Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = chamomile essential oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 9109 KiB  
Article
Effect of Temperature, Surface, and Medium Qualities on the Biofilm Formation of Listeria monocytogenes and Their Influencing Effects on the Antibacterial, Biofilm-Inhibitory, and Biofilm-Degrading Activities of Essential Oils
by Anita Seres-Steinbach, Péter Szabó, Krisztián Bányai and György Schneider
Foods 2025, 14(12), 2097; https://doi.org/10.3390/foods14122097 - 14 Jun 2025
Viewed by 580
Abstract
Listeria monocytogenes is a foodborne pathogen with a high tolerance to a wide range of environmental conditions, making its control in the food chain a particular challenge. Essential oils have recently been considered as potential antilisterial agents. In this study, the antilisterial effects [...] Read more.
Listeria monocytogenes is a foodborne pathogen with a high tolerance to a wide range of environmental conditions, making its control in the food chain a particular challenge. Essential oils have recently been considered as potential antilisterial agents. In this study, the antilisterial effects of 57 EOs were tested on 13 different L. monocytogenes. Thirty-seven EOs were found to be effective in a strain and temperature-dependent manner. At 37 °C, all EOs were effective against at least one strain of L. monocytogenes. However, at 14 °C and 23 °C, 12 EOs, such as Minth, Nutmeg, Neroli, Pepperminth, etc., became drastically ineffective. The efficacy of the EOs increased at the lowest temperature, as only four EOs, such as Dill seed, Juniper, lemon eucalyptus, and sandalwood, were found to be ineffective at 4 °C. Ajowan and thyme were the only EOs that were antibacterial against each strain at all temperatures tested (4, 14, 23, 37 °C). Biofilm-inhibition tests with 57 EOs, performed on polystyrene plates with different surface qualities and stainless steel, using 0.1% and 0.5% final concentrations, showed the outstanding inhibitory abilities of ajowan, geranium, Lime oil, melissa, palmarosa, rose geranium, sandalwood, and thyme. Fennel, lemon eucalyptus, and chamomile had the potential to inhibit biofilm formation without affecting live bacterial cell counts. Ajowan, geranium, thyme, and palmarosa reduced the biofilm to the optical density of 0.0–0.08, OD: 0.0–0.075, 0.0–0.072, and 0.0–0.04, respectively, compared to the bacterium control 0.085–0.45. The mature antibiofilm eradication ability of the EOs revealed the outstanding features of ajowan, geranium Lime, melissa, palmarosa, rose geranium, and thyme by suppressing the established biofilm to one tenth. The different sensitivities of the isolates and the temperature-dependent antilisterial effect of the tested EOs have to be taken into account if an EO-based food preservation technology is to be implemented, as several L. monocytogenes become resistant to different EOs at medium temperature ranges such as 14 °C and 23 °C. Full article
(This article belongs to the Special Issue Microbiological Risks in Food Processing)
Show Figures

Figure 1

17 pages, 1085 KiB  
Article
Chamomile Matters: Species- and Producer-Dependent Variation in Bulgarian Matricaria recutita L. and Chamaemelum nobile L. Essential Oils and Their Cosmetic Potential
by Daniela Batovska, Natalina Panova, Anelia Gerasimova, Yulian Tumbarski, Ivan Ivanov, Ivayla Dincheva, Ina Yotkovska, Galia Gentscheva and Krastena Nikolova
Cosmetics 2025, 12(3), 123; https://doi.org/10.3390/cosmetics12030123 - 13 Jun 2025
Viewed by 1087
Abstract
Chamomile essential oils (EOs) are widely used in cosmetics for their antioxidant, anti-inflammatory, and antimicrobial properties. Bulgaria, with its long-standing tradition in EO production, provides an ideal setting to examine the influence of species and cultivation practices on oil quality. This study compares [...] Read more.
Chamomile essential oils (EOs) are widely used in cosmetics for their antioxidant, anti-inflammatory, and antimicrobial properties. Bulgaria, with its long-standing tradition in EO production, provides an ideal setting to examine the influence of species and cultivation practices on oil quality. This study compares the chemical composition and biological activity of EOs from German chamomile (Matricaria recutita L.) and Roman chamomile (Chamaemelum nobile L.), sourced from two major Bulgarian producers—Bulgarska Bilka Ltd. and Kateko Ltd. (Plovdiv, Bulgaria). Gas chromatography–mass spectrometry (GC–MS) profiling revealed species- and producer-dependent differences. German chamomile EOs were rich in β-farnesene, chamazulene, and bisabolol oxides, whereas Roman chamomile EOs were dominated by isobutyl angelate and related esters. Antioxidant activity, assessed via the ABTS assay, was higher in German chamomile EOs, especially from Bulgarska Bilka Ltd. The oils also showed photoprotective potential, with SPF values of 26–27 for German and 9–16 for Roman chamomile. Anti-inflammatory activity, evaluated by inhibition of albumin denaturation, was highest in Roman chamomile oils and comparable to that of prednisolone, while German chamomile also showed strong effects. Antimicrobial activity was generally low, with moderate effects observed only against Penicillium chrysogenum and Aspergillus flavus. These findings support the targeted use of chamomile EOs in cosmetics—German chamomile for antioxidant-rich, UV-protective, and microbiome-supportive care, and Roman chamomile for soothing, anti-inflammatory, and fragrance-enhancing applications. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Graphical abstract

