Assessing Growth Performance and Agrometeorological Indices of Matricaria chamomilla L. Governed by Growing Season Length and Salicylic Acid in the Western Himalaya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatment Details
2.3. Observation Recorded
2.4. Agrometeorological Indices
2.5. Growth Analysis Parameters
- Crop growth rate
- Absolute growth rate (AGR)
- The enhancement in plant height on more than one occasion for a time “t”, here, the increase in size over a given time period, can be determined and calculated by the following formula.
- Relative growth rate (RGR)
- The increase in plant dry weight per unit of material present per unit of time “t” was calculated by the following formula [28] (Radford, 1967):
- Net assimilation rate (NAR)
- The increase in plant material, specifically, unit leaf area per unit time, calculated from the expression [28]:
- Leaf area duration (LAD)
- LAD is an opportune and most suitable measure of approximating the photosynthetic efficiency of leaves and is calculated as per the formula suggested by [29].
2.6. Yield and Yield Components and Essential Oil Components
2.7. Statistical Analysis
3. Results
3.1. Agrometeorological Indices
3.1.1. Growing Degree Days (GDDs)
3.1.2. Photothermal Units (PTUs)
3.1.3. Heliothermal Units (HTUs)
3.2. Growth Analysis Parameters
3.2.1. Crop Growth Rate (CGR)
3.2.2. Relative Growth Rate (RGR)
3.2.3. Absolute Growth Rate (AGR)
3.2.4. Net Assimilation Rate (NAR)
3.2.5. Leaf Area Duration (LAD)
3.3. Yield and Essential Oil Components
3.4. Correlation and Regression Equations
4. Discussion
4.1. Agrometeorological Indices
4.1.1. Growing Degree Days (GDDs)
4.1.2. Photothermal Units (PTUs)
4.1.3. Heliothermal Units (HTUs)
4.2. Growth Analysis Parameters
4.3. Correlation and Regression Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TLA | Three-letter acronym |
LD | Linear dichroism |
CSIR | Council of Scientific and Industrial Research |
IHBT | Institute of Himalayan Bioresource Technology |
GDDs | Growing degree days |
PTUs | Photothermal units |
HTUs | Heliothermal units |
MAPs | Medicinal and aromatic plants |
cm | Centimeter |
°C | Degree Celsius |
pH | Potential of hydrogen |
% | Percentage |
kg/ha | Kilogram per hectare |
t/ha | Tons per hectare |
FYM | Farmyard manure |
N | Nitrogen |
P2O5 | Phosphorus pentoxide |
K2O | Potassium oxide |
FRBD | Factorial randomized block design |
m | Meter |
m2 | Square meter |
SA | Salicylic acid |
mg/L | Milligram per liter |
CSKHPKV | Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya |
HUE | Heat use efficiency |
CGR | Crop growth rate |
RGR | Relative growth rate |
AGR | Absolute growth rate |
NAR | Net assimilation rate |
LAD | Leaf area duration |
v/w% | Volume/weight |
SEm± | Standard error of mean |
LSD | Least significant difference |
NS | Not significant |
°C days h | Degree Celsius days hour |
g | Gram |
cm | Centimeter |
DL | Day length |
BSS | Bright sunshine |
RH | Relative humidity |
ppm | Parts per million |
References
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Zouaoui, N.; Chenchouni, H.; Bouguerra, A.; Massouras, T.; Barkat, M. Characterization of volatile organic compounds from six aromatic and medicinal plant species growing wild in North African drylands. NFS J. 2020, 18, 19–28. [Google Scholar] [CrossRef]
- Mann, C.; Staba, E.J. The chemistry, pharmacology and commercial formulations of chamomile. In Herbs, Spices and Medicinal Plants- Recent Advances in Botany, Horticulture and Pharmacology; Craker, L.E., Simon, J.E., Eds.; Haworth Press Inc.: Binghamton, NY, USA, 2002; pp. 235–280. [Google Scholar]
- Zalecki, R. Cultivation and fertilizing of the tetraploid Matricaria chamomilla L.I. The sowing time. Herba Pol. 1971, 17, 367–375. [Google Scholar]
