Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (415)

Search Parameters:
Keywords = channel control gates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 394 KiB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 (registering DOI) - 4 Aug 2025
Viewed by 121
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 - 2 Aug 2025
Viewed by 197
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

16 pages, 738 KiB  
Review
A Rationale for the Use of Ivabradine in the Perioperative Phase of Cardiac Surgery: A Review
by Christos E. Ballas, Christos S. Katsouras, Konstantinos C. Siaravas, Ioannis Tzourtzos, Amalia I. Moula and Christos Alexiou
J. Cardiovasc. Dev. Dis. 2025, 12(8), 294; https://doi.org/10.3390/jcdd12080294 - 31 Jul 2025
Viewed by 524
Abstract
This review explores the advantages of ivabradine in the management of cardiac surgery patients, particularly highlighting its heart rate (HR)-reducing properties, its role in minimizing the impact of atrial fibrillation, and its contributions to improving left ventricular diastolic function, as well as reducing [...] Read more.
This review explores the advantages of ivabradine in the management of cardiac surgery patients, particularly highlighting its heart rate (HR)-reducing properties, its role in minimizing the impact of atrial fibrillation, and its contributions to improving left ventricular diastolic function, as well as reducing pain, stress, and anxiety. In parallel, studies provide evidence that ivabradine influences endothelial inflammatory responses through mechanisms such as biomechanical modulation. Unlike traditional beta-blockers that may induce hypotension, ivabradine selectively inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, allowing for effective HR reduction without compromising blood pressure stability. This characteristic is particularly beneficial for patients at risk of atrial fibrillation post-surgery, where HR control is crucial for cardiovascular stability. This is an area in which ivabradine appears to play a role prophylactically, possibly in combination with beta-blockers. Furthermore, ivabradine has been associated with enhanced diastolic parameters in left ventricular function, reflecting its potential to improve surgical outcomes in patients with compromised heart function. In addition to its cardiovascular benefits, it appears to alleviate psychological stress and anxiety, common in postoperative settings, by moderating the neuroendocrine response to stress, thereby reducing stress-induced hormone levels. Furthermore, it has notable analgesic properties, contributing to pain management through its action on HCN channels in both the peripheral and central nervous systems. Collectively, these findings indicate that ivabradine may serve as a valuable therapeutic agent in the perioperative care of cardiac surgery patients, addressing both physiological and psychological challenges during recovery. Full article
Show Figures

Figure 1

13 pages, 2423 KiB  
Article
A Stepped-Spacer FinFET Design for Enhanced Device Performance in FPGA Applications
by Meysam Zareiee, Mahsa Mehrad and Abdulkarim Tawfik
Micromachines 2025, 16(8), 867; https://doi.org/10.3390/mi16080867 - 27 Jul 2025
Viewed by 218
Abstract
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled [...] Read more.
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled nodes. In this work, we propose a novel Stepped-Spacer Structured FinFET (S3-FinFET) that incorporates a three-layer HfO2/Si3N4/HfO2 spacer configuration designed to enhance electrostatics and suppress parasitic effects. Using 2D TCAD simulations, the S3-FinFET is evaluated in terms of key performance metrics, including transfer/output characteristics, ON/OFF current ratio, subthreshold swing (SS), drain-induced barrier lowering (DIBL), gate capacitance, and cut-off frequency. The results show significant improvements in leakage control and high-frequency behavior. These enhancements make the S3-FinFET particularly well-suited for Field-Programmable Gate Arrays (FPGAs), where power efficiency, speed, and signal integrity are critical to performance in reconfigurable logic environments. Full article
Show Figures

