Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = ceramic conversion treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6771 KB  
Article
Sol–Gel-Derived Ge-Substituted LLZO Ceramic Coatings on Lithium-Rich Layered Oxide Cathodes for Improved Interfacial Stability
by Soon Phil Jung, Dae Won Oh, Byeong Jin Jeong, Jun Yeop Lee, Du Hyun Roh, Kumaran Vediappan, RM. Gnanamuthu, Sivagaami Sundari Gunasekaran and Chang Woo Lee
Gels 2026, 12(2), 114; https://doi.org/10.3390/gels12020114 - 28 Jan 2026
Abstract
Gel-based routes, particularly sol–gel processes, offer a versatile pathway to generate uniform inorganic networks and gel-derived functional ceramics with controlled composition and interfacial coverage. In this study, we employ a citrate-assisted sol–gel coating strategy to form a precursor gel containing Li, La, Zr, [...] Read more.
Gel-based routes, particularly sol–gel processes, offer a versatile pathway to generate uniform inorganic networks and gel-derived functional ceramics with controlled composition and interfacial coverage. In this study, we employ a citrate-assisted sol–gel coating strategy to form a precursor gel containing Li, La, Zr, and Ge species on lithium-rich manganese-based layered oxide (LMLO) cathode particles, followed by drying/thermal conversion to obtain a Ge-substituted garnet-type Li7La3Zr2O12 (Ge-LLZO) ceramic coating. Structural and surface analyses (FE-SEM/EDS, XPS, and FE-TEM) confirm the presence of surface-deposited coating-related species and coating-induced changes in surface chemistry, while bulk XRD is primarily used to verify that the layered LMLO host structure is preserved after the gel-to-ceramic treatment. Electrochemical testing indicates that the gel-derived Ge-LLZO coating can influence interfacial kinetics and resistance evolution, as reflected by differential capacity behavior, impedance responses, and rate capability trends, alongside microstructural observations suggesting reduced damage compared with bare LMLO after cycling. Overall, this work demonstrates that gelation-assisted deposition and gel-to-ceramic conversion enable Ge-LLZO surface coatings on LMLO cathodes that modulate interfacial kinetics and resistance evolution. Under the harsh 4.8–2.0 V/1C condition, the bare LMLO shows an abrupt capacity drop after ~60 cycles, while the coated LMLO exhibits a more gradual decay up to 100 cycles; further optimization is required for robust long-term stability. Full article
(This article belongs to the Special Issue Functional Gels Applied in Energy Storage Systems)
Show Figures

Figure 1

18 pages, 5019 KB  
Article
A High-Solid-Content and Low-Surface-Treatment Epoxy-Polysiloxane Ceramic Metal Coating for Metal Anti-Corrosion in Harsh Environments
by Xiufen Liao, Liang Fan, Qiumei Jiang, Maomi Zhao, Songqiang Huang, Junxiang Lai, Congtao Sun and Baorong Hou
Metals 2026, 16(1), 123; https://doi.org/10.3390/met16010123 - 21 Jan 2026
Viewed by 137
Abstract
Conventional anticorrosive coatings suffer from limitations of low solid content and rigorous surface pretreatment, posing environmental and cost challenges in field applications. In this study, a novel high-solid-content (>95%) epoxy-polysiloxane (Ep-PSA) ceramic metal coating was prepared that enables low-surface-treatment application. The originality lies [...] Read more.
Conventional anticorrosive coatings suffer from limitations of low solid content and rigorous surface pretreatment, posing environmental and cost challenges in field applications. In this study, a novel high-solid-content (>95%) epoxy-polysiloxane (Ep-PSA) ceramic metal coating was prepared that enables low-surface-treatment application. The originality lies in the synergistic combination of nano-sized ceramic powders, high-strength metallic powders, polysiloxane resin (PSA), and solvent-free epoxy resin (Ep), which polymerize through an organic–inorganic interpenetrating network to form a dense shielding layer. The as-prepared Ep-PSA coating system chemically bonds with indigenous metal substrate via Zn3(PO4)2 and resin functionalities during curing, forming a conversion layer that reduces surface preparation requirements. Differentiating from existing high-solid coatings, this approach achieves superior long-term barrier properties, evidenced by |Z|0.01Hz value of 9.64 × 108 Ω·cm2, after 6000 h salt spray exposure—four orders of magnitude higher than commercial 60% epoxy zinc-rich coatings (2.26 × 104 Ω·cm2, 3000 h salt spray exposure). The coating exhibits excellent adhesion (14.28 MPa) to standard sandblasted steel plates. This environmentally friendly, durable, and easily applicable composite coating demonstrates significant field application value for large-scale energy infrastructure. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials (2nd Edition))
Show Figures