- Rafieiolhossaini, M.; Sodaeizadeh, H.; Adams, A.; De Kimpe, N.; Van Damme, P. Effects of planting date and seedling age on agro-morphological characteristics, essential oil content and composition of German chamomile (Matricaria chamomilla L.) grown in Belgium. Ind. Crops Prod. 2010, 31, 145–152. [Google Scholar]
- Ghasemi, M.; Jelodar, N.B.; Modarresi, M.; Bagheri, N.; Jamali, A. Increase of chamazulene and α-bisabolol contents of the essential oil of german chamomile (Matricaria chamomila L.) using salicylic acid treatments under normal and heat stress conditions. Foods 2016, 5, 56. [Google Scholar]
- Mehriya, M.L.; Singh, D.; Verma, A.; Saxena, S.N.; Alataway, A.; Al-Othman, A.A.; Dewidar, A.Z.; Mattar, M.A. Effect of date of sowing and spacing of plants on yield and quality of chamomile (Matricaria chamomilla L.) grown in an arid environment. Agronomy 2022, 12, 2912. [Google Scholar] [CrossRef]
- Xiao, D.P.; Tao, F.L. Contributions of cultivar shift, management practice and climate change to maize yield in North China Plain in 1981–2009. Int. J. Biometeorol. 2016, 60, 1111–1122. [Google Scholar] [CrossRef]
- Zhou, B.Y.; Yue, Y.; Sun, X.F.; Wang, X.B.; Wang, Z.M.; Ma, W. Maize grain yield and dry matter production responses to variations in weather conditions. Agron. J. 2016, 108, 196–204. [Google Scholar] [CrossRef]
- Gouri, V.; Reddy, D.R.; Rao, S.B.S.N.; Rao, A.Y. Thermal requirement of rabi groundnut in southern Telangana zone of Andhra Pradesh. J. Agrometeorol. 2005, 7, 90–94. [Google Scholar]
- Kerches, J. Experiments with the cultivation of chamomile (Matricaria chamomilla). Herba Hung. 1966, 5, 141–147. [Google Scholar]
- Galambosi, B.; Holm, Y.; Szebeni Galambosi, Z.S.; Repcak, M.; Cernaj, P. The effect of spring sowing times and spacing on the yield and essential oil of chamomile (Chamomilla recutita L.) cv. ’Bona’ grown in Finland. Herba Hung. 1991, 10, 47–53. [Google Scholar]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.). An overview. Pharmacognocy Rev. 2011, 5, 82–95. [Google Scholar] [CrossRef]
- Bagheri, R.; Dehdari, M.; Salehi, A. Effect of cold stress at flowering stage on some important characters of five German chamomile (Matricaria chamomilla L.) genotypes in a pot experiment. J. Appl. Res. Med. Aromat. Plants 2019, 16, 100228. [Google Scholar] [CrossRef]
- Rathore, S.; Kumar, R. Agronomic interventions affect the growth, yield, and essential oil composition of German chamomile (Matricaria chamomilla L.) in the western Himalaya. Ind. Crops Prod. 2021, 171, 113873. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S.; Hooda, V.S.; Neelam; Kumar, A.; Thakral, S.K.; Kumar, S.; Kumar, P. Agrometeorological indices influenced by different sowing dates, irrigation and fertilizer levels under late sown Indian mustard in western Haryana, India. J. Agrometeorol. 2022, 24, 172–178. [Google Scholar]
- Broeckling, C.D.; Huhman, D.V.; Farag, M.A.; Smith, J.T.; May, G.D.; Mendes, P.; Dixon, R.A.; Sumner, L.W. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 2005, 56, 323–336. [Google Scholar] [CrossRef]
- Es-sbihi, F.Z.; Hazzoumi, Z.; Joutei, K.A. Effect of salicylic acid foliar application on growth, glandular hairs and essential oil yield in Salvia offcinalis L. grown under zinc stress. Chem. Biol. Technol. Agric. 2020, 7, 26. [Google Scholar] [CrossRef]
- Gharib, F.A.L. Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. Int. J. Agric. Biol. 2007, 9, 294–301. [Google Scholar]