20 pages, 905 KiB  
Article
Assessing Growth Performance and Agrometeorological Indices of Matricaria chamomilla L. Governed by Growing Season Length and Salicylic Acid in the Western Himalaya
by Shalika Rathore and Rakesh Kumar
Horticulturae 2025, 11(5), 485; https://doi.org/10.3390/horticulturae11050485 - 30 Apr 2025
Viewed by 1752
Abstract
German chamomile (Matricaria chamomilla L.) is a suitable medicinal and aromatic crop to cultivate in diverse regions, but its relationship with weather is a major concern in evaluating the development and crop production in the Western Himalayan region. Thus, a field experiment [...] Read more.
German chamomile (Matricaria chamomilla L.) is a suitable medicinal and aromatic crop to cultivate in diverse regions, but its relationship with weather is a major concern in evaluating the development and crop production in the Western Himalayan region. Thus, a field experiment was executed for two years (2018–2019 and 2019–2020) at CSIR-Institute of Himalayan Bioresource Technology, Palampur, India, to evaluate the crop weather relationship studies and different phenological phases of German chamomile under acidic soil conditions of mid hills of Western Himalaya. Agrometeorological indices were worked out for four different sowing times from 20 November to 20 January with foliar application of elicitor, i.e., salicylic acid at three levels (viz., SA0: 0 mg/L, SA1: 25 mg/L, SA2: 50 mg/L). The results revealed that the number of days required for attaining each phenological stage decreased with a delay in sowing time. Higher growing degree days (GDDs), photothermal units (PTUs) and heliothermal units (HTUs) were accumulated for early sowing of 20 November and showed a gradual decrease with delayed sowing. Salicylic acid application produced a significant effect on the accumulation of agrometeorological indices, irrespective of the applied doses, and showed irregularity. Higher accumulation of GDDs, PTUs, and HTUs is associated with higher flower and essential oil yield; thus, the results showed that agrometeorological indices are associated with the production of German chamomile. Full article
(This article belongs to the Special Issue Breeding, Cultivation, and Metabolic Regulation of Medicinal Plants)
Show Figures