Figure 1

11 pages, 3679 KB  
Article
Crystallization of Lithium Zeolites onto Foamed Geopolymers
by Carlo Gravino, Assunta Campanile, Claudio Ferone, Domenico Caputo, Nicola Gargiulo, Barbara Liguori and Paolo Aprea
Materials 2025, 18(23), 5310; https://doi.org/10.3390/ma18235310 - 25 Nov 2025
Viewed by 439
Abstract
Lithium-containing zeolites are receiving significant attention due to their intriguing properties in various industrial applications, mainly related to gas separation and catalyzed processes. This paper presents an in-depth exploration of a nucleation strategy aimed at producing porous ceramic monoliths enriched with lithium zeolites. [...] Read more.
Lithium-containing zeolites are receiving significant attention due to their intriguing properties in various industrial applications, mainly related to gas separation and catalyzed processes. This paper presents an in-depth exploration of a nucleation strategy aimed at producing porous ceramic monoliths enriched with lithium zeolites. The synthesis was obtained by means of a geopolymer gel conversion, carried out by submerging either sodium- or lithium-rich geopolymers in lithium hydroxide solutions and performing a hydrothermal treatment. A full factorial design of experiments (DoE) was adopted to investigate the effect of LiOH molarity, treatment temperature, and time on the zeolite content in the samples. The most abundant and recurring zeolites obtained were Li-ABW (ABW) and lithium edingtonite (EDI). Concerning the lithium/sodium-containing systems, the competing presence of sodium directed the nucleation towards faujasite as well, together with minor amounts of other zeolites. In contrast, in pure lithium treatment media, the samples showed just ABW and EDI as the only crystalline phases. Full article
Show Figures

Figure 1

25 pages, 3357 KB  
Review
The Emerging Role of MXenes in Cancer Treatment
by Najla M. Salkho, William G. Pitt and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(21), 10296; https://doi.org/10.3390/ijms262110296 - 22 Oct 2025
Viewed by 1233
Abstract
MXenes are relatively new 2D materials made up of carbides and/or nitrides of transition metals with a chemical formula Mn+1XnTx. They are usually fabricated by chemically etching a ceramic phase. MXenes possess tunable catalytic, optical, and electronic [...] Read more.
MXenes are relatively new 2D materials made up of carbides and/or nitrides of transition metals with a chemical formula Mn+1XnTx. They are usually fabricated by chemically etching a ceramic phase. MXenes possess tunable catalytic, optical, and electronic properties, which have attracted significant research interest, primarily in energy storage and biosensing applications. Since their first fabrication in 2011, there has been a rapid increase in studies investigating the use of MXenes in a wide range of applications. In this review, the synthesis methods of MXenes are discussed. Then, the potential application of MXenes in cancer treatment is highlighted based on current research. The ability of MXene to convert light, usually NIR (I and II), to heat with improved conversion efficiencies makes it a competitive candidate for photothermal cancer therapy. Moreover, the surface of MXenes can be modified with drugs or nanoparticles, thereby achieving synergistic photo/chemo/, and sonodynamic therapy. This review also examines the available research on the biocompatibility and cytotoxicity of MXenes. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

