Insights into Contribution of Active Ceria Supports to Pt-Based Catalysts: Doping Effect (Zr; Pr; Tb) on Catalytic Properties for Glycerol Selective Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts’ Characterization
2.2. Catalytic Tests
3. Materials and Methods
3.1. Synthesis of Catalysts
3.2. Characterization
3.3. Catalytic Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Y.; Liu, S.; Fu, L.; Yuan, Y.; Zhao, A.; Wang, D.; Zheng, H.; Ouyang, L.; Yuan, S. Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. J. Catal. 2023, 417, 60–73. [Google Scholar] [CrossRef]
- Docherty, S.R.; Copéret, C. Deciphering Metal–Oxide and Metal–Metal Interplay via Surface Organometallic Chemistry: A Case Study with CO2 Hydrogenation to Methanol. J. Am. Chem. Soc. 2021, 143, 6767–6780. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, W.; Zhang, Z.; Zhang, S.; Tian, Z.; Liu, Y.; Ho, J.C.; Qu, Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018, 73, 1–36. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C.; Wang, W.; Bu, J.; Zhou, F.; Zhang, B.; Zhang, Q. Effect of Ceria on redox-catalytic property in mild condition: A solvent-free route for imine synthesis at low temperature. Appl. Catal. B Environ. 2018, 227, 209–217. [Google Scholar] [CrossRef]
- Tan, W.; Alsenani, H.; Xie, S.; Cai, Y.; Xu, P.; Liu, A.; Ji, J.; Gao, F.; Dong, L.; Chukwu, E.; et al. Tuning Single-atom Pt1−CeO2 Catalyst for Efficient CO and C3H6 Oxidation: Size Effect of Ceria on Pt Structural Evolution. ChemNanoMat 2020, 6, 1797–1805. [Google Scholar] [CrossRef]
- El Roz, A.; Fongarland, P.; Dumeignil, F.; Capron, M. Glycerol to Glyceraldehyde Oxidation Reaction Over Pt-Based Catalysts Under Base-Free Conditions. Front. Chem. 2019, 7, 156. [Google Scholar] [CrossRef]
- Rinaudo, M.G.; Beltrán, A.M.; Fernández, A.; Cadús, L.E.; Morales, M.R. Pd supported on defective TiO2 polymorphic mixtures: Effect of metal-support interactions upon glycerol selective oxidation. Results Eng. 2022, 16, 100737. [Google Scholar] [CrossRef]
- Namdeo, A.; Mahajani, S.; Suresh, A. Palladium catalysed oxidation of glycerol—Effect of catalyst support. J. Mol. Catal. A Chem. 2016, 421, 45–56. [Google Scholar] [CrossRef]
- Rinaudo, M.; Beltrán, A.; Fernández, M.; Cadús, L.; Morales, M. Tailoring materials by high-energy ball milling: TiO2 mixtures for catalyst support application. Mater. Today Chem. 2020, 17, 100340. [Google Scholar] [CrossRef]
- Rinaudo, M.G.; Pecchi, G.; Cadús, L.E.; Morales, M.R. Is mechanochemical activation always an asset? The case of Pd/CeO2 catalysts for glycerol selective oxidation. Ceram. Int. 2023, 49, 18614–18623. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, Q.; Cao, J.; Ning, P.; Chen, J. Ceria-zirconia solid solution supported platinum catalysts for toluene oxidation: Studying the improved catalytic activity by tungsten addition. Sep. Purif. Technol. 2025, 357, 130144. [Google Scholar] [CrossRef]
- Chanapattharapol, K.C.; Krachuamram, S.; Makdee, A.; Unwiset, P.; Srikwanjai, S. Preparation and characterization of Ce1−xPrxO2 supports and their catalytic activities. J. Rare Earths 2017, 35, 1197–1205. [Google Scholar] [CrossRef]
- Fahed, S.; Pointecouteau, R.; Aouine, M.; Boréave, A.; Gil, S.; Meille, V.; Bazin, P.; Toulemonde, O.; Demourgues, A.; Daturi, M.; et al. Pr-rich cerium-zirconium-praseodymium mixed oxides for automotive exhaust emission control. Appl. Catal. A Gen. 2022, 644, 118800. [Google Scholar] [CrossRef]
- Zope, B.N.; Hibbitts, D.D.; Neurock, M.; Davis, R.J. Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis. Science 2010, 330, 70–74. [Google Scholar] [CrossRef]