- Haydari, M.; Maresca, V.; Rigano, D.; Taleei, A.; Shahnejat-Bushehri, A.A.; Hadian, J.; Sorbo, S.; Guida, M.; Manna, C.; Piscopo, M.; et al. Salicylic acid and melatonin alleviate the effects of heat stress on essential oil composition and antioxidant enzyme activity in Mentha piperita and Mentha arvensis L. Antioxidants 2019, 8, 547. [Google Scholar] [CrossRef]
- Patra, B.K.; Sahu, D.D. Use of agrometeorological indices for suitable sowing time of wheat under South Saurashtra Agroclimatic Zone of Gujarat. J. Agrometeorol. 2007, 9, 74–80. [Google Scholar]
- Singh, A.; Rao, V.U.M.; Singh, D.; Singh, R. Study on agrometeorological indices for soybean crop under different growing environments. J. Agrometeorol. 2007, 9, 81–85. [Google Scholar] [CrossRef]
- Neog, P.; Chakravarty, N.V.K.; Srivastava, A.K.; Bhagavati, G.; Katiyar, R.K.; Singh, H.B. Thermal time and its relationship with seed yield and oil productivity in Brassica cultivars. Brassica 2005, 7, 63–70. [Google Scholar]
- Kumar, R.; Kaundal, M.; Vats, S.K.; Kumar, S. Agrometeorological indices of white clover (Trifolium repens) in western Himalayas. J. Agrometeorol. 2012, 14, 138–142. [Google Scholar] [CrossRef]
- Gregory, F.G. Physiological Conditions in Cucumber Houses; 3rd Annual Report; Experimental and Research Station: Cheshunt, UK, 1917; pp. 19–28. [Google Scholar]
- Blackman, V.H. The compound interest law and plant growth. Ann. Bot. 1919, 33, 353–360. [Google Scholar] [CrossRef]
- Briggs, G.E.; Kidd, R.; West, C. A quantitative analysis of plant growth. Part I. Ann. Appl. Biol. 1920, 7, 103–123. [Google Scholar] [CrossRef]
- Radford, P.J. Growth Analysis Formulae: Their Use and Abuse. Crop Sci. 1967, 7, 171–175. [Google Scholar] [CrossRef]
- Power, J.F.; Willis, W.O.; Gunes, D.L.; Peichman, G.A. Effect of soil temperature, phosphorus and plant age on growth analysis of barley. Agron. J. 1967, 59, 231–234. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Analysis of data from a series of experiments. In Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984; pp. 316–356. [Google Scholar]
- Nuttonson, M.Y. Wheat-Climate Relationships and the Use of Phenology in Ascertaining the Thermal and Photo-Thermal Requirements of Wheat; American Institute of Crop Ecology: Washington DC, USA, 1955; Volume vii, 388p. [Google Scholar]
- Kumar, R.; Ramesh, K.; Pathania, V.; Singh, B. Effect of transplanting date on growth, yield and oil quality of Tagetes minuta L. in mid hill of North–Western Himalaya. J. Essent. Oil Bear. Plants 2012, 15, 405–414. [Google Scholar] [CrossRef]
- Prajapat, A.L.; Saxena, R. Thermal requirements of wheat (Triticum aestivum L.) cultivars under different growing environments. Int. J. Chem. Stud. 2018, 6, 17–22. [Google Scholar]
- Khichar, M.L.; Niwas, R. Thermal effect on growth and yield of wheat under different sowing environments and planting systems. Indian J. Agric. Res. 2007, 41, 92–96. [Google Scholar]
- Roy, S.; Meena, R.L.; Sharma, K.C.; Kumar, V.; Chattopadhyay, C.; Khan, S.A.; Chakravarthy, N.V.K. Thermal requirement of oilseed Brassica cultivars at different phenological stages under varying environmental conditions. Indian J. Agric. Sci. 2005, 75, 717–721. [Google Scholar]
- Murty, N.S.; Singh, R.K.; Roy, S. Influence of weather parameters on growth and yield of Amaranth in Uttarakhand region. J. Agrometeorol. 2008, 10, 384–387. [Google Scholar]
- Muhal, S.; Solanki, N.S. Effect of seeding dates and salicylic acid foliar spray on growth, yield, phenology and agrometeorological indices of Brassica species. J. Oilseed Brassica 2015, 6, 183–190. [Google Scholar]
- Choudhary, R.N.; Suthar, K.J.; Mevada, K.D.; Singh, S.; Mahariya, V.D.; Doba, S.D. Agro-meteorological indices, phenological stages and productivity of durum wheat (Triticum durum Desf.) influenced by seed soaking and foliar spray of stress mitigating bio-regulators under conserved moisture condition. Pharma Innov. J. 2021, 10, 1138–1146. [Google Scholar] [CrossRef]