28 pages, 12296 KB  
Article
Phase Stability and Structural Reorganization of Silica in Cherts Under Thermal and Mechanochemical Stress
by María de Uribe-Zorita, Pedro Álvarez-Lloret, Beatriz Ramajo, Javier F. Reynes and Celia Marcos
Materials 2025, 18(13), 3077; https://doi.org/10.3390/ma18133077 - 28 Jun 2025
Viewed by 1262
Abstract
This work investigated the structural response and phase transformation dynamics of silica-bearing cherts subjected to high-temperature processing (up to 1400 °C) and prolonged mechanochemical activation. Through a combination of X-ray diffraction (XRD) with Rietveld refinement, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and [...] Read more.
This work investigated the structural response and phase transformation dynamics of silica-bearing cherts subjected to high-temperature processing (up to 1400 °C) and prolonged mechanochemical activation. Through a combination of X-ray diffraction (XRD) with Rietveld refinement, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and transmission electron microscopy (HRTEM), we trace the crystallographic pathways of quartz, moganite, tridymite, and cristobalite under controlled thermal and mechanical stress regimes. The experimental results demonstrated that phase behavior is highly dependent on intrinsic properties such as initial phase composition, impurity presence, and crystallinity. Heating at 1400 °C induced irreversible conversion of quartz, moganite, and tridymite into cristobalite. Samples enriched in cristobalite and tridymite exhibited notable increases in crystallinity, whereas quartz-dominant samples showed either stability or a decline in structural order. Rietveld analyses underscored the critical influence of microstrain and crystallite size on thermal resilience and phase persistence. Thermal profiles revealed by DSC and TGA expose overlapping processes including polymorphic transitions, minor phase dehydration, and redox-driven changes, likely associated with trace components. Mechanochemical processing resulted in partial amorphization and the emergence of phases such as opal and feldspar minerals (microcline, albite, anorthite), interpreted as the product of lattice collapse and subsequent reprecipitation. Heat treatment of chert leads to a progressive rearrangement and recrystallization of its silica phases: quartz collapses around 1000 °C before recovering, tridymite emerges as an intermediate phase, and cristobalite shows the greatest crystallite size growth and least deformation at 1400 °C. These phase changes serve as markers of high-temperature exposure, guiding the identification of heat-altered lithic artefacts, reconstructing geological and diagenetic histories, and allowing engineers to adjust the thermal expansion of ceramic materials. Mechanochemical results provide new insights into the physicochemical evolution of metastable silica systems and offer valuable implications for the design and thermal conditioning of silica-based functional materials used in high-temperature ceramics, glasses, and refractory applications. From a geoarchaeological standpoint, the mechanochemically treated material could simulate natural weathering of prehistoric chert tools, providing insights into diagenetic pathways and lithic degradation processes. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 3628 KB  
Article
Phase Evolution of High-Entropy Stannate Pyrochlore Oxide Synthesized via Glycine-Assisted Sol–Gel Synthesis as a Thermal Barrier Coating Material
by Mariappan Anandkumar, Kannan Pidugu Kesavan, Shanmugavel Sudarsan, Dmitry Evgenievich Zhivulin, Natalia Aleksandrovna Shaburova, Ahmad Ostovari Moghaddam, Ksenia Sergeevna Litvinyuk and Evgeny Alekseevich Trofimov
Nanomaterials 2025, 15(12), 939; https://doi.org/10.3390/nano15120939 - 17 Jun 2025
Cited by 5 | Viewed by 1735
Abstract
High-entropy ceramics have gained wider attention due to their structural integrity and stability, which can be used in various functional applications. Especially, high-entropy oxides exhibit excellent thermal stability, particularly at high temperatures. Thermal barrier coating materials must demonstrate good thermal stability without any [...] Read more.
High-entropy ceramics have gained wider attention due to their structural integrity and stability, which can be used in various functional applications. Especially, high-entropy oxides exhibit excellent thermal stability, particularly at high temperatures. Thermal barrier coating materials must demonstrate good thermal stability without any phase transformation or phase separation, which is critical in aerospace and energy conversion applications. To address this, we have prepared new high-entropy stannate pyrochlore oxide nanoparticles with the composition (Gd0.2Nd0.2La0.2Pr0.2Sm0.2)2Sn2O7 through a simple glycine-assisted sol–gel synthesis. The phase evolution was probed at different heat-treatment temperatures from 1000 °C to 1500 °C. Among the temperatures investigated, a single-phase pyrochlore oxide was formed from 1300 °C without any impurity or phase separation. The obtained nanoparticles were characterized using various techniques, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, and dilatometry to investigate their physiochemical and mechanical properties. The Vickers hardness of high-entropy oxides is 4.2 ± 0.33 GPa, while a thermal expansion coefficient (TEC) of 8.7 × 10−6 K−1 at 900 °C is calculated. The results show that the prepared high-entropy pyrochlore oxide can be a suitable candidate for thermal barrier coating. Full article
(This article belongs to the Special Issue Preparation and Characterization of Nanomaterials)
Show Figures

