Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = center vortices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 16630 KiB  
Article
Impact of Radar Data Assimilation on the Simulation of Typhoon Morakot
by Lingkun Ran and Cangrui Wu
Atmosphere 2025, 16(8), 910; https://doi.org/10.3390/atmos16080910 - 28 Jul 2025
Viewed by 174
Abstract
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures [...] Read more.
The high spatial resolution of radar data enables the detailed resolution of typhoon vortices and their embedded structures; the assimilation of radar data in the initialization of numerical weather prediction exerts an important influence on the forecasting of typhoon track, intensity, and structures up to at least 12 h. For the case of typhoon Morakot (2009), Taiwan radar data was assimilated to adjust the dynamic and thermodynamic structures of the vortex in the model initialization by the three-dimensional variation data assimilation system in the Advanced Region Prediction System (ARPS). The radial wind was directly assimilated to tune the original unbalanced velocity fields through a 3-dimensional variation method, and complex cloud analysis was conducted by using the reflectivity data. The influence of radar data assimilation on typhoon prediction was examined at the stages of Morakot landing on Taiwan Island and subsequently going inland. The results showed that the assimilation made some improvement in the prediction of vortex intensity, track, and structures in the initialization and subsequent forecast. For example, besides deepening the central sea level pressure and enhancing the maximum surface wind speed, the radar data assimilation corrected the typhoon center movement to the best track and adjusted the size and inner-core structure of the vortex to be close to the observations. It was also shown that the specific humidity adjustment in the cloud analysis procedure during the assimilation time window played an important role, producing more hydrometeors and tuning the unbalanced moisture and temperature fields. The neighborhood-based ETS revealed that the assimilation with the specific humidity adjustment was propitious in improving forecast skill, specifically for smaller-scale reflectivity at the stage of Morakot landing, and for larger-scale reflectivity at the stage of Morakot going inland. The calculation of the intensity-scale skill score of the hourly precipitation forecast showed the assimilation with the specific humidity adjustment performed skillful forecasting for the spatial forecast-error scales of 30–160 km. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

13 pages, 1995 KiB  
Article
Topographic Control of Wind- and Thermally Induced Circulation in an Enclosed Water Body
by Jinichi Koue
Geosciences 2025, 15(7), 244; https://doi.org/10.3390/geosciences15070244 - 30 Jun 2025
Viewed by 214
Abstract
The dynamics of large lake circulations are strongly modulated by wind forcing, thermal gradients, and shoreline topography, yet their integrated effects remain insufficiently quantified. To address this, numerical simulations were conducted in Lake Biwa to clarify the mechanisms underlying wind- and thermally driven [...] Read more.
The dynamics of large lake circulations are strongly modulated by wind forcing, thermal gradients, and shoreline topography, yet their integrated effects remain insufficiently quantified. To address this, numerical simulations were conducted in Lake Biwa to clarify the mechanisms underlying wind- and thermally driven gyres, with a focus on the influence of bathymetric asymmetry. In wind-driven cases, zonal and meridional wind stress gradients were imposed, revealing that cyclonic wind shear generated strong surface vorticity (up to 2.0 × 10−6 s−1) in regions with gently sloped shores, while steep slopes suppressed anticyclonic responses. Cyclonic forcing induced upwelling in the lake center, with baroclinic return flows stabilizing the vertical circulation structure. In windless thermal experiments, surface temperature gradients of ±2.5 °C were applied to simulate seasonal heating and cooling. Cyclonic circulation predominated in warm seasons due to convergence and heat accumulation along gently sloping shores, whereas winter cooling produced divergent flows and anticyclonic gyres. The southern and eastern lake margins, characterized by mild slopes, consistently enhanced convergence and vertical mixing, while steep western and northern slopes limited circulation intensity. These results demonstrate that shoreline slope asymmetry plays a decisive role in regulating both wind- and thermally induced circulations, offering insights into physical controls on transport and stratification in enclosed lake systems. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

