalena Budișteanu
Genes 2025, 16(8), 903; https://doi.org/10.3390/genes16080903 - 29 Jul 2025
Viewed by 176
Abstract
Background/Objectives: Autism spectrum disorders (ASDs) are neurodevelopmental conditions with early onset of clinical manifestations. ASD etiology is highly heterogeneous, with genetic factors being strong determinants of the behavioral problems and neurodevelopmental deficits. Fragile X syndrome (FXS) (OMIM #300624), caused by the transcriptional silencing [...] Read more.
Background/Objectives: Autism spectrum disorders (ASDs) are neurodevelopmental conditions with early onset of clinical manifestations. ASD etiology is highly heterogeneous, with genetic factors being strong determinants of the behavioral problems and neurodevelopmental deficits. Fragile X syndrome (FXS) (OMIM #300624), caused by the transcriptional silencing of the FMR1 gene, represents the most common monogenic cause of autism. Our study included 226 boys with a diagnosis of ASD, for a systematic screening of genetic and epigenetic defects in the FMR1 gene promoter in a Romanian pediatric cohort. Methods: The methods, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and triplet-primed PCR (TP-PCR)/melt curve analysis (MCA), were chosen for their ability to detect the methylation anomalies (the former) as well as repeat expansions in the FMR1 promoter (the latter). Results: Both methods used in our screening generated concordant results, detecting FMR1 full mutation in 4 out of 226 patients (~1.8%). This yield is similar to data obtained in larger studies. Three out of four boys presented the typical clinical features, in correlation with genetic findings. Conclusions: The combined use of MS-MLPA and TP-PCR/MCA-based assay was, in our experience, useful to fully describe the genetic defects responsible for FXS. A significant variability of clinical presentations was observed in our small group of children with FXS, from mild to severe intellectual disability and from atypical to characteristic dysmorphic features, as well as various behavioral problems. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

10 pages, 609 KiB  
Communication
Scalable Synthesis of 2D TiNCl via Flash Joule Heating
by Gabriel A. Silvestrin, Marco Andreoli, Edson P. Soares, Elita F. Urano de Carvalho, Almir Oliveira Neto and Rodrigo Fernando Brambilla de Souza
Physchem 2025, 5(3), 30; https://doi.org/10.3390/physchem5030030 - 28 Jul 2025
Viewed by 244
Abstract
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural [...] Read more.
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural and chemical properties of the synthesized TiNCl were characterized through multiple analytical techniques. X-ray diffraction (XRD) patterns confirmed the presence of TiNCl phase, while Raman spectroscopy data showed no detectable oxide impurities. Fourier transform infrared spectroscopy (FTIR) analysis revealed characteristic Ti–N stretching vibrations, further confirming successful titanium nitride synthesis. Transmission electron microscopy (TEM) imaging revealed thin, plate-like nanostructures with high electron transparency. These analyses confirmed the formation of highly crystalline TiNCl flakes with nanoscale dimensions and minimal structural defects. The material exhibits excellent structural integrity and phase purity, demonstrating potential for applications in photocatalysis, electronics, and energy storage. This work establishes FJH as a sustainable and scalable approach for producing MXenes with controlled properties, facilitating their integration into emerging technologies. Unlike conventional methods, FJH enables rapid, energy-efficient synthesis while maintaining material quality, providing a viable route for industrial-scale production of two-dimensional materials. Full article
(This article belongs to the Section Nanoscience)
Show Figures

Figure 1

36 pages, 7310 KiB  
Review
Electrical Properties of Carbon Nanotubes: From Individual to Assemblies
by Yuxin Xiang, Lili Zhang and Chang Liu
Nanomaterials 2025, 15(15), 1165; https://doi.org/10.3390/nano15151165 - 28 Jul 2025
Viewed by 332
Abstract
Carbon nanotubes (CNTs) have attracted intense research interest owing to their unique one-dimensional structure and exceptional properties. However, when individual CNTs are assembled to macrostructures such as films and fibers, their electrical performance often deteriorates significantly. This review offers a comprehensive look at [...] Read more.
Carbon nanotubes (CNTs) have attracted intense research interest owing to their unique one-dimensional structure and exceptional properties. However, when individual CNTs are assembled to macrostructures such as films and fibers, their electrical performance often deteriorates significantly. This review offers a comprehensive look at the recent progress in the electrical properties and measurement techniques of CNTs, ranging from individual nanotubes to their assemblies. Firstly, we explore the methods for measuring the electrical properties of individual CNTs, including scanning tunnelling microscopy, electron microscope-based nanoprobes, and measurements using nanodevices. Secondly, we examine how structural characteristics of CNTs (e.g., chirality, diameter, and defects) influence their electrical behaviors. A critical comparison between individual CNTs and their assemblies reveals the difficulties in transferring the electrical properties from nanoscale to bulk materials. Finally, we put forward strategies to boost the electrical conductivity of CNT assemblies and also sketch out future research and development directions. Full article
Show Figures