Graphical abstract

16 pages, 942 KB  
Article
Supported TiO2 Photocatalysis of Spiked Contaminants in Water and Municipal Wastewater
by Zouhour Rajah, Houda Dhibi, Mariem Abdelkader, Eva Rodriguez, Monia Guiza and Francisco Javier Rivas
Catalysts 2025, 15(5), 495; https://doi.org/10.3390/catal15050495 - 20 May 2025
Cited by 1 | Viewed by 1507
Abstract
An aqueous mixture of three compounds (atrazine, carbamazepine, and p-chlorobenzoic acid) has been treated by photochemical processes including photolysis and photocatalysis with 10.7% TiO2 supported on ceramic foams of mullite. Experiments were conducted in both ultrapure water and in a secondary effluent [...] Read more.
An aqueous mixture of three compounds (atrazine, carbamazepine, and p-chlorobenzoic acid) has been treated by photochemical processes including photolysis and photocatalysis with 10.7% TiO2 supported on ceramic foams of mullite. Experiments were conducted in both ultrapure water and in a secondary effluent from a municipal wastewater treatment plant. Radiation at 365 nm was totally inefficient in the photolytic process carried out in ultrapure water; however, some sensitization phenomena were observed when municipal wastewater was used as a bulk matrix. In the latter case, conversion values in the range of 20–30% were obtained after 2 h. The photocatalytic process was much more effective experiencing conversions above 80% after just 80 min of reaction. The nature of the matrix used exerted a significant influence. Use of municipal wastewater slowed down the process due to the scavenging character of the natural organic matter content. Test runs in the presence of carbonates and t-butyl alcohol suggested that radical carbonates play some role in contaminant abatement, and secondary radicals generated after the t-BuOH attack by HO radicals should also be considered in the reaction mechanism. A pseudo-empirical mechanism of reactions sustains the experimental result obtained, acceptably modeling the effects of a water matrix, scavenger addition, and radiation volumetric photon flux. Full article
(This article belongs to the Special Issue Advancements in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

16 pages, 30094 KB  
Article
Thermal Processing Effects on Biomass Ash Utilization for Ceramic Membrane Fabrication
by Heloísa Maria de Oliveira, Hélio de Lucena Lira and Lisiane Navarro de Lima Santana
Sustainability 2025, 17(3), 979; https://doi.org/10.3390/su17030979 - 25 Jan 2025
Cited by 2 | Viewed by 2009
Abstract
Biomass carbon-rich ash is proposed as a sustainable alternative in the production of ceramic materials. This study investigated this waste product, combined with kaolin and alumina for the production of ceramic membranes. The formulations were defined based on the Al2O3 [...] Read more.
Biomass carbon-rich ash is proposed as a sustainable alternative in the production of ceramic materials. This study investigated this waste product, combined with kaolin and alumina for the production of ceramic membranes. The formulations were defined based on the Al2O3-SiO2-MgO ternary diagram with 51 wt% biomass ash, 36 wt% kaolin, and 13 wt% alumina. The shaping of the green body samples was conducted by using the uniaxial pressing method at 40 MPa and sintering at temperatures ranging from 1050 to 1150 °C. Several properties, such as morphology, porosity, pore diameter, mechanical strength, and chemical resistance, were investigated. It was revealed that the increase in temperature occasioned decreased porosity and water absorption; conversely, it increased bulk density, pore size, diametrical shrinkage, and flexural strength. Moreover, the samples demonstrated minimal weight loss (<0.6 wt.%) in acidic and basic solutions. The samples with porosity ranging from 31.5% to 44.4%, pore size from 1.0 μm to 1.5 μm, and flexural resistance from 9.0 MPa to 21.0 MPa were tested for pure water flux at 1.0 bar and an enhanced flux at a higher temperature, attributed to increased pore size resulting from higher sintering temperatures, was observed. The best-performing sample was sintered at 1050 °C with an average flux of 1716.8 L.h−1.m−2. Also, according to TGA/DTA data, these membranes have greater stability. These membranes are suitable for the treatment of effluents and contribute to reducing environmental impact and increasing sustainability by promoting the efficient utilization of resources. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Figure 1