Graphical abstract

24 pages, 2001 KiB  
Review
Aromatherapy and Essential Oils: Holistic Strategies in Complementary and Alternative Medicine for Integral Wellbeing
by Karina Caballero-Gallardo, Patricia Quintero-Rincón and Jesus Olivero-Verbel
Plants 2025, 14(3), 400; https://doi.org/10.3390/plants14030400 - 29 Jan 2025
Cited by 11 | Viewed by 8640
Abstract
Complementary and alternative medicine (CAM) encompasses a variety of ancient therapies with origins in cultures such as those of China, Egypt, Greece, Iran, India, and Rome. The National Institutes of Health (NIH) classifies these integrative therapies into five categories: (1) mind–body therapies, (2) [...] Read more.
Complementary and alternative medicine (CAM) encompasses a variety of ancient therapies with origins in cultures such as those of China, Egypt, Greece, Iran, India, and Rome. The National Institutes of Health (NIH) classifies these integrative therapies into five categories: (1) mind–body therapies, (2) biological practices, (3) manipulative and body practices, (4) energy medicine, and (5) whole medical systems, including traditional Chinese medicine and Ayurvedic medicine. This review explores the role of biological practices utilizing aromatic plants, particularly through inhalation aromatherapy and massage with essential oils, as effective complementary strategies within health systems. The review compiles information on the most commonly used plants and essential oils for holistic health maintenance from a complementary and alternative perspective. Given their accessibility and relative safety compared to conventional treatments, these therapies have gained popularity worldwide. Furthermore, the integration of essential oils has been shown to alleviate various psychological and physiological symptoms, including anxiety, depression, fatigue, sleep disorders, neuropathic pain, nausea, and menopausal symptoms. Among the studied plants, lavender has emerged as being particularly notable due to its broad spectrum of therapeutic effects and its designation by the US Food and Drug Administration (FDA) as “Generally Recognized as Safe”. Other essential oils under investigation include eucalyptus, damask rose, sandalwood, vetiver, calamus, frankincense, chamomile, lemon, grapefruit, tangerine, orange, sage, rosemary, garlic, and black pepper. This study emphasizes the potential benefits of these aromatic plants in enhancing patient well-being. Additionally, it underscores the importance of conducting further research to ensure the safety and efficacy of these therapies. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Activities of Plant Extracts)
Show Figures

Figure 1

15 pages, 4640 KiB  
Article
Investigation of Releasing Chamomile Essential Oil from Inserts with Cellulose Agar and Microcrystalline Cellulose Agar Films Used in Biotextronics Systems for Lower Urinary Tract Inflammation Treatment
by Emilia Frydrysiak, Krzysztof Śmigielski, Alina Kunicka-Styczyńska and Michał Frydrysiak
Materials 2024, 17(16), 4119; https://doi.org/10.3390/ma17164119 - 20 Aug 2024
Viewed by 1773
Abstract
Lower urinary tract inflammation is a very common problem which occurs particularly in women. That is why the idea of a biotextronics system for preventive and supportive treatment came to be. The system is a kind of a therapeutic clothing in the form [...] Read more.
Lower urinary tract inflammation is a very common problem which occurs particularly in women. That is why the idea of a biotextronics system for preventive and supportive treatment came to be. The system is a kind of a therapeutic clothing in the form of underwear integrated with a four-layer pantiliner with biological active compounds (from chamomile essential oil) immobilized on the insert with a cellulose agar or microcrystalline cellulose agar film. In this research, the outer part of the insert was investigated for its ability to release compounds with antibacterial and anti-inflammatory activity under the temperature of the treatment (40 °C). The research was conducted on the day of the insert preparation (day 0) and also after 7, 14, 28, and 56 days to test the ability of the insert to be stored without changing its properties. The results showed that even after 56 days of storage, there are compounds released that are known to have antibacterial activity, such as α-bisabolol. The system requires further tests involving bacteria; however, chamomile essential oil seems to be good substrate for biotextronics systems for preventive and supportive treatment of lower urinary tract inflammations. Full article
Show Figures

Figure 1

16 pages, 8936 KiB  
Article
Novel Collagen-Based Emulsions Embedded with Palmarosa Essential Oil, and Chamomile and Calendula Tinctures, for Skin-Friendly Textile Materials
by Laura Chirilă, Miruna S. Stan, Sabina Olaru, Alina Popescu, Mihaela-Cristina Lite, Doina Toma and Ionela C. Voinea
Materials 2024, 17(15), 3867; https://doi.org/10.3390/ma17153867 - 5 Aug 2024
Cited by 1 | Viewed by 1768
Abstract
Skin-friendly textile materials were obtained by applying oil-in-water emulsions based on palmarosa essential oil, chamomile, and calendula tinctures onto cotton fabrics. Different formulations based on these bioactive principles incorporated in collagen as polymeric matrices were prepared and immobilized on a plain weave textile [...] Read more.
Skin-friendly textile materials were obtained by applying oil-in-water emulsions based on palmarosa essential oil, chamomile, and calendula tinctures onto cotton fabrics. Different formulations based on these bioactive principles incorporated in collagen as polymeric matrices were prepared and immobilized on a plain weave textile structure from 100% cotton. The functionalized textile materials were characterized in terms of physicochemical, mechanical, antibacterial, and biocompatibility points of view. The pH values of the prepared emulsions were in the range of 4.81–5.23 and showed no significant differences after 4 h of storage. Moreover, the addition of a higher quantity of active principles (palmarosa essential oil and plant tinctures) caused slightly lower values of acidic pH. The electrical conductivity of the obtained emulsions increased with the decrease in the oil phases in the system. The highest values were obtained for the emulsion developed with the smallest volume fraction of active principle—palmarosa essential oil and plant tinctures. The emulsion that contained the least amount of collagen and the highest number of active principles exhibited the lowest stability. The textile materials treated with synthesized emulsions exerted antibacterial effects against S. aureus and E. coli strains and did not affect keratinocyte growth, spreading, and organization, highlighting the biocompatibility of these developed skin-friendly textiles. Full article
Show Figures