Figure 1

20 pages, 2271 KiB  
Article
Single and Combined Effects of Meropenem, Valproic Acid, and Ketoprofen on Adult Zebrafish Behavior, Oxidative Stress, and Acetylcholinesterase Activity
by Ionut-Alexandru Chelaru, Roxana Strungaru-Jijie, Mircea Nicoara, Diana Mirila, Alin Ciobica and Dorel Ureche
Pharmaceuticals 2025, 18(8), 1096; https://doi.org/10.3390/ph18081096 - 24 Jul 2025
Viewed by 307
Abstract
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, [...] Read more.
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, an anticonvulsant acting as a voltage-gated sodium channel modulator), and meropenem (Mp, a β-lactam antibiotic) at environmentally relevant concentrations on zebrafish behavior, acetylcholinesterase (AChE) activity, and oxidative status. Methods: Adult zebrafish were exposed for 4 days to Kp, VPA, Mp, and their binary and ternary mixtures. Behavioral effects were assessed using 3D novel tank and social behavior tests, while the oxidative stress response was assessed through malondialdehyde (MDA) content, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Results: Zebrafish exposed to Mp showed a notable increase in immobility, whereas those exposed to VPA and Mp + Kp exhibited a significant augmentation of average velocity and counter-clockwise rotations. All treated groups exhibited a notable increase in the time spent near the walls (thigmotaxis), and except for the control and Mp-exposed zebrafish, the other groups mostly stayed in the bottom tank zone (geotaxis). Kp, VPA + Kp, and VPA + Mp + Kp treatments impaired social behavior, with zebrafish displaying less interest in conspecifics. Biochemical analysis demonstrated that both the individual drugs and their combination caused oxidative stress, characterized by decreased GPx activity and increased SOD activity and MDA levels. Moreover, AChE activity was more strongly inhibited in zebrafish exposed to the binary and ternary mixtures than to individual drugs. Conclusions: The results indicate that acute exposure to individual and/or combined pharmaceuticals induces behavioral changes, oxidative damage, and AChE inhibition in zebrafish, highlighting the need to assess the effects of pharmaceutical mixtures for comprehensive ecosystem risks evaluation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 1787 KiB  
Article
Buffer pH-Driven Electrokinetic Concentration of Proteins in a Straight Microfluidic Channel
by Diganta Dutta, Xavier Palmer, Debajit Chakraborty and Lanju Mei
Surfaces 2025, 8(3), 52; https://doi.org/10.3390/surfaces8030052 - 18 Jul 2025
Viewed by 279
Abstract
We present a buffer-pH-modulated electrokinetic concentration strategy in MEMS microchannels that harnesses simple pH shifts to neutralize and charge proteins, reversibly “pausing” them at a planar electric-gate electrode by tuning to their isoelectric point (pI) and mobilizing them with slight pH offsets under [...] Read more.
We present a buffer-pH-modulated electrokinetic concentration strategy in MEMS microchannels that harnesses simple pH shifts to neutralize and charge proteins, reversibly “pausing” them at a planar electric-gate electrode by tuning to their isoelectric point (pI) and mobilizing them with slight pH offsets under an applied field. This synergistic coupling of dynamic pH control and electrode-gated focusing, which requires only buffer composition changes, enables rapid and tunable protein capture and release across diverse channel geometries for lab-on-chip, preparative, and point-of-care diagnostics. Moreover, it dovetails with established MEMS biomedical platforms ranging from diagnostics to drug delivery and microsurgery to gene and cell-manipulation devices. Future work on tailored electrode coatings and optimized channel profiles will further boost selectivity, speed, and integration in sub-100 µm MEMS devices. Full article
Show Figures

Figure 1

26 pages, 2661 KiB  
Article
Simulated Microgravity Attenuates Stretch Sensitivity of Mechanically Gated Channels in Rat Ventricular Myocytes
by Andrey S. Bilichenko, Alexandra D. Zolotareva, Olga V. Kamkina, Valentin I. Zolotarev, Anastasia S. Rodina, Viktor E. Kazansky, Vadim M. Mitrokhin, Mitko I. Mladenov and Andre G. Kamkin
Int. J. Mol. Sci. 2025, 26(14), 6653; https://doi.org/10.3390/ijms26146653 - 11 Jul 2025
Viewed by 217
Abstract
Cardiomyocytes, similarly to cells in various tissues, are responsive to mechanical stress of all types, which is reflected in the significant alterations to their electrophysiological characteristics. This phenomenon, known as mechanoelectric feedback, is based on the work of mechanically gated channels (MGCs) and [...] Read more.
Cardiomyocytes, similarly to cells in various tissues, are responsive to mechanical stress of all types, which is reflected in the significant alterations to their electrophysiological characteristics. This phenomenon, known as mechanoelectric feedback, is based on the work of mechanically gated channels (MGCs) and mechano-sensitive channels (MSCs). Since microgravity (MG) in space, as well as simulated microgravity (SMG), changes the morphological and physiological properties of the heart, it was assumed that this result would be associated with a change in the expression of genes encoding MGCs and MSCs, leading to a change in the synthesis of channel proteins and, ultimately, a change in channel currents during cell stretching. In isolated ventricular cardiomyocytes of rats exposed to SMG for 14 days, the amount of MGCs and MSCs gene transcripts was studied using the RNA sequencing method by normalizing the amount of “raw” reads using the Transcripts Per Kilobase Million (TPM) method. Changes in the level of channel protein, using the example of the MGCs TRPM7, were assessed by the Western blot method, and changes in membrane ion currents in the control and during cardiomyocyte stretching were assessed by the patch-clamp method in the whole-cell configuration. The data obtained demonstrate that SMG results in a multidirectional change in the expression of genes encoding various MGCs and MSCs. At the same time, a decrease in the TPM of the MGCs TRPM7 gene leads to a decrease in the amount of TRPM7 protein. The resulting redistribution in the synthesis of most channel proteins leads to a marked decrease in the sensitivity of the current through MGCs to cell stretching and, ultimately, to a change in the functioning of the heart. Full article
(This article belongs to the Special Issue New Insights into Cardiac Ion Channel Regulation 3.0)
Show Figures