- Koranian, P.; Huang, Q.; Dalai, A.K.; Sammynaiken, R. Chemicals Production from Glycerol through Heterogeneous Catalysis: A Review. Catalysts 2022, 12, 897. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, J.; Zhang, X.; Li, J.; Jiang, K.; Liu, Y.; Zhao, G.; Wang, X.; Chu, H. Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction. J. Catal. 2020, 381, 434–442. [Google Scholar] [CrossRef]
- Peng, R.; Wen, S.; Zhang, H.; Zhang, Y.; Sun, Y.; Liang, Z.; Ye, D. Catalytic Oxidation of Toluene over Pt/CeO2 Catalysts: A Double-Edged Sword Effect of Strong Metal–Support Interaction. Langmuir 2024, 40, 13984–13994. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Boaro, M.; Fornasiero, P.; Trovarelli, A. Catalytic Applications of Cerium Dioxide; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Wang, F.; Yu, H.; Tian, Z.; Xue, H.; Feng, L. Active sites contribution from nanostructured interface of palladium and cerium oxide with enhanced catalytic performance for alcohols oxidation in alkaline solution. J. Energy Chem. 2018, 27, 395–403. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, M.W.; Kim, H.J.; Choung, J.W.; Jung, C.; Kim, C.H.; Lee, K.-Y. Effect of Ag doping on Pd/Ag-CeO2 catalysts for CO and C3H6 oxidation. J. Hazard. Mater. 2021, 415, 125373. [Google Scholar] [CrossRef]
- Coduri, M.; Scavini, M.; Brunelli, M.; Pedrazzin, E.; Masala, P. Structural characterization of Tb- and Pr-doped ceria. Solid State Ion. 2014, 268, 150–155. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Hu, W.; Knight, D.; Lowry, B.; Varma, A. Selective Oxidation of Glycerol to Dihydroxyacetone over Pt−Bi/C Catalyst: Optimization of Catalyst and Reaction Conditions. Ind. Eng. Chem. Res. 2010, 49, 10876–10882. [Google Scholar] [CrossRef]
- Gatica, J.M.; Baker, R.T.; Fornasiero, P.; Bernal, S.; Kašpar, J. Characterization of the Metal Phase in NM/Ce0.68Zr0.32O2 (NM: Pt and Pd) Catalysts by Hydrogen Chemisorption and HRTEM Microscopy: A Comparative Study. J. Phys. Chem. B 2001, 105, 1191–1199. [Google Scholar] [CrossRef]
- Bergeret, G.; Gallezot, P. Particle Size and Dispersion Measurements; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Almithn, A.S.; Hibbitts, D.D. Supra-monolayer coverages on small metal clusters and their effects on H2 chemisorption particle size estimates. AIChE J. 2018, 64, 3109–3120. [Google Scholar] [CrossRef]
- Al-Shareef, R.; Harb, M.; Saih, Y.; Ould-Chikh, S.; Anjum, D.H.; Candy, J.-P.; Basset, J.-M. Precise Control of Pt Particle Size for Surface Structure-Reaction Activity Relationship. J. Phys. Chem. C 2018, 122, 23451–23459. [Google Scholar] [CrossRef]
- Si, G.; Yu, J.; Xiao, X.; Guo, X.; Huang, H.; Mao, D.; Lu, G. Boundary role of Nano-Pd catalyst supported on ceria and the approach of promoting the boundary effect. Mol. Catal. 2018, 444, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Zhai, Y.; Zhang, J.; Liu, W.; Wang, L.; Wang, Z. High performance of PrMnO3 perovskite catalysts for low-temperature soot oxidation. Sep. Purif. Technol. 2024, 354, 129227. [Google Scholar] [CrossRef]
- Kusrini, E.; Safira, A.I.; Usman, A.; Prasetyanto, E.A.; Nugrahaningtyas, K.D.; Santosa, S.J.; Wilson, L.D. Nanocomposites of Terbium Sulfide Nanoparticles with a Chitosan Capping Agent for Antibacterial Applications. J. Compos. Sci. 2023, 7, 39. [Google Scholar] [CrossRef]
- Bugrova, T.; Kharlamova, T.; Svetlichnyi, V.; Savel’eva, A.; Salaev, M.; Mamontov, G. Insights into formation of Pt species in Pt/CeO2 catalysts: Effect of treatment conditions and metal-support interaction. Catal. Today 2020, 375, 36–47. [Google Scholar] [CrossRef]
