Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = ceria catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2091 KiB  
Article
FTIR Detection of Ce3+ Sites on Shape-Controlled Ceria Nanoparticles Using Adsorbed 15N2 as a Probe Molecule
by Kristina K. Chakarova, Mihail Y. Mihaylov, Bayan S. Karapenchev, Nikola L. Drenchev, Elena Z. Ivanova, Georgi N. Vayssilov, Hristiyan A. Aleksandrov and Konstantin I. Hadjiivanov
Molecules 2025, 30(15), 3100; https://doi.org/10.3390/molecules30153100 - 24 Jul 2025
Viewed by 208
Abstract
Ceria is an important redox catalyst due to the facile Ce3+/Ce4+ switching at its surface. Therefore, in situ determination of the oxidation state of surface cerium cations is of significant interest. Infrared spectroscopy of probe molecules such as CO holds [...] Read more.
Ceria is an important redox catalyst due to the facile Ce3+/Ce4+ switching at its surface. Therefore, in situ determination of the oxidation state of surface cerium cations is of significant interest. Infrared spectroscopy of probe molecules such as CO holds great potential for this purpose. However, the ability of CO to reduce Ce4+ cations is an important drawback as it alters the initial cerium speciation. Dinitrogen (N2), due to its chemical inertness, presents an attractive alternative. We recently demonstrated that low-temperature 15N2 adsorption on stoichiometric ceria leads to the formation of complexes with Ce4+ cations on the (110) and (100) planes (bands at 2257 and 2252 cm−1, respectively), while the (111) plane is inert. Here, we report results on the low-temperature 15N2 adsorption on reduced ceria nanoshapes (cubes, polyhedra, and rods). A main band at 2255 cm−1, with a weak shoulder at 2254 cm−1, was observed. We attributed these bands to 15N2 adsorbed on Ce3+ sites located on edges and corners as well as on {100} facets. In conclusion, 15N2 adsorbs on the most acidic surface Ce3+ sites and enables their distinction from Ce4+ cations. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

24 pages, 4363 KiB  
Article
Ni Supported on Pr-Doped Ceria as Catalysts for Dry Reforming of Methane
by Antonella R. Ponseggi, Amanda de C. P. Guimarães, Renata O. da Fonseca, Raimundo C. Rabelo-Neto, Yutao Xing, Andressa A. A. Silva, Fábio B. Noronha and Lisiane V. Mattos
Processes 2025, 13(7), 2119; https://doi.org/10.3390/pr13072119 - 3 Jul 2025
Viewed by 466
Abstract
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with [...] Read more.
The use of CH4 and CO2 as fuels in direct internal reforming solid oxide fuel cells (DIR-SOFCs) is a promising strategy for efficient power generation with reduced greenhouse gas emissions. In this study, Ni catalysts supported on Ce–Pr mixed oxides with varying Pr contents (0–80 mol%) were synthesized, calcined at 1200 °C, and tested for dry reforming of methane (DRM), aiming at their application as catalytic layers in SOFC anodes. Physicochemical characterization (XRD, TPR, TEM) showed that increasing Pr loading enhances catalyst reducibility and promotes the formation of the Pr2NiO4 phase, which contributes to the generation of smaller Ni0 particles after reduction. Catalytic tests revealed that all samples exhibited low-carbon deposition, attributed to the large Ni crystallites. The catalyst with 80 mol% Pr showed the best performance, achieving the highest CH4 conversion (72%), a H2/CO molar ratio of 0.89, and improved stability. These findings suggest that Ni/Ce0.2Pr0.8 could be a promising candidate for use as a catalyst layer of anodes in DIR-SOFC anodes. Although electrochemical data are not yet available, future work will evaluate the catalyst’s performance and durability under SOFC-relevant conditions. Full article
(This article belongs to the Special Issue Advances in Synthesis and Applications of Supported Nanocatalysts)
Show Figures

