Tribological Properties of the Fast Ceramic Conversion Treated Ti-6Al-2Sn-4Zr-2Mo Alloy with a Pre-Deposited Gold Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Appearance and Morphology
3.2. Cross-Sectional Microstructure
3.3. Surface Phase Evolution
3.4. Surface Hardness and Cross-Sectional Hardness Profile
3.5. Scratch Resistance of the Oxide Layers
3.6. Tribological Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, H.; Yang, S. Effects of direct aging on near-alpha Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy fabricated by selective laser melting (SLM). Mater. Sci. Eng. A 2020, 788, 139533. [Google Scholar] [CrossRef]
- Perumal, A.; Azhagurajan, A.; Baskaran, S.; Prithivirajan, R.; Narayansamy, P. Statistical evaluation and performance analysis of electrical discharge machining (EDM) characteristics of hard Ti-6Al-2Sn-4Zr-2Mo alloy. Mater. Res. Express 2019, 6, 056552. [Google Scholar] [CrossRef]
- Max, B.; Alexis, J.; Larignon, C.; Perusin, S. Titanium alloy Ti-6242 for high temperature structural application. Static and dynamic mechanical properties and impact of ageing. MATEC Web Conf. 2020, 321, 11089. [Google Scholar] [CrossRef]
- Galati, M.; Defanti, S.; Saboori, A.; Rizza, G.; Tognoli, E.; Vincenzi, N.; Gatto, A.; Iuliano, L. An investigation on the processing conditions of Ti-6Al-2Sn-4Zr-2Mo by electron beam powder bed fusion: Microstructure, defect distribution, mechanical properties and dimensional accuracy. Addit. Manuf. 2022, 50, 102564. [Google Scholar] [CrossRef]
- Philip, J.T.; Mathew, J.; Kuriachen, B. Tribology of Ti6Al4V: A review. Friction 2019, 7, 497–536. [Google Scholar] [CrossRef]
- Fridrici, V.; Fouvry, S.; Kapsa, P. Effect of shot peening on the fretting wear of Ti–6Al–4V. Wear 2001, 250, 642–649. [Google Scholar] [CrossRef]
- Bacci, T.; Bertamini, L.; Ferrari, F.; Galliano, F.P.; Galvanetto, E. Reactive plasma spraying of titanium in nitrogen containing plasma gas. Mater. Sci. Eng. A 2000, 283, 189–195. [Google Scholar] [CrossRef]
- Sun, J.; Yao, Q.T.; Zhang, Y.H.; Du, X.D.; Wu, Y.C.; Tong, W.P. Simultaneously improving surface mechanical properties and in vitro biocompatibility of pure titanium via surface mechanical attrition treatment combined with low-temperature plasma nitriding. Surf. Coat. Technol. 2017, 309, 382–389. [Google Scholar] [CrossRef]
- Bai, X.; Li, J.; Zhu, L. Structure and properties of TiSiN/Cu multilayer coatings deposited on Ti6Al4V prepared by arc ion plating. Surf. Coat. Technol. 2019, 372, 16–25. [Google Scholar] [CrossRef]
- Movassagh-Alanagh, F.; Abdollah-zadeh, A.; Aliofkhazraei, M.; Abedi, M. Improving the wear and corrosion resistance of Ti–6Al–4V alloy by deposition of TiSiN nanocomposite coating with pulsed-DC PACVD. Wear 2017, 390–391, 93–103. [Google Scholar] [CrossRef]
- Wan, Y.Z.; Raman, S.; He, F.; Huang, Y. Surface modification of medical metals by ion implantation of silver and copper. Vacuum 2007, 81, 1114–1118. [Google Scholar] [CrossRef]