16 pages, 5503 KiB  
Article
Impact of Multiple Inlet and Outlet Structures of Bipolar Plate Channel on the Mass Transport in ALK Electrolyzers
by Wanxiang Zhao, Chengjie Xu, Mingya Chen, Shuiyong Wang, Lin Yang, Yimin Zhang, Mengqi Luo, Zishuo Li and Zhiyuan Wang
Energies 2025, 18(11), 2771; https://doi.org/10.3390/en18112771 - 26 May 2025
Viewed by 660
Abstract
The flow channel structure in alkaline electrolyzers critically impacts electrolyte distribution uniformity, influencing stagnant zones, gas bubble accumulation, and electrode reactions. Conventional concave–convex bipolar plates cause uneven flow and reduced current density. Therefore, a scaled-down-sized multiple inlet setup coupled with the bipolar plate [...] Read more.
The flow channel structure in alkaline electrolyzers critically impacts electrolyte distribution uniformity, influencing stagnant zones, gas bubble accumulation, and electrode reactions. Conventional concave–convex bipolar plates cause uneven flow and reduced current density. Therefore, a scaled-down-sized multiple inlet setup coupled with the bipolar plate channel of three typical concave–convex structures was designed to improve the uniformity of electrolyte. Three-dimensional computational fluid dynamics was employed to analyze the flow characteristics in the channels. The results indicated that in the single inlet/outlet model, the velocity near the center axis along the mainstream direction was higher than at the edge of the channels, resulting in a non-uniform flow distribution. The vorticity intensity gradually decreased along the flow direction, while the multiple inlet/outlet structure strengthened the intensity. The multiple inlet model allowed for the electrolyte flow across more areas along the channel and enhanced the velocity uniformity. According to the velocity uniformity evaluation criteria, the flow uniformity index of the three-inlet square concave–convex structure was the highest, reaching 0.80 at the middle cross-section normal to the incoming flow and 0.88 parallel to the flow. This study may help provide a useful guide for the design and optimization of efficient electrolyzer in alkaline water electrolysis. Full article
Show Figures

Figure 1

17 pages, 11839 KiB  
Article
Developing an Objective Scheme to Construct Hurricane Bogus Vortices Based on Scatterometer Sea Surface Wind Data
by Weixin Pan, Xiaolei Zou and Yihong Duan
Remote Sens. 2025, 17(9), 1528; https://doi.org/10.3390/rs17091528 - 25 Apr 2025
Viewed by 350
Abstract
This study presents an objective scheme to construct hurricane bogus vortices based on satellite microwave scatterometer observations of sea surface wind vectors. When specifying a bogus vortex using Fujita’s formula, the required parameters include the center position and the radius of the maximum [...] Read more.
This study presents an objective scheme to construct hurricane bogus vortices based on satellite microwave scatterometer observations of sea surface wind vectors. When specifying a bogus vortex using Fujita’s formula, the required parameters include the center position and the radius of the maximum gradient of sea level pressure (R0). We first propose determining the tropical cyclone (TC) center position as the cyclonic circulation center obtained from sea surface wind observations and then establishing a regression model between R0 and the radius of 34-kt sea surface wind of scatterometer observations. The radius of 34-kt sea surface wind (R34) is commonly used as a measure of TC size. The center positions determined from HaiYang-2B/2C/2D Scatterometers, MetOp-B/C Advanced Scatterometers, and FengYun-3E Wind Radar compared favorably with the axisymmetric centers of hurricane rain/cloud bands revealed by Advanced Himawari Imager observations of brightness temperature for the western Pacific landfalling typhoons Doksuri, Khanun, and Haikui in 2023. Furthermore, regression equations between R0 and the scatterometer-determined radius of 34-kt wind are developed for tropical storms and category-1, -2, -3, and higher hurricanes over the Northwest Pacific (2022–2023). The bogus vortices thus constructed are more realistic than those built without satellite sea surface wind observations. Full article
Show Figures

Graphical abstract

27 pages, 26505 KiB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Viewed by 592
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

16 pages, 4124 KiB  
Article
An Explanation of the Poleward Mass Flux in the Stratosphere
by Aarnout J. van Delden
Atmosphere 2025, 16(3), 343; https://doi.org/10.3390/atmos16030343 - 18 Mar 2025
Viewed by 327
Abstract
This paper offers a new perspective on the explanation of the poleward mass flux in the stratosphere. This mass flux represents the upper leg of the so-called Brewer–Dobson circulation. This new perspective is based on the following hypothesis. A positive potential vorticity anomaly, [...] Read more.
This paper offers a new perspective on the explanation of the poleward mass flux in the stratosphere. This mass flux represents the upper leg of the so-called Brewer–Dobson circulation. This new perspective is based on the following hypothesis. A positive potential vorticity anomaly, centered over the North Pole, exists in the stratosphere during the winter half-year. This positive potential vorticity anomaly is associated with a negative isentropic density anomaly, which forms due to cross-isentropic downwelling associated with radiative cooling. Isentropic potential vorticity mixing due to breaking planetary waves weakens this potential vorticity anomaly while zonal-mean thermal wind balance is maintained. This requires a weakening of the negative Polar cap isentropic density anomaly, which in turn requires a poleward isentropic mass flux. Support for this hypothesis is found in a case study of a major Sudden Stratospheric Warming event, as an example of intense potential vorticity mixing. It is shown that the stratosphere, both before and after this event, is very close to zonal-mean thermal wind balance, despite the disruptive potential vorticity mixing, while mass is shifted poleward during this event. Solutions of the potential vorticity-inversion equation, which is an expression of thermal wind balance, for zonal-mean potential vorticity distributions before and after the Sudden Stratospheric Warming, demonstrate that mass must shift poleward to maintain zonal-mean thermal wind balance when the positive potential vorticity anomaly is eliminated by mixing. This perspective on the reasons for the poleward stratospheric mass flux also explains the observed isobaric warming as well as the Polar cap zonal-mean zonal wind reversal during a major Sudden Stratospheric Warming. Full article
(This article belongs to the Special Issue The 15th Anniversary of Atmosphere)
Show Figures