Graphical abstract

12 pages, 3285 KiB  
Article
Ceria Promoted Ni/SiO2 as an Efficient Catalyst for Carbon Dioxide Reforming of Methane
by Hua-Ping Ren, Lin-Feng Zhang, Yu-Xuan Hui, Xin-Ze Wu, Shao-Peng Tian, Si-Yi Ding, Qiang Ma and Yu-Zhen Zhao
Catalysts 2025, 15(7), 649; https://doi.org/10.3390/catal15070649 - 2 Jul 2025
Viewed by 433
Abstract
The Ni/SiO2 and the ceria-promoted Ni-CeO2/SiO2 were prepared by the impregnation method and co-impregnation method, respectively. The performance of the carbon dioxide reforming of methane (CDR) over Ni/SiO2 and Ni-CeO2/SiO2 was investigated under the conditions [...] Read more.
The Ni/SiO2 and the ceria-promoted Ni-CeO2/SiO2 were prepared by the impregnation method and co-impregnation method, respectively. The performance of the carbon dioxide reforming of methane (CDR) over Ni/SiO2 and Ni-CeO2/SiO2 was investigated under the conditions of CH4/CO2 = 1.0, T = 800 °C, and GHSV = 60,000 mL·g−1·h−1. As a result, a high CDR performance, especially stability, was obtained over Ni-CeO2/SiO2, in which the conversion of CH4 was very similar to that of the thermodynamic equilibrium (88%), and a negligible decrease in CH4 conversion was observed after 50 h of the CDR reaction. Ni/SiO2 and Ni-CeO2/SiO2 before and after the CDR reaction were subjected to structural characterization by XRD, TEM, TG–DSC, and physical adsorption. It was found that the addition of CeO2 into Ni/SiO2 significantly affected its surface area, the size and dispersion of Ni, the reduction behavior, and the coking properties. Moreover, the redox property of Ce3+-Ce4+, which accelerates the gasification of the coke, made Ni-CeO2/SiO2 successfully operate for 50 h without observable deactivation. Thus, the developed catalyst is very promising for the CDR. Full article
(This article belongs to the Special Issue Trends and Prospects in Catalysis for Sustainable CO2 Conversion)
Show Figures

Figure 1

17 pages, 5437 KiB  
Article
Characterization of Different Types of Screen-Printed Carbon Electrodes Modified Electrochemically by Ceria Coatings
by Reni Andreeva, Aleksandar Tsanev, Georgi Avdeev and Dimitar Stoychev
Metals 2025, 15(7), 741; https://doi.org/10.3390/met15070741 - 30 Jun 2025
Viewed by 228
Abstract
Electrochemical formation of ceria (mixed Ce2O3 and CeO2) coatings on different types of screen-printed carbon electrodes (SPCEs) (based on graphite (C110), carbon nanotubes (CNT), single-walled carbon nanotubes (SWCNT), carbon nanofibers (CNF), and mesoporous carbon (MC)) were studied. Their [...] Read more.
Electrochemical formation of ceria (mixed Ce2O3 and CeO2) coatings on different types of screen-printed carbon electrodes (SPCEs) (based on graphite (C110), carbon nanotubes (CNT), single-walled carbon nanotubes (SWCNT), carbon nanofibers (CNF), and mesoporous carbon (MC)) were studied. Their potential applications as catalysts for various redox reactions and electrochemical sensors were investigated. The ceria oxide layers were electrodeposited on SPCEs at various current densities and deposition time. The morphology, structure, and chemical composition in the bulk of the ceria layers were studied by SEM and EDS methods. XRD was used to identify the formed phases. The concentration, chemical composition and chemical state of the elements on the surface of studied samples were characterized by XPS. It was established that the increase of the concentration of CeCl3 in the solution and the cathode current density strongly affected the surface structure and concentration (relation between Ce3+ and Ce4+, respectively) in the formed ceria layers. At low concentration of CeCl3 (0.1M) and low values of cathode current density (0.5 mA·cm−2), porous samples were obtained, while with their increase, the ceria coatings grew denser. Full article
Show Figures