Figure 1

17 pages, 753 KiB  
Article
German Chamomile (Matricaria chamomilla L.) Flower Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Pharmacological, Technological, and Molecular Docking Study
by Oleh Koshovyi, Janne Sepp, Valdas Jakštas, Vaidotas Žvikas, Igor Kireyev, Yevhen Karpun, Vira Odyntsova, Jyrki Heinämäki and Ain Raal
Int. J. Mol. Sci. 2024, 25(15), 8292; https://doi.org/10.3390/ijms25158292 - 29 Jul 2024
Cited by 8 | Viewed by 2797
Abstract
German chamomile (Matricaria chamomilla L.) is an essential oil- containing medicinal plant used worldwide. The aim of this study was to gain knowledge of the phytochemical composition and the analgesic and soporific activity of Matricaria chamomilla L. (German chamomile) flower extract and [...] Read more.
German chamomile (Matricaria chamomilla L.) is an essential oil- containing medicinal plant used worldwide. The aim of this study was to gain knowledge of the phytochemical composition and the analgesic and soporific activity of Matricaria chamomilla L. (German chamomile) flower extract and its amino acid preparations, to predict the mechanisms of their effects by molecular docking and to develop aqueous printing gels and novel 3D-printed oral dosage forms for the flower extracts. In total, 22 polyphenolic compounds and 14 amino acids were identified and quantified in the M. chamomilla extracts. In vivo animal studies with rodents showed that the oral administration of such extracts revealed the potential for treating of sleep disorders and diseases accompanied by pain. Amino acids were found to potentiate these effects. Glycine enhanced the analgesic activity the most, while lysine and β-alanine improved the soporific activity. The molecular docking analysis revealed a high probability of γ-aminobutyric acid type A (GABAA) and N-methyl-D-aspartate (NMDA) receptor antagonism and 5-lipoxygenase (LOX-5) inhibition by the extracts. A polyethylene oxide (PEO)-based gel composition with the M. chamomilla extracts was proposed for preparing a novel 3D-printed dosage form for oral administration. These 3D-printed extract preparations can be used, for example, in dietary supplement applications. Full article
(This article belongs to the Special Issue New Research on Bioactive Natural Products)
Show Figures

Figure 1

24 pages, 1063 KiB  
Review
Therapeutic Effects of Essential Oils and Their Bioactive Compounds on Prostate Cancer Treatment
by Leticia Santos Pimentel, Luciana Machado Bastos, Luiz Ricardo Goulart and Lígia Nunes de Morais Ribeiro
Pharmaceutics 2024, 16(5), 583; https://doi.org/10.3390/pharmaceutics16050583 - 24 Apr 2024
Cited by 7 | Viewed by 4648
Abstract
Since prostate cancer (PCa) relies on limited therapies, more effective alternatives are required. Essential oils (EOs) and their bioactive compounds are natural products that have many properties including anticancer activity. This review covers studies published between 2000 and 2023 and discusses the anti-prostate [...] Read more.
Since prostate cancer (PCa) relies on limited therapies, more effective alternatives are required. Essential oils (EOs) and their bioactive compounds are natural products that have many properties including anticancer activity. This review covers studies published between 2000 and 2023 and discusses the anti-prostate cancer mechanisms of the EOs from several plant species and their main bioactive compounds. It also provides a critical perspective regarding the challenges to be overcome until they reach the market. EOs from chamomile, cinnamon, Citrus species, turmeric, Cymbopogon species, ginger, lavender, Mentha species, rosemary, Salvia species, thyme and other species have been tested in different PCa cell lines and have shown excellent results, including the inhibition of cell growth and migration, the induction of apoptosis, modulation in the expression of apoptotic and anti-apoptotic genes and the suppression of angiogenesis. The most challenging aspects of EOs, which limit their clinical uses, are their highly lipophilic nature, physicochemical instability, photosensitivity, high volatility and composition variability. The processing of EO-based products in the pharmaceutical field may be an interesting alternative to circumvent EOs’ limitations, resulting in several benefits in their further clinical use. Identifying their bioactive compounds, therapeutic effects and chemical structures could open new perspectives for innovative developments in the field. Moreover, this could be helpful in obtaining versatile chemical synthesis routes and/or biotechnological drug production strategies, providing an accurate, safe and sustainable source of these bioactive compounds, while looking at their use as gold-standard therapy in the close future. Full article
(This article belongs to the Special Issue Natural Products for Anticancer Application)
Show Figures