Figure 1

19 pages, 13043 KiB  
Article
Anomaly-Aware Tropical Cyclone Track Prediction Using Multi-Scale Generative Adversarial Networks
by He Huang, Difei Deng, Liang Hu and Nan Sun
Remote Sens. 2025, 17(4), 583; https://doi.org/10.3390/rs17040583 - 8 Feb 2025
Viewed by 957
Abstract
Tropical cyclones (TCs) frequently encompass multiple hazards, including extreme winds, intense rainfall, storm surges, flooding, lightning, and tornadoes. Accurate methods for forecasting TC tracks are essential to mitigate the loss of life and property associated with these hazards. Despite significant advancements, accurately forecasting [...] Read more.
Tropical cyclones (TCs) frequently encompass multiple hazards, including extreme winds, intense rainfall, storm surges, flooding, lightning, and tornadoes. Accurate methods for forecasting TC tracks are essential to mitigate the loss of life and property associated with these hazards. Despite significant advancements, accurately forecasting the paths of TCs remains a challenge, particularly when they interact with complex land features, weaken into remnants after landfall, or are influenced by abnormal satellite observations. To address these challenges, we propose a generative adversarial network (GAN) model with a multi-scale architecture that processes input data at four distinct resolution levels. The model is designed to handle diverse inputs, including satellite cloud imagery, vorticity, wind speed, and geopotential height, and it features an advanced center detection algorithm to ensure precise TC center identification. Our model demonstrates robustness during testing, accurately predicting TC paths over both ocean and land while also identifying weak TC remnants. Compared to other deep learning approaches, our method achieves superior detection accuracy with an average error of 41.0 km for all landfalling TCs in Australia from 2015 to 2020. Notably, for five TCs with abnormal satellite observations, our model maintains high accuracy with a prediction error of 35.2 km, which is a scenario often overlooked by other approaches. Full article
Show Figures

Graphical abstract

16 pages, 4980 KiB  
Article
A Novel Case of Cooling and Heating in Rectangular Lid-Driven Cavities: Interplay of Richardson Numbers in Streamlines and Isotherms
by Edgar Alexandro Gonzalez-Zamudio, Miguel Angel Olivares-Robles and Andres Alfonso Andrade-Vallejo
Processes 2025, 13(2), 432; https://doi.org/10.3390/pr13020432 - 6 Feb 2025
Cited by 2 | Viewed by 686
Abstract
The thermal and dynamic behavior of SiO2 nanofluid was studied in a rectangular lid-driven cavity using the finite difference method. A non-adiabatic lid and a hot section at the bottom wall were considered in different heating and cooling cases. Three novel study [...] Read more.
The thermal and dynamic behavior of SiO2 nanofluid was studied in a rectangular lid-driven cavity using the finite difference method. A non-adiabatic lid and a hot section at the bottom wall were considered in different heating and cooling cases. Three novel study cases were studied: a standard temperature at Th (heat conduction through the left-side walls), a high hot temperature, 2Th (heat conduction through the left-side walls), and a 2Tc high cold temperature (heat conduction through right-side walls). The Richardson number was varied between 10 and 100, and the lid direction. With a Richardson number of 10, the streamlines in the different cases tended to the formation of a central vortex with small vortices on the side walls, and the isotherms tended to a central one near the lower wall’s heated section and the homogenized temperature in the center of the cavity. At a Richardson number of 100, the streamlines produced a division in the cavity through a central vortex due to the heating of the bottom wall; this affected the isotherms, generating a prominent one in the center of the cavity and others near it. The generating decreased in the temperature near the bottom and top walls but increased in the middle of the cavity. The standard temperature case tended to behave similarly to the high cold temperature case but presented different temperatures, while the high hot temperature case generally maintained a slightly different behavior. These effects were more noticeable with the lid direction opposite X. Full article
(This article belongs to the Special Issue Applications of Nanofluids and Nano-PCMs in Heat Transfer)
Show Figures