Figure 1

27 pages, 2644 KiB  
Review
Biomass-Derived Tar Conversion via Catalytic Post-Gasification in Circulating Fluidized Beds: A Review
by Hugo de Lasa, Nicolas Torres Brauer, Floria Rojas Chaves and Benito Serrano Rosales
Catalysts 2025, 15(7), 611; https://doi.org/10.3390/catal15070611 - 20 Jun 2025
Cited by 1 | Viewed by 551
Abstract
Waste biomass gasification can contribute to the production of alternative and environmentally sustainable green fuels. Research at the CREC–UWO (Chemical Reactor Engineering Center–University of Western Ontario) considers an integrated gasification process where both electrical power, biochar, and tar-free syngas suitable for alcohol synthesis [...] Read more.
Waste biomass gasification can contribute to the production of alternative and environmentally sustainable green fuels. Research at the CREC–UWO (Chemical Reactor Engineering Center–University of Western Ontario) considers an integrated gasification process where both electrical power, biochar, and tar-free syngas suitable for alcohol synthesis are produced. In particular, the present review addresses the issues concerning tar removal from the syngas produced in a waste biomass gasifier via a catalytic post-gasification (CPG) downer unit. Various questions concerning CPG, such as reaction conditions, thermodynamics, a Tar Conversion Catalyst (TCC), and tar surrogate chemical species that can be employed for catalyst performance evaluations are reported. Catalyst performance-reported results were obtained in a fluidizable CREC Riser Simulator invented at CREC–UWO. The present review shows the suitability of the developed fluidizable Ni–Ceria γ-alumina catalyst, given the high level of tar removal it provides, the minimum coke that is formed with its use, and the adequate reforming of the syngas exiting the biomass waste gasifier, suitable for alcohol synthesis. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

16 pages, 3260 KiB  
Article
Catalytic Combustion of Methane over Pd-Modified La-Ce-Zr-Al Catalyst
by Katerina Tumbalova, Zlatina Zlatanova, Ralitsa Velinova, Maria Shipochka, Pavel Markov, Daniela Kovacheva, Ivanka Spassova, Silviya Todorova, Georgi Ivanov, Diana Nihtianova and Anton Naydenov
Materials 2025, 18(10), 2319; https://doi.org/10.3390/ma18102319 - 16 May 2025
Viewed by 519
Abstract
The present study aims to investigate a Pd catalyst on a complex multi-oxide medium-entropy support interlayer La2O3-CeO2-ZrO2-Al2O3 and its possible use as catalysts for methane abatement applications. The low-temperature N2-adsorption, [...] Read more.
The present study aims to investigate a Pd catalyst on a complex multi-oxide medium-entropy support interlayer La2O3-CeO2-ZrO2-Al2O3 and its possible use as catalysts for methane abatement applications. The low-temperature N2-adsorption, XRD, TEM, XPS, TPD, and TPR techniques were used to characterize the catalyst. The palladium deposition on the supports leads to the formation of PdO. After the catalytic tests, the metal-Pd phase was observed. The complete oxidation of methane on Pd/La-Ce-Zr-Al catalyst takes place at temperatures above 250 °C, and in the presence of water vapor, the reaction temperature increases to about 70 °C. The careful choice of constituent oxides provides a balance between structural stability and flexibility. The alumina and lanthanum oxide ensure the high specific surface area, while the simultaneous presence of zirconia and ceria leads to the formation of a mixed-oxide phase able to interact with palladium ions by incorporating and de-incorporating them at different conditions. The mechanism of Mars–van Kerevelen was considered as the most probable for the reaction of complete methane oxidation. The possibility of the practical application of Pd-modified La-Ce-Zr-Al catalyst is evaluated. The use of a mix of multiple rare and abundant oxides makes the proposed catalyst a cost-effective alternative. Full article
Show Figures

Graphical abstract

22 pages, 9184 KiB  
Article
Ceria–Zirconia-Supported Pt as an Efficient Catalyst for the Sustainable Synthesis of Hydroxylamines and Primary Amines via the Hydrogenation of Oximes Under Ambient Conditions
by Elena Redina, Inna Ivanova, Olga Tkachenko, Gennady Kapustin, Igor Mishin and Leonid Kustov
Molecules 2025, 30(9), 1926; https://doi.org/10.3390/molecules30091926 - 26 Apr 2025
Viewed by 849
Abstract
Amines and hydroxylamines are essential compounds in the synthesis of pharmaceuticals and other functionalized molecules. However, the synthesis of primary amines and particularly hydroxylamines remains a challenging task. The most common way to obtain amines and hydroxylamines involves the reduction of substances containing [...] Read more.
Amines and hydroxylamines are essential compounds in the synthesis of pharmaceuticals and other functionalized molecules. However, the synthesis of primary amines and particularly hydroxylamines remains a challenging task. The most common way to obtain amines and hydroxylamines involves the reduction of substances containing C-N bonds, such as nitro compounds, nitriles, and oximes. Among these, oximes are the most readily accessible substrates easily derived from ketones and aldehydes. However, oximes are much harder to reduce compared to nitro compounds and nitriles. The catalytic heterogeneous hydrogenation of oximes often requires harsh conditions and catalysts with high precious metal loadings, while hydroxylamines are hard to be obtained by this method. In this work, we showed that Pt supported on a porous ceria–zirconia solid solution enables the selective and atom-efficient synthesis of both hydroxylamines and amines through the hydrogenation of oximes, achieving yields of up to 99% under ambient reaction conditions in a “green” THF:H2O solvent system. The high activity of the 1% Pt/CeO2-ZrO2 catalyst (TOF > 500 h−1) is due to low-temperature hydrogen activation on Pt nanoparticles with the formation of a hydride, Pt-H. The strong influence of electron-donating and electron-withdrawing groups on the hydrogenation of aromatic oximes implies the nucleophilic attack of hydridic hydrogen from Pt to the electrophilic carbon of protonated oximes. Full article
(This article belongs to the Special Issue Advanced Heterogeneous Catalysis)
Show Figures