Figure 1

13 pages, 825 KiB  
Article
The First Study on Cultivating Roman Chamomile (Chamaemelum nobile (L.) All.) for Its Flower and Essential Oil in Southeast Serbia
by Vladimir Filipović, Tatjana Marković, Snežana Dimitrijević, Aiping Song, Željana Prijić, Sara Mikić, Natalija Čutović and Vladan Ugrenović
Horticulturae 2024, 10(4), 396; https://doi.org/10.3390/horticulturae10040396 - 12 Apr 2024
Cited by 6 | Viewed by 2621
Abstract
Roman chamomile (Chamaemelum nobile (L.) All.) is a perennial herbaceous medicinal plant species that has not yet been thoroughly researched in terms of the influence of growing conditions on its morphological characteristics, flower yield, and the content and quality of its essential [...] Read more.
Roman chamomile (Chamaemelum nobile (L.) All.) is a perennial herbaceous medicinal plant species that has not yet been thoroughly researched in terms of the influence of growing conditions on its morphological characteristics, flower yield, and the content and quality of its essential oil (EO). The plant material was harvested in the subsequent two production years at three localities in Southeast Serbia, differing in soil type (Alluvial soil, Rendzina, and Calcomelanosol). Based on two-year average values, the best results were obtained from plants grown on Rendzina, including the yield of fresh flowers (1850.2 g/m2), the highest plant height (49.3 cm), the number of branches (4.1), leaves (11.6), and flower heads (3.6), the flower diameter (1.6 cm), and the essential oil content (1.6%). The major EO constituent obtained from the plants growing on Rendzina and Calcomelanosol was 3-methyl pentyl angelate (20.8% and 15.2%, respectively). In the EO obtained from the plants growing on Alluvial soil, the major EO constituent was isobutyl angelate (13.0%), while the content of 3-methyl pentyl angelate was close to it (12.2%). The outcomes of this study provide guidelines for further research related to the cultivation of a Roman chamomile genotype on various soil types in a hilly region of Southeast Serbia, where most cultivated plants cannot be grown. Full article
(This article belongs to the Special Issue Novel Insights into the Phenology of Medicinal and Aromatic Plants)
Show Figures

Figure 1

26 pages, 2498 KiB  
Review
Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review
by George Pantalos, Natalia Vaou, Smaragda Papachristidou, Elisavet Stavropoulou, Christina Tsigalou, Chrysa Voidarou and Eugenia Bezirtzoglou
Appl. Sci. 2024, 14(5), 2177; https://doi.org/10.3390/app14052177 - 5 Mar 2024
Cited by 6 | Viewed by 4437
Abstract
Inflammatory bowel disease (IBD) remains a burden for patients with increasing prevalence in industrialized countries. Phytochemicals are non-nutrient plant derived bioactive substances with antioxidant and anti-inflammatory effects that may prove beneficial to IBD patients. This review aims to overview current evidence on the [...] Read more.
Inflammatory bowel disease (IBD) remains a burden for patients with increasing prevalence in industrialized countries. Phytochemicals are non-nutrient plant derived bioactive substances with antioxidant and anti-inflammatory effects that may prove beneficial to IBD patients. This review aims to overview current evidence on the application and impact of isolated phytochemicals or phytochemicals contained in plant extracts and essential oils on patients suffering from IBD. A systematic literature search was conducted for studies relating to the use of phytochemicals for the treatment of IBD. Ultimately, 37 human clinical trials and 3 systematic reviews providing human IBD patient data relevant to phytochemicals as therapeutic agents were included. Phytochemicals in the form of curcumin, Plantago ovata seeds, polyphenon E, silymarin, resveratrol supplements or an herbal preparation of myrrh, chamomile and coffee charcoal have evidence from human clinical trials supporting their safety and beneficial effects. Cannabinoids improve quality of life but not IBD outcomes. The addition of probiotics like B. longum to fructo-oligosaccharides promote healthy composition of the gut microbiome. Phytochemicals like mastiha, anthocyanins, berberine, tormentil, T2, ecabet sodium and Pycnogenol need more well-designed trials. Systematic research on phytochemicals can lead to the discovery of useful therapeutics. These secondary metabolites can be incorporated in current IBD treatment strategies to limit side effects, promote mucosal healing and provide higher quality of life to patients. Full article
Show Figures