- Choudhary, D.; Singh, R.; Dagar, C.C.; Kumar, A.; Singh, S. Temperature based agrometeorological indices for Indian mustard under different growing environments in western Haryana, India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1025–1035. [Google Scholar] [CrossRef]
- Pathania, R.; Prasad, R.; Singh, R.; Mishra, S.K. Heat unit requirement and yield of wheat (Triticum aestivum L.) varieties under different growing environment in mid hill conditions of Himachal Pradesh. J. Agrometeorol. 2019, 21, 282–287. [Google Scholar]
- Banerjee, P.; Mukherjee, B.; Venugopalan, V.K.; Nath, R.; Chandran, M.A.S.; Dessoky, E.S.; Ismail, I.A.; El-Hallous, E.I.; Hossain, A. Thermal Response of Spring–Summer-Grown Black Gram (Vigna mungo L. Hepper) in Indian Subtropics. Atmosphere 2021, 12, 1489. [Google Scholar] [CrossRef]
- Hayat, S.; Masood, A.; Yusuf, M.; Fariduddin, Q.; Ahmad, A. Growth of Indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Braz. Soc. Plant Physiol. 2009, 21, 187–195. [Google Scholar] [CrossRef]
- Haider, S.A.; Alam, M.Z.; Alam, M.F.; Paul, N.K. Influence of different sowing dates on the phenology and accumulated heat units in wheat. J. Biol. Sci. 2003, 3, 932–939. [Google Scholar] [CrossRef]
- Alam, M.Z.; Haider, S.A.; Paul, N.K. Influence of sowing date and nitrogen fertilizer on the phenology and accumulated heat units in barley. Plant Environ. Dev. 2007, 1, 75–81. [Google Scholar]
- Akhter, M.T.; Mannan, M.A.; Kundu, P.B.; Paul, N.K. Effects of different sowing dates on the phenology and accumulated heat units in three rapeseed (Brassica campestris L.) varieties. Bangladesh J. Bot. 2015, 44, 97–101. [Google Scholar] [CrossRef]
- Amrawat, T.; Solanki, N.S.; Sharma, S.K.; Jajoria, D.K.; Dotaniya, M.L. Phenology growth and yield of wheat in relation to agrometeorological indices under different sowing dates. Afr. J. Agric. Res. 2013, 8, 6366–6374. [Google Scholar] [CrossRef]
- Mahajan, N.C. Improving Wheat (Triticum aestivum L.) and Soil Productivity Through Precision Nitrogen Management Practices and Efficient Planting System. Master’s Thesis, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, India, 2018. [Google Scholar] [CrossRef]
- Li, Y.; Ming, B.; Fan, P.; Liu, Y.; Wang, K.; Hou, P.; Xue, J.; Li, S.; Xie, R. Quantifying contributions of leaf area and longevity to leaf area duration under increased planting density and nitrogen input regimens during maize yield improvement. Field Crops Res. 2022, 283, 108551. [Google Scholar] [CrossRef]
- Verma, D.; Gontia, A.S.; Jha, A.; Deshmukh, A. Study on leaf area index and leaf area duration of growth analytical parameters in Wheat, Barley, and Oat. Int. J. Agric. Environ. Biotechnol. 2016, 9, 827–831. [Google Scholar] [CrossRef]
- Monzon, J.P.; Menza, N.C.L.; Cerrudo, A.; Canepa, M.; Edreira, J.I.R.; Specht, J.; Andrade, F.H.; Grassini, P. Critical period for seed number determination in soybean as determined by crop growth rate, duration, and dry matter accumulation. Field Crops Res. 2021, 261, 108016. [Google Scholar] [CrossRef]
- Tandale, M.D.; Ubale, S.S. Evaluation of effect of growth parameters, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR) on seed yield of soybean during kharif season. Int. J. Agric. Sci. 2007, 3, 119–123. [Google Scholar]
- Rajput, A.; Rajput, S.S.; Jha, G. Leaf area index, crop growth rate, relative growth rate and net assimilation rate of different varieties of rice grown under different planting geometries and depths. Int. J. Pure Appl. Biosci. 2017, 5, 362–367. [Google Scholar] [CrossRef]