Figure 1

13 pages, 472 KiB  
Article
Polymorphisms in CACNA1A, CACNA1C, and CACNA1H Genes in Korean Pediatric Patients with Developmental Delay and Intellectual Disability: A Focus on Epilepsy Comorbidity
by Ji Yoon Han
Genes 2025, 16(7), 767; https://doi.org/10.3390/genes16070767 - 29 Jun 2025
Viewed by 346
Abstract
Background: Developmental delay and intellectual disability (DD/ID) are frequently accompanied by epilepsy, and growing evidence implicates variants in voltage-gated calcium channel genes in their pathogenesis. This study aimed to investigate the association of polymorphisms in CACNA1A, CACNA1C, and CACNA1H with DD/ID [...] Read more.
Background: Developmental delay and intellectual disability (DD/ID) are frequently accompanied by epilepsy, and growing evidence implicates variants in voltage-gated calcium channel genes in their pathogenesis. This study aimed to investigate the association of polymorphisms in CACNA1A, CACNA1C, and CACNA1H with DD/ID and epilepsy comorbidity in Korean children. Methods: We retrospectively analyzed 141 pediatric patients diagnosed with DD/ID who underwent whole-exome sequencing (WES) and were not found to have pathogenic monogenic variants. Nine single-nucleotide polymorphisms (SNPs) across CACNA1A, CACNA1C, and CACNA1H were selected based on functional annotation scores and prior literature. Genotype data were extracted from WES variant files, and allele and genotype frequencies were compared with control data from the gnomAD East Asian population and the Korean Reference Genome Database (KRGDB). Subgroup analyses were performed according to epilepsy comorbidity. Results: The CACNA1A rs16023 variant showed a significantly higher B allele frequency in DD/ID patients than in both control datasets and was also associated with epilepsy comorbidity. Genotype distribution analysis revealed that the BB genotype of rs16023 was more frequent in patients with epilepsy. Conclusions: The CACNA1A rs16023 variant may contribute to genetic susceptibility to DD/ID and epilepsy in Korean children, potentially through regulatory mechanisms. These findings support the relevance of calcium channel genes in neurodevelopmental disorders and highlight the importance of integrating functional annotation in variant prioritization. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 1618 KiB  
Article
First Report of the L925I kdr Mutation Associated with Pyrethroid Resistance in Genetically Distinct Triatoma dimidiata, Vector of Chagas Disease in Mexico
by Mario C. Saucedo-Montalvo, Jesus A. Davila-Barboza, Selene M. Gutierrez-Rodriguez, Beatriz Lopez-Monroy, Susana Favela-Lara, Iram P. Rodriguez-Sanchez, Guadalupe del C. Reyes-Solis, Cristina Bobadilla-Utrera and Adriana E. Flores
Trop. Med. Infect. Dis. 2025, 10(7), 182; https://doi.org/10.3390/tropicalmed10070182 - 27 Jun 2025
Viewed by 461
Abstract
Triatoma dimidiata is a widely distributed vector of Trypanosoma cruzi in Mexico and Central America, found across a range of habitats from sylvatic to domestic. Vector control has relied heavily on indoor residual spraying with pyrethroids; however, reinfestation and emerging resistance have limited [...] Read more.
Triatoma dimidiata is a widely distributed vector of Trypanosoma cruzi in Mexico and Central America, found across a range of habitats from sylvatic to domestic. Vector control has relied heavily on indoor residual spraying with pyrethroids; however, reinfestation and emerging resistance have limited its long-term effectiveness. In this study, we analyzed the genetic diversity and population structure of T. dimidiata from Veracruz, Oaxaca, and Yucatan using mitochondrial markers (cyt b and ND4) and screened for knockdown resistance (kdr)-type mutations in the voltage-gated sodium channel (VGSC) gene. High haplotype diversity and regional differentiation were observed, with most genetic variation occurring between populations. The ND4 marker provided greater resolution than cyt b, revealing ten haplotypes and supporting evidence of recent population expansion. Haplotype networks showed clear geographic segregation, particularly between populations east and west of the Isthmus of Tehuantepec. The L925I mutation, highly associated with pyrethroid resistance, was detected for the first time in Mexican populations of T. dimidiata, albeit at low frequencies. These findings highlight the importance of integrating population genetic data and resistance surveillance into regionally adapted vector control strategies for Chagas disease. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