Figure 1

11 pages, 6732 KiB  
Article
High-Quality Assembly and Analysis of the Complete Mitogenomes of German Chamomile (Matricaria recutita) and Roman Chamomile (Chamaemelum nobile)
by Jun Yang, Xinting Zhang, Zixuan Hua, Hongna Jia, Keke Li and Chengcheng Ling
Genes 2024, 15(3), 301; https://doi.org/10.3390/genes15030301 - 26 Feb 2024
Viewed by 2007
Abstract
German chamomile (Matricaria chamomilla L.) and Roman chamomile (Chamaemelum nobile) are the two well-known chamomile species from the Asteraceae family. Owing to their essential oils and higher medicinal value, these have been cultivated widely across Europe, Northwest Asia, North America, [...] Read more.
German chamomile (Matricaria chamomilla L.) and Roman chamomile (Chamaemelum nobile) are the two well-known chamomile species from the Asteraceae family. Owing to their essential oils and higher medicinal value, these have been cultivated widely across Europe, Northwest Asia, North America, and Africa. Regarding medicinal applications, German chamomile is the most commonly utilized variety and is frequently recognized as the “star among medicinal species”. The insufficient availability of genomic resources may negatively impact the progression of chamomile industrialization. Chamomile’s mitochondrial genome is lacking in extensive empirical research. In this study, we achieved the successful sequencing and assembly of the complete mitochondrial genome of M. chamomilla and C. nobile for the first time. An analysis was conducted on codon usage, sequence repeats within the mitochondrial genome of M. chamomilla and C. nobile. The phylogenetic analysis revealed a consistent positioning of M. chamomilla and C. nobile branches within both mitochondrial and plastid-sequence-based phylogenetic trees. Furthermore, the phylogenetic analysis also showed a close relationship between M. chamomilla and C. nobile within the clade comprising species from the Asteraceae family. The results of our analyses provide valuable resources for evolutionary research and molecular barcoding in chamomile. Full article
(This article belongs to the Special Issue Advances in Evolution of Plant Organelle Genome—2nd Edition)
Show Figures

Figure 1

16 pages, 576 KiB  
Article
Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria chamomilla L.) Flowers
by Janne Sepp, Oleh Koshovyi, Valdas Jakstas, Vaidotas Žvikas, Iryna Botsula, Igor Kireyev, Karina Tsemenko, Oleksandr Kukhtenko, Karin Kogermann, Jyrki Heinämäki and Ain Raal
Plants 2024, 13(3), 350; https://doi.org/10.3390/plants13030350 - 24 Jan 2024
Cited by 13 | Viewed by 5352
Abstract
Galenic preparations of German chamomile are used to treat mild skin diseases, inflammation, and spasms, and they have also been reported to have anxiolytic and sedative effects. The medicinal use of chamomile is well known in ethnomedicine. After obtaining its galenic preparations, there [...] Read more.
Galenic preparations of German chamomile are used to treat mild skin diseases, inflammation, and spasms, and they have also been reported to have anxiolytic and sedative effects. The medicinal use of chamomile is well known in ethnomedicine. After obtaining its galenic preparations, there is lots of waste left, so it is expedient to develop waste-free technologies. The aims of this study were to gain knowledge of the ethnomedical status of chamomile in the past and present, develop methods for preparing essential oils and dry extracts from German chamomile flowers using complex processing, reveal the phytochemical composition of such extracts, and verify the analgesic and soporific activity of the extracts. Two methods for the complex processing of German chamomile flowers were developed, which allowed us to obtain the essential oil and dry extracts of the tincture and aqueous extracts as byproducts. A total of 22 phenolic compounds (7 hydroxycinnamic acids, 13 flavonoids, and 2 phenolic acids) were found in the dry extracts by using UPLC-MS/MS. In total, nine main terpenoids were identified in the chamomile oil, which is of the bisabolol chemotype. During the production of chamomile tincture, a raw material–extractant ratio of 1:14–1:16 and triple extraction are recommended for its highest yield. In in vivo studies with mice and rats, the extracts showed analgesic activity and improvements in sleep. The highest sedative and analgesic effects in rodents were found with the dry extract prepared by using a 70% aqueous ethanol solution for extraction at a dose of 50 mg/kg. The developed methods for the complex processing of German chamomile flowers are advisable for implementation into the pharmaceutical industry to reduce the volume of waste during the production of its essential oil and tincture, and to obtain new products. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Figure 1