Graphical abstract

48 pages, 9875 KiB  
Review
Rare Earth Ce/CeO2 Electrocatalysts: Role of High Electronic Spin State of Ce and Ce3+/Ce4+ Redox Couple on Oxygen Reduction Reaction
by Shaik Gouse Peera and Seung Won Kim
Nanomaterials 2025, 15(8), 600; https://doi.org/10.3390/nano15080600 - 14 Apr 2025
Cited by 2 | Viewed by 1878
Abstract
With unique 4f electronic shells, rare earth metal-based catalysts have been attracting tremendous attention in electrocatalysis, including oxygen reduction reaction (ORR). In particular, atomically dispersed Ce/CeO2-based catalysts have been explored extensively due to several unique features. This review article provides a [...] Read more.
With unique 4f electronic shells, rare earth metal-based catalysts have been attracting tremendous attention in electrocatalysis, including oxygen reduction reaction (ORR). In particular, atomically dispersed Ce/CeO2-based catalysts have been explored extensively due to several unique features. This review article provides a comprehensive understanding of (i) the significance of the effect of Ce high-spin state on ORR activity enhancement on the Pt and non-pt electrocatalysts, (ii) the spatially confining and stabilizing effect of ceria on the generation of atomically dispersed transition metal-based catalysts, (iii) experimental and theoretical evidence of the effect of Ce3+ ↔ Ce4+ redox pain on radical scavenging, (iv) the effect of the Ce 4f electrons on the d-band center and electron transfer between Ce to the N-doped carbon and transition metal catalysts for enhanced ORR activity, and (v) the effect of Pt/CeO2/carbon heterojunctions on the stability of the Pt/CeO2/carbon electrocatalyst for ORR. Among several strategies of synthesizing Ce/CeO2 electrocatalysts, the metal–organic framework (MOF)-derived catalysts are being perused extensively due to the tendency of Ce to readily coordinate with O- and N-containing ligands, which upon undergoing pyrolysis, results in the formation of high surface area, porous carbon networks with atomically dispersed metallic/clusters/nanoparticles of Ce active sites. This review paper provides an overview of recent advancements regarding Ce/CeO2-based catalysts derived from the MOF precursor for ORR in fuel cells and metal–air battery applications and we conclude with insights into key issues and future development directions. Full article
(This article belongs to the Collection Micro/Nanoscale Open Framework Materials (OFMs))
Show Figures

Graphical abstract

22 pages, 2917 KiB  
Article
A Study of Redox Properties of Ceria and Fe-Ceria Solid Materials Through Small Molecules Catalytic Oxidation
by Riccardo Balzarotti, Andrea Basso Peressut, Gabriella Garbarino, Elena Spennati, Juan Felipe Basbus, Maria Paola Carpanese, Saverio Latorrata, Cinzia Cristiani and Elisabetta Finocchio
Materials 2025, 18(4), 806; https://doi.org/10.3390/ma18040806 - 12 Feb 2025
Viewed by 837
Abstract
This work presents a study of the redox properties of CeO2 particles with (FeCeHS) and without (CeHS) Fe2O3 impregnation, as possible innovative catalysts for oxidation and combustion reactions as well as CO2 activation. The topic, therefore, is part [...] Read more.
This work presents a study of the redox properties of CeO2 particles with (FeCeHS) and without (CeHS) Fe2O3 impregnation, as possible innovative catalysts for oxidation and combustion reactions as well as CO2 activation. The topic, therefore, is part of a broader analysis of environmental catalysis, which aims to reduce the emissions of polluting substances and improve the exploitation of energy resources, with consequent progress in the eco-friendly field. Different laboratory techniques (Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Ultraviolet–Visible (UV-Vis), and Fourier Transform–Infrared (FT-IR) spectroscopies) point out that iron oxide is deposited on the surface of ceria, which maintains its lattice structure, although the particle morphology is slightly changed. Methanol and ethanol adsorption and conversion were evaluated on these catalysts by Temperature Programmed Surface Reaction (TPSR) and by in situ FT-IR spectroscopy of the probe redox properties, evidencing the formation of surface oxidized intermediates and combustion products. The FeCeHS catalyst demonstrates, in our reaction conditions, a good combustion activity in total oxidation of oxygenated molecules, hindering the formation of formaldehyde from methanol and reducing the quantity of CO produced by the partial oxidation reaction. A cooperative effect is suggested by the mixture of these two metals in the oxidation process. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Figure 1