Figure 1

13 pages, 1758 KiB  
Article
Microwave Based Non-Destructive Testing for Detecting Cold Welding Defects in Thermal Fusion Welded High-Density Polyethylene Pipes
by Zhen Wang, Chaoming Zhu, Jinping Pan, Ran Huang and Lianjiang Tan
Polymers 2025, 17(15), 2048; https://doi.org/10.3390/polym17152048 - 27 Jul 2025
Viewed by 194
Abstract
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose [...] Read more.
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose significant safety risks. Traditional non-destructive testing (NDT) methods face challenges in detecting cold welding defects due to the polymer’s complex structure and characteristics. This study presents a microwave-based NDT system for detecting cold welding defects in thermal fusion welds of HDPE pipes. The system uses a focusing antenna with a resonant cavity, connected to a vector network analyzer (VNA), to measure changes in microwave parameters caused by cold welding defects in thermal fusion welds. Experiments conducted on HDPE pipes welded at different temperatures demonstrated the system’s effectiveness in identifying areas with a lack of fusion. Mechanical and microstructural analyses, including tensile tests and scanning electron microscopy (SEM), confirmed that cold welding defects lead to reduced mechanical properties and lower material density. The proposed microwave NDT method offers a sensitive, efficient approach for detecting cold welds in HDPE pipelines, enhancing pipeline integrity and safety. Full article
(This article belongs to the Special Issue Additive Agents for Polymer Functionalization Modification)
Show Figures

Figure 1

15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 189
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

20 pages, 8458 KiB  
Article
Characterization of Defects by Non-Destructive Impulse Excitation Technique for 3D Printing FDM Polyamide Materials in Bending Mode
by Fatima-Ezzahrae Jabri, Imi Ochana, François Ducobu, Rachid El Alaiji and Anthonin Demarbaix
Appl. Sci. 2025, 15(15), 8266; https://doi.org/10.3390/app15158266 - 25 Jul 2025
Viewed by 238
Abstract
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were [...] Read more.
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were measured via an acoustic and a vibration sensor, using impulse excitation and fast Fourier transform (FFT) analysis. Modal properties include peak frequency, damping and amplitude. Non-defective samples show lower peak frequency and stronger amplitude for both detectors. Moreover, defects larger than 3 mm have minimal impact on peak frequency. The vibration detector is more sensitive to delamination presented at 7 and 10 mm defects. In addition, elevated peak frequency at 3 mm is the result of local hardening at the defect edge. Moreover, a neutral line position reduces damping when the defect size approaches 5 mm. Conversely, acoustic detectors ignore delamination and reveal lower damping and amplitude at 7 and 10 mm defects. Furthermore, internal sound diffusion from 3 and 5 mm defects enhances air losses and damping. Acoustic detectors only evaluate fault size and position, whereas vibrational detectors may detect local reinforcement and delamination more easily. These results highlight the importance of choosing the right detector according to the location, size, and specific modal characteristics of defects. Full article
Show Figures