12 pages, 4508 KB  
Article
Fabrication of PVTF Films with High Piezoelectric Properties Through Directional Heat Treatment
by Xin Xin, Aotian Yee, Zhiyuan Zhou, Xuzhao He, Wenjian Weng, Chengwei Wu and Kui Cheng
J. Compos. Sci. 2024, 8(12), 512; https://doi.org/10.3390/jcs8120512 - 6 Dec 2024
Cited by 2 | Viewed by 1784
Abstract
Piezoelectric materials can realize the mutual conversion of mechanical energy and electric energy, so they have excellent application prospects in the fields of sensors, energy collectors and biological materials. The poly(vinylidene fluoride) (PVDF)-based polymers have the best piezoelectric properties in the piezoelectric polymer, [...] Read more.
Piezoelectric materials can realize the mutual conversion of mechanical energy and electric energy, so they have excellent application prospects in the fields of sensors, energy collectors and biological materials. The poly(vinylidene fluoride) (PVDF)-based polymers have the best piezoelectric properties in the piezoelectric polymer, but they still have a large room for improvement compared with the piezoelectric ceramics. Improving their content of the polar β phase has become a consensus to polish up the piezoelectric performance. Most available studies construct hydrogen bonds or coulomb interactions between the surface of the dopant and molecular chains by doping, which promotes the molecular chains arrangement and thus facilitates the formation of the polar β phase. Recent studies show that the ordered arrangement of molecular chains is also important for piezoelectric properties. At present, the main way to improve the piezoelectric performance of PVDF is through doping or complex heat treatment process. Here, the poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) film was treated by directional heat treatment which used a heating table. Compared with uniform heat treatment like muffle furnace heat treatment, this simple vertical temperature gradient has many advantages for the content of the β phase and the crystallinity of P(VDF-TrFE). The results of the experiment showed that the content of the β phase of films remained at about 88%. When the film thickness was limited to 100 μm and the heat treatment temperature was limited to 200 °C, its crystallinity could reach 75% and the highest piezoelectric coefficient could reach 33.5 ± 0.7 pC/N. P(VDF-TrFE) films based on the experimental methods described above that show great potential for future applications in electronic devices and biomedical applications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