19 pages, 4495 KiB  
Article
Effect of Sm2O3 Doping of CeO2-Supported Ni Catalysts for H2 Production by Steam Reforming of Ethanol
by Carlos Andrés Chirinos, Sichen Liu, Vicente Cortés Corberán and Luisa María Gómez-Sainero
Catalysts 2025, 15(2), 131; https://doi.org/10.3390/catal15020131 - 29 Jan 2025
Viewed by 1101
Abstract
Hydrogen is a priority energy vector for energy transition. Its production from renewable feedstock like ethanol is suitable for many applications. The performance of a Ni catalyst supported on samaria-doped ceria in the production of hydrogen by the reforming of ethanol is investigated, [...] Read more.
Hydrogen is a priority energy vector for energy transition. Its production from renewable feedstock like ethanol is suitable for many applications. The performance of a Ni catalyst supported on samaria-doped ceria in the production of hydrogen by the reforming of ethanol is investigated, adding Sm2O3 to CeO2 in molar ratios of 1:9, 2:8, and 3:7. A CeO2-supported Ni catalyst was also evaluated for comparative purposes. The supports were prepared by the coprecipitation method and Ni was incorporated by incipient wetness impregnation to obtain catalysts with a Ni/(Ce+Sm) molar ratio of 4/6. The catalysts were characterized by a nitrogen adsorption isotherm, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Increasing Sm2O3 content leads to a more homogeneous distribution of Sm2O3 and Ni particles on the support, and higher oxygen mobility, favoring the catalytic properties. The catalyst with a Sm2O3/CeO2 molar ratio of 3/7 showed outstanding behavior, with an average ethanol conversion of 97%, hydrogen yield of 68%, and great stability. The results suggest that the main route for hydrogen production is ethanol dehydrogenation, followed by steam reforming of acetaldehyde, and acetone and ethylene formation are promoted by increasing Sm content in the outer surface of the catalyst. Full article
(This article belongs to the Special Issue Catalysis for Hydrogen Storage and Release)
Show Figures

Figure 1

19 pages, 3017 KiB  
Article
Effect of Support on Complete Hydrocarbon Oxidation over Pd-Based Catalysts
by Tatyana Tabakova, Bozhidar Grahovski, Yordanka Karakirova, Petya Petrova, Anna Maria Venezia, Leonarda Francesca Liotta and Silviya Todorova
Catalysts 2025, 15(2), 110; https://doi.org/10.3390/catal15020110 - 23 Jan 2025
Cited by 1 | Viewed by 1500
Abstract
Developing efficient strategies for VOC emission abatement is an urgent task for protection of the environment and human health. Complete catalytic oxidation exhibits advantages, making it an effective, environmentally friendly, and economically profitable approach for VOC elimination. Pd-based catalysts are known as highly [...] Read more.
Developing efficient strategies for VOC emission abatement is an urgent task for protection of the environment and human health. Complete catalytic oxidation exhibits advantages, making it an effective, environmentally friendly, and economically profitable approach for VOC elimination. Pd-based catalysts are known as highly active for hydrocarbon catalytic oxidation. The nature of carrier materials is of particular importance because it may affect activity by changing physicochemical properties of the palladium species. In this work, Al2O3, CeO2, CeO2-Al2O3, and Y-doped CeO2-Al2O3 were used as carriers of palladium catalysts. Methane and benzene were selected as representatives of two types of hydrocarbons. A decisive step in complete methane oxidation is the first C–H bond breaking, while the extraordinary stability of the six-membered ring structure is a challenge in benzene oxidation. The support effect was explored by textural measurements using XRF, XRD, XPS, EPR, and TPR techniques. Three ceria-containing samples showed superior CH4 oxidation performance, achieving 90% methane conversion at about 300 °C and complete oxidation at 320 °C. Evidence for presence of Pd2+ species in all samples regarded as most active was provided by XP-derived analysis. Pd/Y-Ce/Al catalysts exhibited very high activity in benzene oxidation by reaching 100% conversion at 180 °C. The contributions of higher Pd and Ce3+ surface concentrations, the presence of O2-adsorbed superoxo species, and Pd0 ↔ PdO redox transfer were considered. The potential of a simple, environmentally friendly, and less energy demanding mechanochemical preparation procedure of mixed oxides was demonstrated. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