Figure 1

12 pages, 233 KiB  
Article
Impact of Gynecological Interventions on Pelvic Floor Disorders: A Descriptive Analysis of a Case Series in a Hospital-Based Surgical Cohort of 832 Patients
by Günter Noé, Nele Ziems, Anna Pitsillidi, Ibrahim Alkatout and Dusan Djokovic
J. Clin. Med. 2025, 14(15), 5244; https://doi.org/10.3390/jcm14155244 - 24 Jul 2025
Viewed by 1135
Abstract
Background/Objectives: Pelvic floor disorders (PFDs) have multifactorial etiology. This makes treatment challenging and often unsatisfactory. This project introduces robust data on risk factors for PFDs and explores opportunities for their prevention, focusing on previous gynecological surgical interventions. Methods: We conducted a [...] Read more.
Background/Objectives: Pelvic floor disorders (PFDs) have multifactorial etiology. This makes treatment challenging and often unsatisfactory. This project introduces robust data on risk factors for PFDs and explores opportunities for their prevention, focusing on previous gynecological surgical interventions. Methods: We conducted a retrospective analytical cohort study analyzing demographic and clinical data from 832 consecutive patients who underwent pelvic organ prolapse (POP) surgery at a teaching hospital affiliated with the University of Cologne between 2010 and 2019. Patient characteristics—including age, body mass index (BMI), parity, mode of delivery, and symptoms—were collected from medical records. Associations between patient factors and surgical history were assessed using Kendall’s Tau (KT) for correlations and relative risks (RRs) with 95% confidence intervals (CIs) to evaluate the impact of previous hysterectomies and pelvic surgeries on PFD. Results: First vaginal delivery and age were the strongest factors associated with PFD. BMI had a smaller impact, and multiple vaginal deliveries did not significantly influence apical (KT 0.037), posterior (KT 0.007), anterior midline (KT 0.015), or lateral defects (KT 0.015). Cesarean section was protective. Subtotal hysterectomy showed no significant association with PFD. Total hysterectomy was strongly associated with posterior defects (RR 4.750, 95% CI: 1.871–12.059) and anterior midline defects (RR 1.645, 95% CI: 0.654–4.139). Recurrent urinary infections were associated with abdominal colposuspension (RR 4.485, 95% CI: 1.12–18.03). Dyspareunia occurred more frequently after vaginal (RR 3.971, 95% CI: 0.78–20.14) and abdominal hysterectomy (RR 1.620, 95% CI: 0.32–8.15). Vaginal hysterectomy was linked to fecal incontinence (RR 5.559, 95% CI: 1.17–26.30), MUI (RR 2.156, 95% CI: 1.09–4.23), and UUI (RR 4.226, 95% CI: 1.82–6.85). Conclusions: The factors identified as influencing (PFD) offer a solid foundation for evidence-based patient counseling within our population. Our large dataset confirmed key risk factors, notably childbirth and advancing age. However, the influence of BMI on symptoms and anatomical defects appears to be less significant than previously assumed. Subtotal hysterectomy was not associated with new PFD in our cohort and may represent a viable option when hysterectomy is indicated, though further studies are needed to confirm this potential advantage. Full article
(This article belongs to the Special Issue Pelvic Organ Prolapse: Current Progress and Clinical Challenges)
15 pages, 2683 KiB  
Article
Mechanical Properties and Fatigue Life Estimation of Selective-Laser-Manufactured Ti6Al4V Alloys in a Comparison Between Annealing Treatment and Hot Isostatic Pressing
by Xiangxi Gao, Xubin Ye, Yuhuai He, Siqi Ma and Pengpeng Liu
Materials 2025, 18(15), 3475; https://doi.org/10.3390/ma18153475 - 24 Jul 2025
Viewed by 154
Abstract
Selective laser melting (SLM) offers a novel approach for manufacturing intricate structures, broadening the application of titanium alloy parts in the aerospace industry. After the build period, heat treatments of annealing (AT) and hot isostatic pressing (HIP) are often implemented, but a comparison [...] Read more.
Selective laser melting (SLM) offers a novel approach for manufacturing intricate structures, broadening the application of titanium alloy parts in the aerospace industry. After the build period, heat treatments of annealing (AT) and hot isostatic pressing (HIP) are often implemented, but a comparison of their mechanical performances based on the specimen orientation is still lacking. In this study, horizontally and vertically built Ti6Al4V SLM specimens that underwent the aforementioned treatments, together with their microstructural and defect characteristics, were, respectively, investigated using metallography and X-ray imaging. The mechanical properties and failure mechanism, via fracture analysis, were obtained. The critical factors influencing the mechanical properties and the correlation of the fatigue lives and failure origins were also estimated. The results demonstrate that the mechanical performances were determined by the α-phase morphology and defects, which included micropores and fewer large lack-of-fusion defects. Following the coarsening of the α phase, the strength decreased while the plasticity remained stable. With the discrepancy in the defect occurrence, anisotropy and scatter of the mechanical performances were introduced, which was significantly alleviated with HIP treatment. The fatigue failure origins were governed by defects and the α colony, which was composed of parallel α phases. Approximately linear relationships correlating fatigue lives with the X-parameter and maximum stress amplitude were, respectively, established in the AT and HIP states. The results provide an understanding of the technological significance of the evaluation of mechanical properties. Full article
(This article belongs to the Section Metals and Alloys)
19 pages, 4649 KiB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 159
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