10 pages, 2269 KiB  
Article
Impact of Calcium and Potassium Currents on Spiral Wave Dynamics in the LR1 Model
by Xiaoping Yuan and Qianqian Zheng
Entropy 2025, 27(7), 690; https://doi.org/10.3390/e27070690 - 27 Jun 2025
Viewed by 398
Abstract
Spiral wave dynamics in cardiac tissue are critically implicated in the pathogenesis of arrhythmias. This study investigates the effects of modulating calcium and potassium currents on spiral wave stability in a two-dimensional cardiac model. The gate variable that dynamically regulates the opening probability [...] Read more.
Spiral wave dynamics in cardiac tissue are critically implicated in the pathogenesis of arrhythmias. This study investigates the effects of modulating calcium and potassium currents on spiral wave stability in a two-dimensional cardiac model. The gate variable that dynamically regulates the opening probability of ion channels also plays a significant role in the control of the spiral wave dynamics. We demonstrate that reducing gate variables accelerates wave propagation, thins spiral arms, and shortens action potential duration, ultimately inducing dynamic instability. Irregular electrocardiogram (ECG) patterns and altered action potential morphology further suggest an enhanced arrhythmogenic potential. These findings elucidate the ionic mechanisms underlying spiral wave breakup, providing both theoretical insights and practical implications for the development of targeted arrhythmia treatments. Full article
Show Figures

Figure 1

37 pages, 4685 KiB  
Review
Gate Engineering in Two-Dimensional (2D) Channel FET Chemical Sensors: A Comprehensive Review of Architectures, Mechanisms, and Materials
by Ganapathi Bharathi and Seongin Hong
Chemosensors 2025, 13(6), 217; https://doi.org/10.3390/chemosensors13060217 - 13 Jun 2025
Viewed by 953
Abstract
Field-effect transistor (FET) chemical sensors are essential for enabling sophisticated lifestyles and ensuring safe working environments. They can detect a wide range of analytes, including gaseous species (NO2, NH3, VOCs), ionic compounds, and biological molecules. Among the structural components [...] Read more.
Field-effect transistor (FET) chemical sensors are essential for enabling sophisticated lifestyles and ensuring safe working environments. They can detect a wide range of analytes, including gaseous species (NO2, NH3, VOCs), ionic compounds, and biological molecules. Among the structural components of FETs, the gate configuration plays a vital role in controlling the semiconductor channel’s electrostatic environment, thereby strongly influencing sensing performance. Two-dimensional (2D) materials offer additional advantages in these sensors due to their rich surface chemistry and high sensitivity to external interactions. This review offers a comprehensive classification of 2D channel FET chemical sensors based on their gate configurations. Their working principles, fabrication strategies, and sensing performance are discussed in detail. A critical analysis of the advantages and challenges associated with each gate configuration is performed. This review aims to guide future research on the selection of appropriate device configurations for the development of excellent FET chemical sensors. Full article
Show Figures