- Khan, I. Improving the Cytocompatibility and Infection, Wear and Corrosion Resistances of Commercially Pure Titanium by Laser Micropatterning and Ceramic Conversion Treatment. Ph.D. Thesis, The University of Birmingham, Birmingham, UK, 2020. [Google Scholar]
- Zhang, L.-C.; Chen, L.-Y.; Wang, L. Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Adv. Eng. Mater. 2020, 22, 1901258. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Y.; Yi, J.; Dong, F.; Chen, P. Overview of Surface Modification Techniques for Titanium Alloys in Modern Material Science: A Comprehensive Analysis. Coatings 2024, 14, 14010148. [Google Scholar] [CrossRef]
- Acar, M.T.; Kovacı, H.; Çelik, A. Enhancement of the tribological performance and surface wettability of Ti6Al4V biomedical alloy with boric/sulfuric acid anodic film. Surf. Topogr. Metrol. Prop. 2021, 9, 035024. [Google Scholar] [CrossRef]
- Yetim, A.F. Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf. Coat. Technol. 2010, 205, 1757–1763. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Molaei, M. A review of functionalizing plasma electrolytic oxidation (PEO) coatings on titanium substrates with laser surface treatments. Appl. Surf. Sci. Adv. 2023, 18, 100506. [Google Scholar] [CrossRef]
- Dong, H.; Bell, T. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear 2000, 238, 131–137. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Tao, X.; Liu, K.; Burns, A.; Li, P.; Mukinay, T.; Li, X.; Dong, H. The exceptional oxidation of Ti6Al4V alloy with a pre-deposited silver layer. J. Alloys Compd. 2022, 901, 163574. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Li, X.; Dong, H. Impact of the Amount of the Gold Layer on the Tribological Performance of the Ceramic Conversion Treated CP-Titanium. Tribol. Lett. 2023, 71, 36. [Google Scholar] [CrossRef]
- Antler, M.; Spalvins, T. Lubrication with thin gold films. Gold Bull. 1988, 21, 59–68. [Google Scholar] [CrossRef]
- Liu, W.-m.; Chen, Y.-x.; Kou, G.-T.; Xu, T.; Sun, D.C. Characterization and mechanical/tribological properties of nano Au–TiO2 composite thin films prepared by a sol–gel process. Wear 2003, 254, 994–1000. [Google Scholar] [CrossRef]
- Abreu, C.S.; Matos, J.; Cavaleiro, A.; Alves, E.; Barradas, N.P.; Vaz, F.; Torrell, M.; Gomes, J.R. Tribological characterization of TiO2/Au decorative thin films obtained by PVD magnetron sputtering technology. Wear 2015, 330–331, 419–428. [Google Scholar] [CrossRef]
- Gaddam, R.; Sefer, B.; Pederson, R.; Antti, M.L. Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V. IOP Conf. Ser. Mater. Sci. Eng. 2013, 48, 12002. [Google Scholar] [CrossRef]
- Gaddam, R.; Sefer, B.; Pederson, R.; Antti, M.-L. Oxidation and alpha-case formation in Ti–6Al–2Sn–4Zr–2Mo alloy. Mater. Charact. 2015, 99, 166–174. [Google Scholar] [CrossRef]
- Pace Technologies. Metallographic Etchants. Available online: https://www.metallographic.com/Metallographic-Etchants/Metallography-Etchants.htm (accessed on 13 March 2024).