18 pages, 2288 KiB  
Article
Defect Studies in Thin-Film SiO2 of a Metal-Oxide-Silicon Capacitor Using Drift-Assisted Positron Annihilation Lifetime Spectroscopy
by Ricardo Helm, Werner Egger, Catherine Corbel, Peter Sperr, Maik Butterling, Andreas Wagner, Maciej Oskar Liedke, Johannes Mitteneder, Michael Mayerhofer, Kangho Lee, Georg S. Duesberg, Günther Dollinger and Marcel Dickmann
Nanomaterials 2025, 15(15), 1142; https://doi.org/10.3390/nano15151142 - 23 Jul 2025
Viewed by 245
Abstract
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, [...] Read more.
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, electric fields up to 1.72MV/cm were applied. The measurements reveal a field-dependent suppression of positronium (Ps) formation by up to 64%, leading to an enhancement of free positron annihilation. The increase in free positrons suggests that vacancy clusters are the dominant defect type in the oxide layer. Additionally, drift towards the SiO2/Si interface reveals not only larger void-like defects but also a distinct population of smaller traps that are less prominent when drifting to the Al/SiO2 interface. In total, by combining positron drift with PALS, more detailed insights into the nature and spatial distribution of defects within the SiO2 network and in particular near the SiO2/Si interface are obtained. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 277 KiB  
Review
Harnessing miRNA-Containing Extracellular Vesicles from Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Regeneration of Bone Defects: A Narrative Review of Mechanisms, Biomaterials, and Clinical Translation
by Kashia Goto, Daisuke Watanabe, Kazuki Yanagida, Tatsuya Takagi and Akio Mizushima
Cancers 2025, 17(15), 2438; https://doi.org/10.3390/cancers17152438 - 23 Jul 2025
Viewed by 250
Abstract
We present a narrative review focusing on the therapeutic potential of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in regenerating bone defects, particularly those resulting from surgical treatment of malignant bone and soft tissue tumors. These large bone defects pose significant challenges for reconstruction [...] Read more.
We present a narrative review focusing on the therapeutic potential of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in regenerating bone defects, particularly those resulting from surgical treatment of malignant bone and soft tissue tumors. These large bone defects pose significant challenges for reconstruction and functional recovery, highlighting the need for innovative regenerative strategies. Background: MSCs, which can differentiate into various cell types, are known for their immunosuppressive properties and ability to promote tissue repair. MSC-EVs, rich in bioactive molecules like microRNAs and proteins, play a crucial role in bone regeneration by mediating intercellular communication and modulating inflammation. Methods: This narrative review compiles data from various studies, including systematic reviews and individual research, focusing on the application of MSC-EVs in bone defect treatment. It examines the characteristics, mechanisms of action, and therapeutic effects of MSC-EVs, as well as the microRNAs involved in bone regeneration. Results: The findings indicate that MSC-EVs can enhance both osteogenesis and angiogenesis, highlighting their potential as promising candidates for clinical applications in bone defects. However, many mechanisms remain unclear; therefore, further investigation is needed. Conclusions: The review emphasizes the potential of MSC-EVs in improving patient outcomes for severe bone defects. It also highlights future challenges, including formulation, standardization, safety, and delivery methods, particularly in conjunction with biomaterials. Overall, MSC-EVs represent a significant advancement in regenerative medicine for bone defects. Full article
(This article belongs to the Special Issue Advances in Soft Tissue and Bone Sarcoma (2nd Edition))
30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 210
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

Back to TopTop