13 pages, 3154 KiB  
Article
Effect of Drying Methods on Chemical Profile of Chamomile (Matricaria chamomilla L.) Flowers
by Teuta Benković-Lačić, Iva Orehovec, Krunoslav Mirosavljević, Robert Benković, Sanja Ćavar Zeljković, Nikola Štefelová, Petr Tarkowski and Branka Salopek-Sondi
Sustainability 2023, 15(21), 15373; https://doi.org/10.3390/su152115373 - 27 Oct 2023
Cited by 2 | Viewed by 3057
Abstract
Chamomile (Matricaria chamomilla L.) is used in the food industry, stomatology, pharmacy, and medicine due to the beneficial properties of chamomile flowers, which are due to the content of terpenoids, but also flavonoids and phenolic acids. This study aims to determine and [...] Read more.
Chamomile (Matricaria chamomilla L.) is used in the food industry, stomatology, pharmacy, and medicine due to the beneficial properties of chamomile flowers, which are due to the content of terpenoids, but also flavonoids and phenolic acids. This study aims to determine and compare the effects of the drying method on the metabolic profile of chamomile flowers from sustainable, organic practice. The flowers were dried using four different methods: in the sun at a temperature of around 30 °C for 4 days, in the shade at an average temperature of 20–25 °C for 7 days, in a dryer at a temperature of 105 °C for 24 h, and in a climate chamber at a temperature of 60 °C for 48 h. The drying method affects the color, aroma, dry biomass, and chemical profile of chamomile flowers. The biggest color change was between fresh chamomile flowers and chamomile flowers dried in a climate chamber at 105 °C for 24 h, and the smallest change was observed in flowers dried in the sun. The highest contents of polyphenolic compounds and antioxidant activity were measured in flower samples dried in the sun. Drying the flowers at 105 °C caused a significant decrease in total phenols and total flavonoids compared to the drying methods in the sun and shade. Drying at 60 °C for two days had the most significant negative effect on polyphenolic compounds. GC-MS analysis of chamomile essential oil revealed a total of 49 compounds. The most abundant compounds in all samples were α-bisabolol oxide A (19.6 to 24.3%), bisabolol oxide B (19.3 to 23.2%), and β-farnesene E (15.9 to 25.5%). β-Farnesene was identified in significantly lower amounts in sun-dried flowers compared to others, indicating its sensitivity to high light intensity. Volatile compounds spiroether Z, spiroether E, and matricarin were significantly reduced in samples dried at a temperature of 105 °C compared to others, which agrees with the aroma of dried flowers. Discrimination between samples based on chemical profiles showed similarity between samples dried in the sun and in the shade compared to samples dried at higher temperatures. Full article
(This article belongs to the Special Issue Sustainable Agriculture and Climate Resilience)
Show Figures