16 pages, 4304 KB  
Article
Preparation and Photocatalytic Properties of Al2O3–SiO2–TiO2 Porous Composite Semiconductor Ceramics
by Kaihui Hua, Zhijing Wu, Weijie Chen, Xiuan Xi, Xiaobing Chen, Shuyan Yang, Pinhai Gao and Yu Zheng
Molecules 2024, 29(18), 4391; https://doi.org/10.3390/molecules29184391 - 15 Sep 2024
Cited by 8 | Viewed by 2755
Abstract
Titanium dioxide (TiO2) is widely employed in the catalytic degradation of wastewater, owing to its robust stability, superior photocatalytic efficiency, and cost-effectiveness. Nonetheless, isolating the fine particulate photocatalysts from the solution post-reaction poses a significant challenge in practical photocatalytic processes. Furthermore, [...] Read more.
Titanium dioxide (TiO2) is widely employed in the catalytic degradation of wastewater, owing to its robust stability, superior photocatalytic efficiency, and cost-effectiveness. Nonetheless, isolating the fine particulate photocatalysts from the solution post-reaction poses a significant challenge in practical photocatalytic processes. Furthermore, these particles have a tendency to agglomerate into larger clusters, which diminishes their stability. To address this issue, the present study has developed Al2O3–SiO2–TiO2 composite semiconductor porous ceramics and has systematically explored the influence of Al2O3 and SiO2 on the structure and properties of TiO2 porous ceramics. The findings reveal that the incorporation of Al2O3 augments the open porosity of the ceramics and inhibits the aggregation of TiO2, thereby increasing the catalytic site and improving the light absorption capacity. On the other hand, the addition of SiO2 enhances the bending strength of the ceramics and inhibits the conversion of anatase to rutile, thereby further enhancing its photocatalytic activity. Consequently, at an optimal composition of 55 wt.% Al2O3, 40 wt.% TiO2, and 5 wt.% SiO2, the resulting porous ceramics exhibit a methylene blue removal rate of 91.50%, and even after undergoing five cycles of testing, their catalytic efficiency remains approximately 83.82%. These outcomes underscore the exceptional photocatalytic degradation efficiency, recyclability, and reusability of the Al2O3–SiO2–TiO2 porous ceramics, suggesting their substantial potential for application in the treatment of dye wastewater, especially for the removal of methylene blue. Full article
(This article belongs to the Special Issue Modern Materials in Energy Storage and Conversion)
Show Figures

Graphical abstract

25 pages, 3064 KB  
Review
The Catalytic Potential of Modified Clays: A Review
by Altantuya Ochirkhuyag and Jadambaa Temuujin
Minerals 2024, 14(6), 629; https://doi.org/10.3390/min14060629 - 20 Jun 2024
Cited by 20 | Viewed by 5950
Abstract
The need for innovative catalysts and catalytic support materials is continually growing due to demanding requirements, stricter environmental demands, and the ongoing development of new chemical processes. Since about 80% of all industrial processes involve catalysts, there is a continuing need to develop [...] Read more.
The need for innovative catalysts and catalytic support materials is continually growing due to demanding requirements, stricter environmental demands, and the ongoing development of new chemical processes. Since about 80% of all industrial processes involve catalysts, there is a continuing need to develop new catalyst materials and supports with suitable qualities to meet ongoing industrial demands. Not only must new catalysts have tailored properties, but they must also be suitable for large-scale production through environmentally friendly and cost-effective processes. Clay minerals, with their rich history in medicine and ceramics, are now emerging as potential catalysts. Their transformative potential is exemplified in applications such as hydrogenating the greenhouse gas CO2 into carbohydrate fuel, a crucial step in meeting the rising electrical demand. Moreover, advanced materials derived from clay minerals are proving their mettle in diverse photocatalytic reactions, from organic dye removal to pharmaceutical pollutant elimination and photocatalytic energy conversion through water splitting. Clay minerals in their natural state show a low catalytic activity, so to increase their reactivity, they must be activated. Depending on the requirements of a particular application, selecting an appropriate activation method for modifying a natural clay mineral is a critical consideration. Traditional clay mineral processing methods such as acid or alkaline treatment are used. Still, these have drawbacks such as high costs, long processing times, and the formation of hazardous by-products. Other activation processes, such as ultrasonication and mechanical activation routes, have been proposed to reduce the production of hazardous by-products. The main advantage of ultrasonication and microwave-assisted procedures is that they save time, whereas mechanochemical processing is simple and efficient. This short review focuses on modifying clay minerals using various new methods to create sophisticated and innovative new materials. Recent advances in catalytic reactions are specifically covered, including organic biogeochemical processes, photocatalytic processes, carbon nanotube synthesis, and energy conversion processes such as CO2 hydrogenation and dry reforming of methane. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