- Murray, J.; Wriedt, H. Binary Alloy Phase Diagrams; Massalski, T.B., Ed.; ASM International: Geauga County, OH, USA, 1990; p. 2924. [Google Scholar]
- Zhang, Z.; Zhang, Y.; Li, X.; Alexander, J.; Dong, H. An enhanced ceramic conversion treatment of Ti6Al4V alloy surface by a pre-deposited thin gold layer. J. Alloys Compd. 2020, 844, 155867. [Google Scholar] [CrossRef]
- Hutchings, G.J. Selective oxidation using supported gold bimetallic and trimetallic nanoparticles. Catal. Today 2014, 238, 69–73. [Google Scholar] [CrossRef]
- Chen, M.S.; Goodman, D.W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Busiakiewicz, A.; Kisielewska, A.; Piwoński, I.; Batory, D.; Pabianek, K. Formation of gold and platinum nanostructures on rutile TiO2(001) by thermal treatment of thin films in vacuum. Vacuum 2019, 163, 248–254. [Google Scholar] [CrossRef]
- Debeila, M.A.; Raphulu, M.C.; Mokoena, E.; Avalos, M.; Petranovskii, V.; Coville, N.J.; Scurrell, M.S. The effect of gold on the phase transitions of titania. Mater. Sci. Eng. A 2005, 396, 61–69. [Google Scholar] [CrossRef]
- Berthaud, M.; Popa, I.; Chassagnon, R.; Heintz, O.; Lavková, J.; Chevalier, S. Study of titanium alloy Ti6242S oxidation behaviour in air at 560°C: Effect of oxygen dissolution on lattice parameters. Corros. Sci. 2020, 164, 108049. [Google Scholar] [CrossRef]
- Shree Meenakshi, K.; Ananda Kumar, S. Corrosion resistant behaviour of titanium—Molybdenum alloy in sulphuric acid environment. Mater. Today Proc. 2022, 65, 3282–3287. [Google Scholar] [CrossRef]
- Rosa, C.J. Oxygen diffusion in alpha and beta titanium in the temperature range of 932° to 1142 °C. Metall. Trans. 1970, 1, 2517–2522. [Google Scholar] [CrossRef]
- Wagner, L.; Wollmann, M. Titanium and Titanium Alloys. Struct. Mater. Process. Transp. 2013, 151–180. [Google Scholar]
- He, M.; Wang, J.; He, R.; Yang, H.; Ruan, J. Effect of cobalt content on the microstructure and mechanical properties of coarse grained WC-Co cemented carbides fabricated from chemically coated composite powder. J. Alloys Compd. 2018, 766, 556–563. [Google Scholar] [CrossRef]
- Heilig, S.; Ramezani, M.; Neitzert, T.; Liewald, M. Tribological Performance of Duplex-Annealed Ti-6Al-2Sn-4Zr-2Mo Titanium Alloy at Elevated Temperatures Under Dry Sliding Condition. J. Mater. Eng. Perform. 2018, 27, 2003–2009. [Google Scholar] [CrossRef]
- Heilig, S.; Ramezani, M.; Neitzert, T.; Liewald, M. Investigation of Friction and Wear Properties of Duplex-Annealed Ti–6Al–2Sn–4Zr–2Mo Against Hardened AISI E52100 at Linear Reciprocating Motion. Trans. Indian Inst. Met. 2018, 71, 1257–1264. [Google Scholar] [CrossRef]
- Matthew, J.; Donachie, J. Titanium, A Technical Guide, 2nd ed.; ASM International, The Materials Information Society: Geauga County, OH, USA, 2000; p. 380. [Google Scholar]
Code | Pre-Deposition | Temperature (°C) | Duration (h) | Ra (µm) |