- Banik, B.; Korav, S.; Sujatha, H.T.; Changade, N.; Bisarya, D. Performance of Phytohormones under Distinct Levels of Drip Irrigation on Growth and Productivity of Wheat (Triticum aestivum L.). Indian J. Agric. Res. 2024, A-6225, 1–7. [Google Scholar] [CrossRef]
- Singh, V.P.; Dwivedi, P.; Kashyap, S. Effect of exogenous application of salicylic acid and sodium nitroprusside in wheat (Triticum aestivum L.) cultivars subjected to heat stress under early and late sown conditions. Pharma Innov. J. 2022, 11, 151–156. [Google Scholar]
- Amin, A.A.; El-Kader, A.A.A.; Shalaby, M.A.F.; Gharib, F.A.E.; Rashad, E.S.M.; Teixeira da Silva, J.A. Physiological Effects of Salicylic Acid and Thiourea on Growth and Productivity of Maize Plants in Sandy Soil. Commun. Soil Sci. Plant Anal. 2013, 44, 1141–1155. [Google Scholar] [CrossRef]
- El-Hawary, M.M.; Hashem, O.S.M.; Hasanuzzaman, M. Seed Priming and Foliar Application with Ascorbic Acid and Salicylic Acid Mitigate Salt Stress in Wheat. Agronomy 2023, 13, 493. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Ragavan, T.; Naziya, S.B. Influence of In-situ soil moisture conservation practices with pusa hydrogel on physiological parameters of rainfed cotton. Int. J. Bio-Resour. Stress Manag. 2020, 11, 548–557. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; Merwad, A.R.M. Improving the Salinity Tolerance in Wheat Plants Using Salicylic and Ascorbic Acids. J. Agric. Sci. 2015, 7, 203. [Google Scholar]
- EL-Hadidi, E.; El-Zehery, T.; ALWetwat, R. Response of Wheat Plant to Foliar Application of Organic Acids under Saline Conditions. J. Soil Sci. Agric. Eng. 2018, 9, 135–143. [Google Scholar]
- Waghmare, S.V.; Singh, M. Agrometeorological Indices and Correlation Coefficient of Bt Cotton Under Different Growing Environment. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 551–557. [Google Scholar]
- Mathieua, J.A.; Aires, F. Assessment of the agro-climatic indices to improve crop yield forecasting. Agric. For. Meteorol. 2018, 253–254, 15–30. [Google Scholar] [CrossRef]
- Gouache, D.; Bouchon, A.S.; Jouanneau, E.; Bris, X.L. Agrometeorological analysis and prediction of wheat yield at the departmental level in France. Agric. For. Meteorol. 2015, 209–210, 1–10. [Google Scholar] [CrossRef]
- Brar, H.R.; Singh, P. Relationship of agro-meteorological indices with cotton yield under varied pre-sowing irrigation levels, sowing dates and time of first irrigation in North-Western India. Commun. Soil Sci. Plant Anal. 2021, 53, 170–179. [Google Scholar] [CrossRef]
- Bairagi, G.D.; Goswami, S.B.; Sharma, S.K. Wheat Crop Yield Prediction Using Agro-Meteorological and Space Based Indices: A Case Study of Indore District, M.P. J. Agrometeorol. 2014, 16, 219–224. [Google Scholar]
- Medhi, K.; Neog, P.; Goswami, P.; Deka, R.L.; Hussain, R. Agrometeorological Indices in Relation to Phenology and Yield of Rice Genotype (Oryza sativa L.) under Upper Brahmaputra Valley Zone of Assam, India. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1459–1471. [Google Scholar] [CrossRef]
Treatment | GDD (°C Days) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenological Stages | ||||||||||||
Sowing to Flower Bud Formation | Flower Bud Formation to 50% Budding | 50% Budding to Flower Initiation | Flower Initiation to 50% Flowering | 50% Flowering to 100% Flowering | Seed Sowing to 100% Flowering | |||||||
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
Sowing time | ||||||||||||
20 November | 887.06 | 912.67 | 63.00 | 92.89 | 71.56 | 74.33 | 48.92 | 40.33 | 117.00 | 126.16 | 1187.53 | 1246.67 |
10 December | 591.79 | 668.00 | 78.44 | 108.44 | 57.93 | 74.33 | 72.33 | 38.67 | 86.33 | 143.93 | 886.89 | 1033.33 |