14 pages, 6604 KB  
Article
(Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation
by Wei Zhang, Liyan Xue, Jincheng Zhang, Meng Zhang, Kaixian Wang, Minzhong Huang, Fan Yang, Zhengming Jiang and Tongxiang Liang
Materials 2024, 17(10), 2205; https://doi.org/10.3390/ma17102205 - 8 May 2024
Cited by 4 | Viewed by 1931
Abstract
The use of solar interface evaporation for seawater desalination or sewage treatment is an environmentally friendly and sustainable approach; however, achieving efficient solar energy utilization and ensuring the long-term stability of the evaporation devices are two major challenges for practical application. To address [...] Read more.
The use of solar interface evaporation for seawater desalination or sewage treatment is an environmentally friendly and sustainable approach; however, achieving efficient solar energy utilization and ensuring the long-term stability of the evaporation devices are two major challenges for practical application. To address these issues, we developed a novel ceramic fiber@bioderived carbon composite aerogel with a continuous through-hole structure via electrospinning and freeze-casting methods. Specifically, an aerogel was prepared by incorporating perovskite oxide (Ca0.25La0.5Dy0.25)CrO3 ceramic fibers (CCFs) and amylopectin-derived carbon (ADC). The CCFs exhibited remarkable photothermal conversion efficiencies, and the ADC served as a connecting agent and imparted hydrophilicity to the aerogel due to its abundant oxygen-containing functional groups. After optimizing the composition and microstructure, the (Ca0.25La0.5Dy0.25)CrO3 ceramic fiber@biomass-derived carbon aerogel demonstrated remarkable properties, including efficient light absorption and rapid transport of water and solutes. Under 1 kW m−2 light intensity irradiation, this novel material exhibited a high temperature (48.3 °C), high evaporation rate (1.68 kg m−2 h−1), and impressive solar vapor conversion efficiency (91.6%). Moreover, it exhibited long-term stability in water evaporation even with highly concentrated salt solutions (25 wt%). Therefore, the (Ca0.25La0.5Dy0.25)CrO3 ceramic fiber@biomass-derived carbon aerogel holds great promise for various applications of solar interface evaporation. Full article
(This article belongs to the Special Issue High-Entropy Ceramics: Synthesis and Applications)
Show Figures

Figure 1

12 pages, 16991 KB  
Article
Tribological Properties of the Fast Ceramic Conversion Treated Ti-6Al-2Sn-4Zr-2Mo Alloy with a Pre-Deposited Gold Layer
by Zhenxue Zhang, Yue Xiao, Chen Liu and Hanshan Dong
Lubricants 2024, 12(4), 105; https://doi.org/10.3390/lubricants12040105 - 23 Mar 2024
Cited by 1 | Viewed by 1948
Abstract
Ceramic conversion treatment (CCT) is an effective way to modify the surface of titanium alloys. However, this process normally needs more than a 100-h treatment at 600–700 °C to form a hard and wear-resistant titanium oxide layer. In this paper, we pre-deposited a [...] Read more.
Ceramic conversion treatment (CCT) is an effective way to modify the surface of titanium alloys. However, this process normally needs more than a 100-h treatment at 600–700 °C to form a hard and wear-resistant titanium oxide layer. In this paper, we pre-deposited a thin gold layer on the surface of Ti-6Al-2Sn-4Zr-2Mo (Ti6242) samples before CCT to investigate if Au can speed up the treatment. Treatments at 640/670/700 °C were carried out for 10 or 120 h. After CCT, the surface roughness, surface morphology, microstructure, elemental composition, and phase constituents were characterized. Surface hardness and the nano-hardness depth distribution were measured. Finally, reciprocating sliding tribological tests were carried out to study the friction and wear of the surface layers. Thin gold layers accelerated the CCT significantly with a much thicker oxide layer. The friction of the untreated Ti6242 alloy against the WC ball was unsteady and high, but it was much lower and stable for the CCTed samples pre-deposited with Au because of the formation of titanium oxides and lubrication effect of the gold particles. The wear resistance of the CCTed Ti6242 alloy samples with gold was reinforced significantly. By pre-depositing a thin gold layer on the surface of Ti6242, the treatment time can be cut significantly, and CCT becomes more efficient. Full article
(This article belongs to the Special Issue Friction and Wear of Ceramics)
Show Figures