13 pages, 3644 KiB  
Article
Insights into Contribution of Active Ceria Supports to Pt-Based Catalysts: Doping Effect (Zr; Pr; Tb) on Catalytic Properties for Glycerol Selective Oxidation
by Matías G. Rinaudo, Maria del Pilar Yeste, Hilario Vidal, José M. Gatica, Luis E. Cadús and Maria R. Morales
Inorganics 2025, 13(2), 32; https://doi.org/10.3390/inorganics13020032 - 22 Jan 2025
Cited by 1 | Viewed by 953
Abstract
How important is the support during the rational design of a catalyst? Herein, doped ceria (Zr; Pr and Tb) was used as an active support to prepare Pt catalysts (0.5 wt%) for glycerol selective oxidation. A thorough characterization of achieved catalytic systems showed [...] Read more.
How important is the support during the rational design of a catalyst? Herein, doped ceria (Zr; Pr and Tb) was used as an active support to prepare Pt catalysts (0.5 wt%) for glycerol selective oxidation. A thorough characterization of achieved catalytic systems showed that the nature of doping elements led to different physicochemical properties. The presence of surface Pr3+ and Tb3+ not only increased oxygen vacancies but also electron mobility, modifying the oxidation state of platinum particles. The redox properties of the catalyst were also affected, achieving a close interaction between the support and metal particles even in the form of Pt-O-Pr(Tb) solid solutions. Furthermore, the combination of medium-sized metal particle dispersion, strong metal–support interaction and a synergy between the amount of oxygen vacancies and Pt0, observed in the Pt/CeTb catalyst, led to a high turnover frequency (TOF) and increased selectivity to glyceric acid. Thus, the present study reveals how a simple structural modification of active supports, such as cerium oxide, by means of doping elements is capable of improving the catalytic performance during glycerol selective oxidation, avoiding the cumbersome methods of synthesis and activation treatments. Full article
(This article belongs to the Special Issue Transition Metal Catalysts: Design, Synthesis and Applications)
Show Figures