- Lashina, E.A.; Slavinskaya, E.M.; Stonkus, O.A.; Boronin, A.I. Abnormally narrow peaks in TPR-H2 over Pt/CeO2: Experiment and mathematical modelling. Int. J. Hydrogen Energy 2024, 89, 590–604. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Y.; Yu, L.; Wang, L.; Yang, Y.; Wei, M. Pt/ZrO2 catalyst with metal-support synergistic effect towards glycerol selective oxidation. Chem. Eng. J. 2023, 468, 143623. [Google Scholar] [CrossRef]
- Peng, R.; Li, S.; Sun, X.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B Environ. 2018, 220, 462–470. [Google Scholar] [CrossRef]
- Rodrigues, E.G.; Delgado, J.J.; Chen, X.; Pereira, M.F.R.; Órfão, J.J.M. Selective Oxidation of Glycerol Catalyzed by Gold Supported on Multiwalled Carbon Nanotubes with Different Surface Chemistries. Ind. Eng. Chem. Res. 2012, 51, 15884–15894. [Google Scholar] [CrossRef]
- Rahim, S.A.N.M.; Lee, C.S.; Abnisa, F.; Aroua, M.K.; Daud, W.A.W.; Cognet, P.; Pérès, Y. A review of recent developments on kinetics parameters for glycerol electrochemical conversion—A by-product of biodiesel. Sci. Total. Environ. 2020, 705, 135137. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; He, Y.; Feng, J.; Li, D. Reaction pathway investigation using in situ Fourier transform infrared technique over Pt/CuO and Pt/TiO2 for selective glycerol oxidation. Appl. Catal. B Environ. 2021, 291, 120061. [Google Scholar] [CrossRef]
Catalyst | Average Crystallite Size (nm) a | Lattice Parameter (nm) b | SBET (m2 g−1) | Pore Diameter (nm) c | Total Pore Volume (cm3 g−1) d |
---|---|---|---|---|---|
Pt/Ce | 8 | 0.53941 | 96 | 11 | 0.27 |
Pt/CeZr | 6 | 0.53443 | 82 | 7 | 0.14 |
Pt/CePr | 5 | 0.54108 | 62 | 10 | 0.16 |
Pt/CeTb | 7 | 0.53813 | 74 | 8 | 0.15 |
Catalyst | Pt Loading (wt%) a | Pt Average Particle Size (nm) b | Pt Average Particle Size (nm) c | Pt Dispersion (%) b |
---|---|---|---|---|
Pt/Ce | 0.45 | 0.57 | 1.6 | 198 |
Pt/CeZr | 0.48 | 1.66 | 9.3 | 68 |
Pt/CePr | 0.45 | 1.36 | 8.4 | 83 |
Pt/CeTb | 0.46 | 0.76 | 8.5 | 149 |
Catalyst | Atomic Ratio, XPS | |||
---|---|---|---|---|
Pt0/(Pt0 + Ptδ+) | Oads/(Oads + Olatt) | Ce3+/(Ce3+ + Ce4+) | M3+/(M3+ + M4+) a | |
Pt/Ce | 0.27 | 0.18 | 0.15 | --- |
Pt/CeZr | 0.21 | 0.15 | 0.15 | 0.00 |
Pt/CePr | 0.27 | 0.25 | 0.06 | 0.46 |
Pt/CeTb | 0.40 | 0.24 | 0.07 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaudo, M.G.; Yeste, M.d.P.; Vidal, H.; Gatica, J.M.; Cadús, L.E.; Morales, M.R. Insights into Contribution of Active Ceria Supports to Pt-Based Catalysts: Doping Effect (Zr; Pr; Tb) on Catalytic Properties for Glycerol Selective Oxidation. Inorganics 2025, 13, 32. https://doi.org/10.3390/inorganics13020032
Rinaudo MG, Yeste MdP, Vidal H, Gatica JM, Cadús LE, Morales MR. Insights into Contribution of Active Ceria Supports to Pt-Based Catalysts: Doping Effect (Zr; Pr; Tb) on Catalytic Properties for Glycerol Selective Oxidation. Inorganics. 2025; 13(2):32. https://doi.org/10.3390/inorganics13020032
Chicago/Turabian StyleRinaudo, Matías G., Maria del Pilar Yeste, Hilario Vidal, José M. Gatica, Luis E. Cadús, and Maria R. Morales. 2025. "Insights into Contribution of Active Ceria Supports to Pt-Based Catalysts: Doping Effect (Zr; Pr; Tb) on Catalytic Properties for Glycerol Selective Oxidation" Inorganics 13, no. 2: 32. https://doi.org/10.3390/inorganics13020032
APA StyleRinaudo, M. G., Yeste, M. d. P., Vidal, H., Gatica, J. M., Cadús, L. E., & Morales, M. R. (2025). Insights into Contribution of Active Ceria Supports to Pt-Based Catalysts: Doping Effect (Zr; Pr; Tb) on Catalytic Properties for Glycerol Selective Oxidation. Inorganics, 13(2), 32. https://doi.org/10.3390/inorganics13020032