30 December | 512.67 | 671.53 | 68.17 | 61.50 | 156.33 | 136.69 | 57.11 | 55.49 | 73.33 | 78.09 | 867.74 | 1003.22 |
20 January | 425.56 | 533.60 | 85.27 | 99.50 | 111.78 | 109.23 | 67.67 | 67.93 | 77.33 | 90.60 | 767.41 | 901.00 |
SEm(±) | 0.90 | 0.25 | 0.17 | 0.19 | 0.12 | 0.15 | 0.13 | 0.12 | 0.17 | 0.13 | 0.94 | 0.32 |
LSD (p = 0.05) | 2.65 | 0.74 | 0.51 | 0.57 | 0.37 | 0.45 | 0.38 | 0.34 | 0.51 | 0.37 | 2.78 | 0.94 |
Salicylic acid | ||||||||||||
Control | 605.93 | 698.63 | 73.99 | 91.29 | 100.53 | 98.68 | 65.89 | 50.55 | 89.58 | 109.67 | 935.97 | 1049.00 |
25 mg/L | 605.51 | 698.67 | 75.50 | 88.83 | 100.56 | 98.59 | 59.32 | 50.63 | 86.83 | 109.67 | 927.69 | 1046.42 |
50 mg/L | 601.37 | 692.05 | 71.67 | 91.63 | 97.11 | 98.68 | 59.32 | 50.63 | 89.08 | 109.75 | 918.53 | 1042.75 |
SEm(±) | 0.78 | 0.22 | 0.15 | 0.17 | 0.11 | 0.13 | 0.11 | 0.10 | 0.15 | 0.11 | 0.82 | 0.28 |
LSD (p = 0.05) | 2.30 | 0.64 | 0.44 | 0.49 | 0.32 | NS | 0.33 | NS | 0.44 | NS | 2.41 | 0.81 |
Treatment | PTU (°C Days h) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenological Stages | ||||||||||||
Sowing to Flower Bud Formation | Flower bud Formation to 50% Budding | 50% Budding to Flower Initiation | Flower Initiation to 50% Flowering | 50% Flowering to 100% Flowering | Seed Sowing to 100% Flowering | |||||||
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
Sowing time | ||||||||||||
20 November | 9071.72 | 9373.78 | 704.68 | 1036.22 | 811.73 | 839.93 | 560.22 | 460.00 | 1487.38 | 1505.33 | 12,635.67 | 13,215.11 |
10 December | 6122.43 | 6863.67 | 879.39 | 1207.00 | 662.69 | 857.33 | 843.40 | 443.00 | 1039.40 | 1712.33 | 9547.33 | 11,083.33 |
30 December | 5419.17 | 4383.31 | 781.61 | 705.89 | 1871.80 | 1627.03 | 703.18 | 678.33 | 910.40 | 960.33 | 9686.11 | 8355.00 |
20 January | 4619.54 | 5778.72 | 1002.59 | 1176.44 | 1353.44 | 1319.59 | 835.93 | 835.33 | 988.82 | 1122.00 | 8800.22 | 10,232.22 |
SEm(±) | 1.85 | 1.03 | 0.22 | 0.12 | 0.11 | 0.19 | 0.17 | 0.13 | 0.28 | 0.14 | 1.67 | 0.29 |
LSD (p = 0.05) | 5.45 | 3.03 | 0.64 | 0.36 | 0.33 | 0.16 | 0.51 | 0.38 | 0.82 | 0.41 | 4.94 | 0.84 |
Salicylic acid | ||||||||||||
Control | 6332.22 | 6623.72 | 845.57 | 1041.42 | 1188.92 | 1160.92 | 790.42 | 604.17 | 1098.53 | 1325.00 | 10,255.58 | 10,755.25 |
25 mg/L | 6307.17 | 6623.83 | 863.07 | 1011.42 | 1188.88 | 1161.08 | 708.32 | 604.17 | 1095.78 | 1325.00 | 10,163.17 | 10,725.50 |
50 mg/L | 6285.27 | 6552.07 | 817.57 | 1041.33 | 1146.95 | 1160.92 | 708.32 | 604.17 | 1125.18 | 1325.00 | 10,083.25 | 10,683.50 |
SEm(±) | 1.60 | 0.89 | 0.19 | 0.11 | 0.10 | 0.55 | 0.15 | 0.11 | 0.24 | 0.12 | 1.45 | 0.25 |
LSD (p = 0.05) | 4.72 | 2.62 | 0.56 | 0.31 | 0.28 | NS | 0.44 | NS | 0.71 | NS | 4.27 | 0.73 |
Treatment | HTU (°C Days h) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenological Stages | ||||||||||||
Sowing to Flower Bud Formation | Flower Bud Formation to 50% Budding | 50% Budding to Flower Initiation | Flower Initiation to 50% Flowering | 50% Flowering to 100% Flowering | Seed Sowing to 100% Flowering | |||||||
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
Sowing time | ||||||||||||
20 November | 5637.93 | 5973.11 | 261.00 | 656.98 | 510.87 | 375.33 | 308.78 | 313.89 | 806.56 | 961.60 | 7524.44 | 8281.00 |
10 December | 3127.18 | 4297.22 | 471.56 | 766.89 | 394.67 | 375.33 | 390.53 | 314.00 | 506.46 | 968.93 | 4890.44 | 6722.33 |
30 December | 2430.11 | 4383.13 | 485.50 | 328.45 | 851.33 | 961.60 | 433.13 | 361.80 | 544.46 | 554.84 | 4744.44 | 6589.78 |
20 January | 2006.56 | 3774.53 | 503.22 | 620.06 | 664.58 | 672.87 | 605.72 | 420.80 | 467.83 | 689.93 | 4248.00 | 6178.00 |
SEm(±) | 0.71 | 0.27 | 0.19 | 0.13 | 0.12 | 0.27 | 0.12 | 0.21 | 0.11 | 0.16 | 0.76 | 0.37 |