Graphical abstract

14 pages, 4138 KiB  
Article
The Role of Synthesis Methods of Ceria-Based Catalysts in Soot Combustion
by Gabriela Grzybek, Andrzej Wójtowicz, Piotr Legutko, Magdalena Greluk, Grzegorz Słowik, Andrzej Sienkiewicz, Andrzej Adamski and Andrzej Kotarba
Molecules 2025, 30(2), 358; https://doi.org/10.3390/molecules30020358 - 17 Jan 2025
Cited by 1 | Viewed by 1064
Abstract
The removal of soot particles via high-performance catalysts is a critical area of research due to the growing concern regarding air pollution. Among various potential catalysts suitable for soot oxidation, cerium oxide-based materials have shown considerable promise. In this study, CeO2 samples [...] Read more.
The removal of soot particles via high-performance catalysts is a critical area of research due to the growing concern regarding air pollution. Among various potential catalysts suitable for soot oxidation, cerium oxide-based materials have shown considerable promise. In this study, CeO2 samples obtained using a range of preparation methods (including hydrothermal synthesis (HT), sonochemical synthesis (SC), and hard template synthesis (TS)) were tested in soot combustion. They were compared to commercially available material (COM). All synthesized ceria catalysts were thoroughly characterized using XRD, RS, UV/Vis-DR, XPS, H2-TPR, SEM, and TEM techniques. As confirmed in the current study, every tested ceria sample can be used as an effective soot oxidation catalyst, with a temperature of 50% soot conversion not exceeding 400 °C in a tight contact mode. A strong correlation was observed between the catalysts’ Ce3+ concentration and activity, with higher Ce3+ levels leading to improved performance. These findings underscore the importance of synthesis in optimizing ceria-based catalysts for environmental applications. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Green Chemistry, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 5651 KiB  
Article
Methane Decomposition over a Titanium-Alumina and Iron Catalyst Assisted by Lanthanides to Produce High-Performance COx-Free H2 and Carbon Nanotubes
by Hamid Ahmed, Anis H. Fakeeha, Fayez M. Al-Alweet, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Rawesh Kumar, Alaaddin M. M. Saeed and Ahmed S. Al-Fatesh
Catalysts 2025, 15(1), 77; https://doi.org/10.3390/catal15010077 - 15 Jan 2025
Cited by 2 | Viewed by 1574
Abstract
COx-free H2, along with uniform carbon nanotubes, can be achieved together in high yield by CH4 decomposition. It only needs a proper catalyst and reaction condition. Herein, Fe-based catalyst dispersed over titania-incorporated-alumina (Fe/Ti-Al), with the promotional addition of lanthanides, like [...] Read more.
COx-free H2, along with uniform carbon nanotubes, can be achieved together in high yield by CH4 decomposition. It only needs a proper catalyst and reaction condition. Herein, Fe-based catalyst dispersed over titania-incorporated-alumina (Fe/Ti-Al), with the promotional addition of lanthanides, like CeO2 and La2O3, over it, is investigated for a methane decomposition reaction at 800 °C with GHSV 6 L/(g·h) in a fixed-bed reactor. The catalysts are characterized by temperature-programmed reduction (TPR), powder X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The promoted catalysts are facilitated with higher surface area and enhanced dispersion and concentration of active sites, resulting in higher H2 and carbon yields than unpromoted catalysts. Ceria-promoted 20Fe/Ti-Al catalyst had the highest concentration of active sites and always attained the highest activity in the initial hours. The 20Fe-2.5Ce/Ti-Al catalyst attains >90% CH4 conversion, >80% H2-yield, and 92% carbon yield up to 480 min time on stream. The carbon nanotube over this catalyst is highly uniform, consistent, and has the highest degree of crystallinity. The supremacy of ceria-promoted catalyst attained >90% CH4 conversion even after the second cycle of regeneration studies (against 87% in lanthanum-promoted catalyst), up to 240 min time on stream. This study plots the path of achieving catalytic and carbon excellence over Fe-based catalysts through CH4 decomposition. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Graphical abstract

16 pages, 2793 KiB  
Article
Maximizing H2 Production from a Combination of Catalytic Partial Oxidation of CH4 and Water Gas Shift Reaction
by Pannipa Tepamatr, Pattarapon Rungsri, Pornlada Daorattanachai and Navadol Laosiripojana
Molecules 2025, 30(2), 271; https://doi.org/10.3390/molecules30020271 - 11 Jan 2025
Cited by 1 | Viewed by 1495
Abstract
A single-bed and dual-bed catalyst system was studied to maximize H2 production from the combination of partial oxidation of CH4 and water gas shift reaction. In addition, the different types of catalysts, including Ni, Cu, Ni-Re, and Cu-Re supported on gadolinium-doped [...] Read more.
A single-bed and dual-bed catalyst system was studied to maximize H2 production from the combination of partial oxidation of CH4 and water gas shift reaction. In addition, the different types of catalysts, including Ni, Cu, Ni-Re, and Cu-Re supported on gadolinium-doped ceria (GDC) were investigated under different operating conditions of temperature (400–650 °C). Over Ni-based catalysts, methane can easily dissociate on a Ni surface to give hydrogen and carbon species. Then, carbon species react with lattice oxygen of ceria-based material to form CO. The addition of Re to Ni/GDC enhances CH4 dissociation on the Ni surface and increases oxygen storage capacity in the catalyst, thus promoting carbon elimination. In addition, the results showed that a dual-bed catalyst system exhibited catalytic activity better than a single-bed catalyst system. The dual-bed catalyst system, by the combination of 1%Re4%Ni/GDC as a partial oxidation catalyst and 1%Re4%Cu/GDC as a water gas shift catalyst, provided the highest CH4 conversion and H2 yield. An addition of Re onto Ni/GDC and Cu/GDC caused an increase in catalytic performance because Re addition could improve the catalyst reducibility and increase metal surface area, as more of their surface active sites are exposed to reactants. Full article
Show Figures

Figure 1

Back to TopTop