Figure 1

29 pages, 560 KiB  
Review
Application of Electroencephalography (EEG) in Combat Sports—Review of Findings, Perspectives, and Limitations
by James Chmiel and Jarosław Nadobnik
J. Clin. Med. 2025, 14(12), 4113; https://doi.org/10.3390/jcm14124113 - 10 Jun 2025
Viewed by 917
Abstract
Introduction: Combat sport athletes are exposed to repetitive head impacts yet also develop distinct performance-related brain adaptations. Electroencephalography (EEG) provides millisecond-level insight into both processes; however, findings are dispersed across decades of heterogeneous studies. This mechanistic review consolidates and interprets EEG evidence to [...] Read more.
Introduction: Combat sport athletes are exposed to repetitive head impacts yet also develop distinct performance-related brain adaptations. Electroencephalography (EEG) provides millisecond-level insight into both processes; however, findings are dispersed across decades of heterogeneous studies. This mechanistic review consolidates and interprets EEG evidence to elucidate how participation in combat sports shapes brain function and to identify research gaps that impede clinical translation. Methods: A structured search was conducted in March 2025 across PubMed/MEDLINE, Scopus, Cochrane Library, ResearchGate, Google Scholar, and related databases for English-language clinical studies published between January 1980 and March 2025. Eligible studies recorded raw resting or task-related EEG in athletes engaged in boxing, wrestling, judo, karate, taekwondo, kickboxing, or mixed martial arts. Titles, abstracts, and full texts were independently screened by two reviewers. Twenty-three studies, encompassing approximately 650 combat sport athletes and 430 controls, met the inclusion criteria and were included in the qualitative synthesis. Results: Early visual EEG and perfusion studies linked prolonged competitive exposure in professional boxers to focal hypoperfusion and low-frequency slowing. More recent quantitative studies refined these findings: across boxing, wrestling, and kickboxing cohorts, chronic participation was associated with reduced alpha and theta power, excess slow-wave activity, and disrupted small-world network topology—alterations that often preceded cognitive or structural impairments. In contrast, elite athletes in karate, fencing, and kickboxing consistently demonstrated neural efficiency patterns, including elevated resting alpha power, reduced task-related event-related desynchronization (ERD), and streamlined cortico-muscular coupling during cognitive and motor tasks. Acute bouts elicited transient increases in frontal–occipital delta and high beta power proportional to head impact count and cortisol elevation, while brief judo chokes triggered short-lived slow-wave bursts without lasting dysfunction. Methodological heterogeneity—including variations in channel count (1 to 64), reference schemes, and frequency band definitions—limited cross-study comparability. Conclusions: EEG effectively captures both the adverse effects of repetitive head trauma and the cortical adaptations associated with high-level combat sport training, underscoring its potential as a rapid, portable tool for brain monitoring. Standardizing acquisition protocols, integrating EEG into longitudinal multimodal studies, and establishing sex- and age-specific normative data are essential for translating these insights into practical applications in concussion management, performance monitoring, and regulatory policy. Full article
Show Figures

Figure 1

23 pages, 2335 KiB  
Article
Gate Control Mechanisms of Autoencoders for EEG Signal Reconstruction
by Kangjing Li, Heba El-Fiqi and Min Wang
Sensors 2025, 25(11), 3389; https://doi.org/10.3390/s25113389 - 28 May 2025
Viewed by 496
Abstract
Electroencephalography (EEG) is a non-invasive and portable way to capture neurophysiological activity, which provides the basis for brain–computer interface systems and more innovative applications, from entertainment to security. However, the acquisition of EEG signals often suffers from noise contamination and even signal interruption [...] Read more.
Electroencephalography (EEG) is a non-invasive and portable way to capture neurophysiological activity, which provides the basis for brain–computer interface systems and more innovative applications, from entertainment to security. However, the acquisition of EEG signals often suffers from noise contamination and even signal interruption problems due to poor contact of the electrodes, body movement, or heavy noise. Such heavily contaminated and lost signal segments are usually removed manually, which can hinder practical system deployment and application performance, especially in scenarios where continuous signals are required. In our previous work, we proposed the weighted gate layer autoencoder (WGLAE) and demonstrated its effectiveness in learning dependencies in EEG time series and encoding relationships among EEG channels. The WGLAE adopts a gate layer to encourage the AE to approximate multiple relationships simultaneously by controlling the data flow of each input variable. However, it only applies a sequential control scheme without taking into account the physical meaning of EEG channel locations. In this study, we investigate the gating mechanism for WGLAE and validate the importance of having a proper gating scheme for learning relationships between EEG channels. To this end, several gate control mechanisms are designed that embed EEG channel locations and their corresponding underlying physical meanings. The influences introduced by the proposed gate control mechanisms are examined on an open dataset with different scales and associated with various stimuli. The experimental results suggest that the gating mechanisms have varying influences on reconstructing EEG signals. Full article
Show Figures