LSD (p = 0.05) | 2.10 | 0.80 | 0.56 | 0.37 | 0.35 | 0.78 | 0.35 | 0.62 | 0.33 | 0.46 | 2.23 | 1.09 |
Salicylic acid | ||||||||||||
Control | 3318.01 | 4628.13 | 438.13 | 593.06 | 617.38 | 596.28 | 477.64 | 352.57 | 577.07 | 793.88 | 5428.08 | 6963.83 |
25 mg/L | 3298.18 | 4628.13 | 438.33 | 593.14 | 617.38 | 596.28 | 412.95 | 352.65 | 574.43 | 793.80 | 5341.00 | 6964.00 |
50 mg/L | 3285.15 | 4564.75 | 414.50 | 593.08 | 581.32 | 596.28 | 413.03 | 352.65 | 592.48 | 793.80 | 5286.42 | 6900.50 |
SEm(±) | 0.62 | 0.24 | 0.17 | 0.11 | 0.10 | 0.23 | 0.10 | 0.18 | 0.10 | 0.14 | 0.66 | 0.32 |
LSD (p = 0.05) | 1.81 | 0.69 | 0.49 | 0.32 | 0.30 | NS | 0.30 | NS | 0.29 | NS | 1.93 | 0.95 |
Treatment | CGR (g/m2/Day) | |||||
---|---|---|---|---|---|---|
Seed Emergence to Bud Formation | Bud Formation to 50% Flowering | 50 to 100% Flowering | ||||
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
Sowing Time | ||||||
20 November | 2.35 | 5.10 | 1.16 | 2.86 | 18.12 | 16.31 |
10 December | 2.51 | 4.52 | 0.83 | 2.78 | 13.37 | 11.41 |
30 December | 2.91 | 4.40 | 0.69 | 2.82 | 27.22 | 20.65 |
20 January | 2.82 | 4.34 | 0.48 | 2.99 | 21.66 | 14.78 |
SEm(±) | 0.12 | 0.07 | 0.08 | 0.09 | 0.22 | 1.03 |
LSD (p = 0.05) | 0.34 | 0.19 | 0.23 | NS | 0.66 | 3.05 |
Salicylic acid | ||||||
Control | 2.67 | 4.40 | 0.75 | 2.84 | 19.35 | 15.23 |
25 mg/L | 2.64 | 4.55 | 0.78 | 2.95 | 20.23 | 15.90 |
50 mg/L | 2.63 | 4.82 | 0.83 | 2.79 | 20.70 | 16.23 |
SEm(±) | 0.10 | 0.06 | 0.14 | 0.15 | 0.19 | 0.90 |
LSD (p = 0.05) | NS | 0.17 | NS | NS | 0.57 | NS |
Treatment | RGR (g/g/Day) | |||||
---|---|---|---|---|---|---|
Seed Emergence to Bud Formation | Bud Formation to 50% Flowering | 50 to 100% Flowering | ||||
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
Sowing Time | ||||||
20 November | 5.25 | 5.17 | 5.28 | 5.34 | 5.51 | 5.52 |
10 December | 5.19 | 5.07 | 5.20 | 5.28 | 5.57 | 5.58 |
30 December | 5.14 | 5.00 | 5.19 | 5.27 | 5.06 | 5.15 |
20 January | 5.10 | 4.90 | 5.11 | 5.20 | 5.13 | 5.22 |
SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 |
LSD (p = 0.05) | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.11 |
Salicylic acid | ||||||
Control | 5.16 | 5.01 | 5.18 | 5.25 | 5.30 | 5.35 |
25 mg/L | 5.17 | 5.02 | 5.19 | 5.27 | 5.32 | 5.36 |
50 mg/L | 5.18 | 5.07 | 5.22 | 5.30 | 5.34 | 5.40 |
SEm(±) | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.03 |
LSD (p = 0.05) | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 | NS |
Treatment | AGR (cm/Day) | |||||
---|---|---|---|---|---|---|
Seed Emergence to Bud Formation | Bud Formation to 50% Flowering | 50 to 100% Flowering | ||||
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
Sowing Times | ||||||
20 November | 0.56 | 0.76 | 1.88 | 2.10 | 0.81 | 1.94 |
10 December | 0.63 | 0.67 | 1.05 | 0.85 | 0.83 | 1.67 |
30 December | 0.54 | 0.46 | 1.33 | 1.77 | 3.63 | 2.65 |
20 January | 0.52 | 0.40 | 0.76 | 0.89 | 3.32 | 2.10 |
SEm(±) | 0.04 | 0.05 | 0.13 | 0.11 | 0.14 | 0.14 |
LSD (p = 0.05) | NS | 0.15 | 0.39 | 0.33 | 0.41 | 0.40 |
Salicylic acid | ||||||
Control | 0.63 | 0.63 | 0.83 | 1.07 | 2.28 | 2.08 |
25 mg/L | 0.53 | 0.52 | 1.38 | 1.50 | 1.95 | 2.05 |
50 mg/L | 0.54 | 0.57 | 1.55 | 1.64 | 2.22 | 2.15 |
SEm(±) | 0.04 | 0.04 | 0.12 | 0.10 | 0.12 | 0.12 |
LSD (p = 0.05) | NS | NS | 0.34 | 0.28 | NS | NS |
Treatment | NAR (g/m2/Day) | |||||
---|---|---|---|---|---|---|
Seed Emergence to Bud Formation | Bud Formation to 50% Flowering | 50 to 100% Flowering | ||||
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
Sowing Time | ||||||
20 November | 2.35 | 5.10 | 3.33 | 2.86 | 18.12 | 16.31 |
10 December | 2.51 | 4.52 | 1.81 | 2.78 | 13.37 | 11.41 |
30 December | 2.91 | 4.40 | 2.44 | 2.82 | 27.22 | 20.65 |