---|---|---|---|---|
Untreated | - | - | - | 0.067 |
U640-10 | - | 640 | 10 | 0.068 |
U640-120 | - | 640 | 120 | 0.069 |
Au640-120 | Au | 640 | 120 | 0.135 |
U670-10 | - | 670 | 10 | 0.081 |
Au670-10 | Au | 670 | 10 | 0.121 |
U670-120 | - | 670 | 120 | 0.081 |
Au670-120 | Au | 670 | 120 | 0.082 |
U700-10 | - | 700 | 10 | 0.086 |
Au700-10 | Au | 700 | 10 | 0.084 |
Atomic % | O | Al | Ti | Zr | Sn | Mo | W | Au | |
---|---|---|---|---|---|---|---|---|---|
Untreated | 1 | 1.9 | 6.61 | 88.86 | 1.36 | 0.5 | 0.77 | ||
2 | 3.87 | 8.32 | 86.02 | 1.16 | 0.48 | 0.11 | |||
U670-10 | 3 | 5.89 | 5.98 | 85.85 | 1.19 | 0.61 | |||
4 | 14.21 | 6.18 | 77.11 | 1.24 | 0.48 | 0.72 | 0.06 | ||
5 | 25.54 | 5.09 | 67.97 | 0.89 | 0.38 | 0.13 | |||
Au670-10 | 6 | 40.59 | 3.71 | 53.01 | 1.12 | 0.31 | 0.55 | 0.71 | |
7 | 39.21 | 3.64 | 55.65 | 0.33 | 0.27 | 0.09 | 0.72 |
Sample | Ra (µm) | Oxide Thickness (µm) | Track Width (µm) | Depth (µm) | Area (µm2) | Ball Crater Diameter (µm) | CoF1 | CoF400 | CoF1000 | Average CoF |
---|---|---|---|---|---|---|---|---|---|---|
Au700-10 | 0.0841 | 0.7–0.8 | 292 | 0.4358 | 34.5 | 238 | 0.16 | 0.30 | 0.35 | 0.25 |
U700-10 | 0.0862 | 0.4–0.6 | 578 | 10.2171 | 2893.1 | 590 | 0.10 | 0.44 | 0.70 | 0.42 |
Au670-120 | 0.0821 | 1.7–1.9 | 307 | 0.2407 | 27.6 | 239 | 0.17 | 0.23 | 0.23 | 0.23 |
U670-120 | 0.0809 | 0.7–0.9 | 336 | 6.8214 | 932.4 | 351 | 0.15 | 0.37 | 0.54 | 0.36 |
Au670-10 | 0.1211 | 0.5–0.7 | 282 | 0.4024 | 62.9 | 225 | 0.18 | 0.28 | 0.30 | 0.26 |
U670-10 | 0.0806 | 0.2–0.3 | 542 | 9.5224 | 2296.8 | 560 | 0.11 | 0.21 | 0.50 | 0.44 |
Au640-120 | 0.1352 | 1.3–1.5 | 321 | 0.3982 | 79.3 | 230 | 0.11 | 0.22 | 0.25 | 0.22 |
U640-120 | 0.0687 | 0.4–0.5 | 345 | 6.543 | 873.3 | 353 | 0.10 | 0.27 | 0.41 | 0.46 |
Untreated | 0.0668 | N/A | 696 | 16.0386 | 5517.9 | 726.8 | 0.26 | 0.32 | 0.41 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Xiao, Y.; Liu, C.; Dong, H. Tribological Properties of the Fast Ceramic Conversion Treated Ti-6Al-2Sn-4Zr-2Mo Alloy with a Pre-Deposited Gold Layer. Lubricants 2024, 12, 105. https://doi.org/10.3390/lubricants12040105
Zhang Z, Xiao Y, Liu C, Dong H. Tribological Properties of the Fast Ceramic Conversion Treated Ti-6Al-2Sn-4Zr-2Mo Alloy with a Pre-Deposited Gold Layer. Lubricants. 2024; 12(4):105. https://doi.org/10.3390/lubricants12040105
Chicago/Turabian StyleZhang, Zhenxue, Yue Xiao, Chen Liu, and Hanshan Dong. 2024. "Tribological Properties of the Fast Ceramic Conversion Treated Ti-6Al-2Sn-4Zr-2Mo Alloy with a Pre-Deposited Gold Layer" Lubricants 12, no. 4: 105. https://doi.org/10.3390/lubricants12040105
APA StyleZhang, Z., Xiao, Y., Liu, C., & Dong, H. (2024). Tribological Properties of the Fast Ceramic Conversion Treated Ti-6Al-2Sn-4Zr-2Mo Alloy with a Pre-Deposited Gold Layer. Lubricants, 12(4), 105. https://doi.org/10.3390/lubricants12040105