Figure 1

13 pages, 3639 KiB  
Article
Detection of Di- and Tri-Locus kdr Mutations in Aedes aegypti and Aedes albopictus from Texas, USA, and the Implications for Insecticide Resistance
by Bianca M. Wimmer, Cynthia Reinoso Webb and Steven M. Presley
Insects 2025, 16(6), 551; https://doi.org/10.3390/insects16060551 - 23 May 2025
Viewed by 658
Abstract
During the last 20 years, there has been increasing concern about inefficient vector control efforts due to insecticide resistance. A common mechanism causing insecticide resistance is mutational changes in the voltage-gated sodium channel, deemed knockdown resistance (kdr), resulting from continued pyrethroid [...] Read more.
During the last 20 years, there has been increasing concern about inefficient vector control efforts due to insecticide resistance. A common mechanism causing insecticide resistance is mutational changes in the voltage-gated sodium channel, deemed knockdown resistance (kdr), resulting from continued pyrethroid application. Although closely related, there have been documented kdr differences and frequencies between Aedes aegypti and Aedes albopictus. Individual Ae. aegypti and Ae. albopictus from five counties in Texas, USA were tested using four single nucleotide polymorphisms genotyping assays to assess the kdr (F1534C, V1016I, V410L, and S989P) differences between the two species. Each mutation was analyzed independently by calculating frequencies and analyzing the difference using a Wilcox Rank Sum test. Significant differences were observed between Ae. aegypti and Ae. albopictus when comparing F1534C and V410L (p-value < 0.0001). Knockdown resistant mutation V1016I was not different between the two species. Individuals from both species had di-locus mutations, and individuals from Ae. aegypti had tri-locus mutations detected in combinations that have been reported to influence insecticide resistance. Given our findings, one can speculate that populations of both species are resistant to pyrethroids, thus likely limiting the success of control methods. Full article
(This article belongs to the Special Issue Insecticide Resistance in Mosquitoes)
Show Figures

Figure 1

40 pages, 1569 KiB  
Review
Cell Type-Specific Expression of Purinergic P2X Receptors in the Hypothalamus
by Jana Cihakova, Milorad Ivetic and Hana Zemkova
Int. J. Mol. Sci. 2025, 26(11), 5007; https://doi.org/10.3390/ijms26115007 - 22 May 2025
Viewed by 943
Abstract
Purinergic P2X receptors (P2X) are ATP-gated ion channels that are broadly expressed in the brain, particularly in the hypothalamus. As ionic channels with high permeability to calcium, P2X play an important and active role in neural functions. The hypothalamus contains a number of [...] Read more.
Purinergic P2X receptors (P2X) are ATP-gated ion channels that are broadly expressed in the brain, particularly in the hypothalamus. As ionic channels with high permeability to calcium, P2X play an important and active role in neural functions. The hypothalamus contains a number of small nuclei with many molecularly defined types of peptidergic neurons that affect a wide range of physiological functions, including water balance, blood pressure, metabolism, food intake, circadian rhythm, childbirth and breastfeeding, growth, stress, body temperature, and multiple behaviors. P2X are expressed in hypothalamic neurons, astrocytes, tanycytes, and microvessels. This review focuses on cell-type specific expression of P2X in the most important hypothalamic nuclei, such as the supraoptic nucleus (SON), paraventricular nucleus (PVN), suprachiasmatic nucleus (SCN), anteroventral periventricular nucleus (AVPV), anterior hypothalamic nucleus (AHN), arcuate nucleus (ARC), ventromedial hypothalamic nucleus (VMH), dorsomedial hypothalamic nucleus (DMH), tuberomammillary nucleus (TMN), and lateral hypothalamic area (LHA).> The review also notes the possible role of P2X and extracellular ATP in specific hypothalamic functions. The literature summarized here shows that purinergic signaling is involved in the control of the hypothalamic-pituitary endocrine system, the hypothalamic–neurohypophysial system, the circadian systems and nonendocrine hypothalamic functions. Full article
(This article belongs to the Special Issue Ion Channels in the Nervous System)
Show Figures

Figure 1

Back to TopTop