20 January | 2.82 | 4.34 | 1.30 | 2.99 | 21.66 | 14.78 |
SEm(±) | 0.12 | 0.07 | 0.22 | 0.09 | 0.22 | 1.03 |
LSD (p = 0.05) | 0.34 | 0.19 | 0.66 | NS | 0.66 | 3.05 |
Salicylic acid | ||||||
Control | 2.67 | 4.40 | 2.12 | 2.84 | 19.35 | 15.23 |
25 mg/L | 2.64 | 4.55 | 2.24 | 2.95 | 20.23 | 15.90 |
50 mg/L | 2.63 | 4.82 | 2.30 | 2.79 | 20.70 | 16.23 |
SEm(±) | 0.10 | 0.06 | 0.19 | 0.08 | 0.19 | 0.90 |
LSD (p = 0.05) | NS | 0.17 | NS | NS | 0.57 | NS |
Treatment | Leaf Area Duration (LAD) (Days) | |||||
---|---|---|---|---|---|---|
Seed Emergence to Bud Formation | Bud Formation to 50% Flowering | 50 to 100% Flowering | ||||
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | |
Sowing Times | ||||||
20 November | 147.53 | 140.49 | 198.57 | 193.01 | 111.46 | 116.06 |
10 December | 111.80 | 108.99 | 165.83 | 182.59 | 132.78 | 145.66 |
30 December | 89.74 | 100.47 | 165.67 | 188.26 | 58.30 | 76.44 |
20 January | 78.83 | 78.92 | 145.85 | 168.78 | 65.88 | 87.93 |
SEm(±) | 4.19 | 5.19 | 2.63 | 4.54 | 0.74 | 3.69 |
LSD (p = 0.05) | 12.36 | 15.32 | 7.76 | 13.39 | 2.17 | 10.90 |
Salicylic acid | ||||||
Control | 99.25 | 102.47 | 156.30 | 175.18 | 88.73 | 106.43 |
25 mg/L | 102.92 | 101.43 | 166.79 | 180.63 | 91.11 | 105.66 |
50 mg/L | 118.76 | 117.76 | 183.85 | 193.67 | 96.47 | 107.48 |
SEm(±) | 3.63 | 4.50 | 2.28 | 3.93 | 0.64 | 3.20 |
LSD (p = 0.05) | 10.71 | 13.27 | 6.72 | 11.60 | 1.88 | NS |
Agrometeorological Indices | Correlation Coefficient with Essential Oil Yield | ||
---|---|---|---|
2018–2019 | 2019–2020 | ||
GDDs | Sowing to bud formation | 0.847 ** | 0.773 ** |
Bud formation to bud opening | −0.840 | −0.102 | |
Bud opening to ray floret emergence | −0.377 | −0.420 | |
Ray floret emergence to flower opening | −0.527 | −0.826 | |
Flower opening to full flowering | 0.686 * | 0.512 | |
Sowing to full flowering | 0.834 ** | 0.768 ** | |
PTUs | Sowing to bud formation | 0.839 ** | 0.493 |
Bud formation to bud opening | −0.890 | −0.225 | |
Bud opening to ray floret emergence | −0.407 | −0.458 | |
Ray floret emergence to flower opening | −0.631 | −0.822 | |
Flower opening to full flowering | 0.661 * | 0.492 | |
Sowing to full flowering | 0.801 ** | 0.411 | |
HTUs | Sowing to bud formation | 0.812 ** | 0.702 * |
Bud formation to bud opening | −0.774 | 0.095 | |
Bud opening to ray floret emergence | −0.337 | −0.379 | |
Ray floret emergence to flower opening | −0.854 | −0.863 | |
Flower opening to full flowering | 0.770 ** | 0.499 | |
Sowing to full flowering | 0.784 ** | 0.690 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathore, S.; Kumar, R. Assessing Growth Performance and Agrometeorological Indices of Matricaria chamomilla L. Governed by Growing Season Length and Salicylic Acid in the Western Himalaya. Horticulturae 2025, 11, 485. https://doi.org/10.3390/horticulturae11050485
Rathore S, Kumar R. Assessing Growth Performance and Agrometeorological Indices of Matricaria chamomilla L. Governed by Growing Season Length and Salicylic Acid in the Western Himalaya. Horticulturae. 2025; 11(5):485. https://doi.org/10.3390/horticulturae11050485
Chicago/Turabian StyleRathore, Shalika, and Rakesh Kumar. 2025. "Assessing Growth Performance and Agrometeorological Indices of Matricaria chamomilla L. Governed by Growing Season Length and Salicylic Acid in the Western Himalaya" Horticulturae 11, no. 5: 485. https://doi.org/10.3390/horticulturae11050485
APA StyleRathore, S., & Kumar, R. (2025). Assessing Growth Performance and Agrometeorological Indices of Matricaria chamomilla L. Governed by Growing Season Length and Salicylic Acid in the Western Himalaya. Horticulturae, 11(5), 485. https://doi.org/10.3390/horticulturae11050485