Figure 1

12 pages, 5134 KB  
Article
Impact of CAD/CAM Material Thickness and Translucency on the Polymerization of Dual-Cure Resin Cement in Endocrowns
by Soshi Ikemoto, Yuya Komagata, Shinji Yoshii, Chihiro Masaki, Ryuji Hosokawa and Hiroshi Ikeda
Polymers 2024, 16(5), 661; https://doi.org/10.3390/polym16050661 - 29 Feb 2024
Cited by 9 | Viewed by 3300
Abstract
The objective of this study is to evaluate the impact of the thickness and translucency of various computer-aided design/computer-aided manufacturing (CAD/CAM) materials on the polymerization of dual-cure resin cement in endocrown restorations. Three commercially available CAD/CAM materials—lithium disilicate glass (e.max CAD), resin composite [...] Read more.
The objective of this study is to evaluate the impact of the thickness and translucency of various computer-aided design/computer-aided manufacturing (CAD/CAM) materials on the polymerization of dual-cure resin cement in endocrown restorations. Three commercially available CAD/CAM materials—lithium disilicate glass (e.max CAD), resin composite (CERASMART), and a polymer-infiltrated ceramic network (ENAMIC)—were cut into plates with five different thicknesses (1.5, 3.5, 5.5, 7.5, and 9.5 mm) in both high-translucency (HT) and low-translucency (LT) grades. Panavia V5, a commercial dual-cure resin cement, was polymerized through each plate by light irradiation. Post-polymerization treatment was performed by aging at 37 °C for 24 h under light-shielding conditions. The degree of conversion and Vickers hardness measurements were used to characterize the polymerization of the cement. The findings revealed a significant decrease in both the degree of conversion and Vickers hardness with increasing thickness across all CAD/CAM materials. Notably, while the differences in the degree of conversion and Vickers hardness between the HT and LT grades of each material were significant immediately after photoirradiation, these differences became smaller after post-polymerization treatment. Significant differences were observed between samples with a 1.5 mm thickness (conventional crowns) and those with a 5.5 mm or greater thickness (endocrowns), even after post-polymerization treatment. These results suggest that dual-cure resin cement in endocrown restorations undergoes insufficient polymerization. Full article
(This article belongs to the Special Issue Advances in Polymeric Dental Materials)
Show Figures

Figure 1

15 pages, 4627 KB  
Article
Investigating the Influence of All-Ceramic Prosthetic Materials on Implants and Their Effect on the Surrounding Bone: A Finite Element Analysis
by Saniya Juneja, Glynis Miranda, Afiya Eram, Nisha Shetty, Chethan K N and Laxmikant G. Keni
Prosthesis 2024, 6(1), 74-88; https://doi.org/10.3390/prosthesis6010006 - 17 Jan 2024
Cited by 10 | Viewed by 2633
Abstract
This study aims to assess and compare the impact of Monolithic Zirconia (MZ) and In-Ceram Zirconia (ZP) superstructures on stress distribution within implants and D2/D4 bone densities under 200 N vertical and oblique occlusal loads using three-dimensional finite element analysis via ANSYS WORKBENCH [...] Read more.
This study aims to assess and compare the impact of Monolithic Zirconia (MZ) and In-Ceram Zirconia (ZP) superstructures on stress distribution within implants and D2/D4 bone densities under 200 N vertical and oblique occlusal loads using three-dimensional finite element analysis via ANSYS WORKBENCH R2. The analysis employed maximum and minimum von Mises stress values. Modeling an implant (4.2 mm diameter, 10 mm length) and abutment (0.47 mm diameter), with an 8 mm diameter and 6 mm length single crown, the research identified lower von Mises stresses in D2 cancellous bone with the MZ model under vertical loading. Conversely, under oblique loading, the ZP model exhibited maximum von Mises stresses in D4 bone around the implant. This underscores the critical need to consider physical and mechanical properties, beyond mere aesthetics, for sustained implant success. The findings highlight the effect of material composition and stress distribution, emphasizing the necessity of durable and effective implant treatments. Full article
(This article belongs to the Collection Oral Implantology: Current Aspects and Future Perspectives)
Show Figures

Figure 1

Back to TopTop