Figure 1

23 pages, 6661 KiB  
Article
Alternations in Physiological and Phytochemical Parameters of German Chamomile (Matricaria chamomilla L.) Varieties in Response to Amino Acid Fertilizer and Plasma Activated-Water Treatments
by Malihe Omrani, Mojtaba Ghasemi, Mohammad Modarresi and Ivan Salamon
Horticulturae 2023, 9(8), 857; https://doi.org/10.3390/horticulturae9080857 - 27 Jul 2023
Cited by 1 | Viewed by 1869
Abstract
Plasma-activated water (PAW) is an emerging and promising green technology in agriculture in recent years. This study aimed to examine the influence of the spraying of PAW and amino acid fertilizer concentrations on German chamomile varieties’ physiological, biochemical, and phytochemical characteristics under field [...] Read more.
Plasma-activated water (PAW) is an emerging and promising green technology in agriculture in recent years. This study aimed to examine the influence of the spraying of PAW and amino acid fertilizer concentrations on German chamomile varieties’ physiological, biochemical, and phytochemical characteristics under field conditions. Method: The experiment was performed during 2020–2021 as a factorial using a randomized complete block design with three replications in an arid and semi-arid region east of the Persian Gulf. The factors contained five fertilizer levels (0 (control), 1, 2, 3 mL L−1 amino acid and PAW) and three German chamomile cultivars Bona, Bodegold, and Lianka). Physiological, biochemical, and phytochemical traits such as plant height, fresh and dried flower weight, chlorophyll a, b, carotenoids, CHN elements: N ratio, total protein, amino acid profile, essential oil yield, apigenin content, and major secondary metabolites were examined. Results: The ANOVA indicated that the impact of the cultivar and fertilizer was significant on all physiological, biochemical, and phytochemical studied parameters. The amino acid fertilizer and PAW enhanced physiological features, hydrogen, C: N ratio, essential oil yield, apigenin content, and main phytochemical compositions like chamazulene, and α-bisabolol, but it had no incremental effect on the carbon, nitrogen, and total protein percentage. Conclusion: Findings revealed that applying foliar amino acid fertilizer and PAW treatments improves physiological, biochemical, and phytochemical parameters in German chamomile cultivars under field conditions. Full article
Show Figures

Figure 1

12 pages, 1134 KiB  
Article
Matricaria chamomilla Essential Oils: Repellency and Toxicity against Imported Fire Ants (Hymenoptera: Formicidae)
by Farhan Mahmood Shah, Dileep Kumar Guddeti, Pradeep Paudel, Jian Chen, Xing-Cong Li, Ikhlas A. Khan and Abbas Ali
Molecules 2023, 28(14), 5584; https://doi.org/10.3390/molecules28145584 - 22 Jul 2023
Cited by 8 | Viewed by 2646
Abstract
Matricaria chamomilla flower essential oils (EOs) blue Egyptian (EO-1), chamomile German CO2 (EO-2), and chamomile German (EO-3) and the pure compound α-bisabolol were evaluated against red imported fire ants (RIFA), Solenopsis invicta Buren, black imported fire ants, [...] Read more.
Matricaria chamomilla flower essential oils (EOs) blue Egyptian (EO-1), chamomile German CO2 (EO-2), and chamomile German (EO-3) and the pure compound α-bisabolol were evaluated against red imported fire ants (RIFA), Solenopsis invicta Buren, black imported fire ants, S. richteri Forel (BIFA), and hybrid imported fire ants (HIFA) for their repellency and toxicity. A series of serial dilutions were tested starting from 125 µg/g until the failure of the treatment. Based on the amount of sand removed, EO-1 showed significant repellency at dosages of 7.8, 7.8, and 31.25 µg/g against RIFA, BIFA, and HIFA, respectively. EO-3 was repellent at 3.9, 7.8, and 31.25 µg/g against BIFA, RIFA, and HIFA, whereas α-bisabolol was active at 7.8, 7.8, and 31.25 µg/g against BIFA, HIFA, and RIFA, respectively. DEET (N, N-diethyl-meta-toluamide) was active at 31.25 µg/g. Toxicity of EOs and α-bisabolol was mild to moderate. For EO-1, LC50 values were 93.6 and 188.11 µg/g against RIFA and BIFA; 98.11 and 138.4 µg/g for EO-2; and 142.92 and 202.49 µg/g for EO-3, respectively. The LC50 of α-bisabolol was 159.23 µg/g against RIFA. In conclusion, M. chamomilla EOs and α-bisabolol offer great potential to be developed as imported fire ant repellents. Full article
(This article belongs to the Special Issue Chemistry of Essential Oils: The Incredible Wealth of Plants)
Show Figures

Figure 1

Back to TopTop