Figure 1

22 pages, 10467 KiB  
Article
A Study on the Effect of Ladle Structures and Stirrer Positions on the Internal Flow Field in the Hot Metal Desulfurization Process
by Lifei Wang, Qingchun Yu, Shubiao Yin, Guozhi Wang and Songlai Zhang
Metals 2025, 15(1), 90; https://doi.org/10.3390/met15010090 - 18 Jan 2025
Cited by 2 | Viewed by 912
Abstract
The geometry of the ladle bottom and the position of stirring paddles during hot metal stirring significantly influence hydrodynamic characteristics, thereby affecting desulfurization efficiency. Water model experiments and hydrodynamic simulations were conducted to investigate the effects of ladle structures and stirrer positions on [...] Read more.
The geometry of the ladle bottom and the position of stirring paddles during hot metal stirring significantly influence hydrodynamic characteristics, thereby affecting desulfurization efficiency. Water model experiments and hydrodynamic simulations were conducted to investigate the effects of ladle structures and stirrer positions on the flow field and mixing characteristics in hot metal desulfurization. The results indicate that ladles with a spherical-bottom structure effectively reduced the “dead zone” volume in the hot metal flow. In the water model tests, the mixing time for the spherical-bottom ladle was reduced by 22.5% and 20% at different stirring paddle speeds compared to the flat-bottom ladle, facilitating the better dispersion of the desulfurization agents. The hot metal flow velocities in all directions were also superior in spherical-bottom ladles. Under identical conditions, eccentric stirring generated shallower and broader vortices, with the vortex center offset from the stirring shaft axis, thereby minimizing the risk of “air entrainment” associated with high-speed central stirring. During eccentric stirring, the flow-field distribution was uneven, and the polarization of the stirrer was observed in the water model, whereas central stirring revealed a more uniform and stable flow field, reducing the risk of paddle wear and ladle wall erosion. Central stirring exhibits distinct advantages in the desulfurization process, whereas eccentric stirring is exclusively applicable to metallurgical modes requiring a rapid enhancement of bottom flow and localized rapid dispersion of desulfurizing agents. Full article
(This article belongs to the Special Issue Metallurgy Investigation in Nonferrous Metal Smelting)
Show Figures

Graphical abstract

23 pages, 5619 KiB  
Article
Thunderstorms with Extreme Lightning Activity in China: Climatology, Synoptic Patterns, and Convective Parameters
by Ruiyang Ma, Dong Zheng, Yijun Zhang, Wen Yao, Wenjuan Zhang and Biao Zhu
Remote Sens. 2024, 16(24), 4673; https://doi.org/10.3390/rs16244673 - 14 Dec 2024
Cited by 3 | Viewed by 1714
Abstract
Intense convection is often accompanied by high-frequency lightning and is highly prone to producing heavy rainfall, strong winds, hail, and tornadoes, frequently resulting in significant damage and loss of life. It is necessary to understand the mechanisms and meteorological conditions of intense convection. [...] Read more.
Intense convection is often accompanied by high-frequency lightning and is highly prone to producing heavy rainfall, strong winds, hail, and tornadoes, frequently resulting in significant damage and loss of life. It is necessary to understand the mechanisms and meteorological conditions of intense convection. This study utilizes the Thunderstorm Feature Dataset from 2010–2018 to analyze the characteristics of thunderstorms with extreme lightning activity (TELAs), defined as thunderstorms whose lightning frequency ranks in the top 1%. Four regions with relatively high thunderstorm activity were selected for analysis: Northeast China (NEC), North China (NC), South China (SC), and the Tibetan Plateau (TP). In NEC, TELAs primarily occur just west of upper-level westerly troughs (UWT), including cold vortices. In NC, TELAs are mainly associated with UWT and subtropical highs (STH). In SC, TELAs are related to frontal systems, easterly waves, tropical cyclones, and STH. In TP, TELAs are generated by TP vortices. Before the TELA process, vertically integrated moisture divergence (VIMD) and convective available potential energy (CAPE) show the most notable anomalies. Except for the TP, TELAs are typically located between centers of anomalies with positive and negative geopotential height (500 hPa) and near centers of anomalies with positive CAPE and negative VIMD, accompanied by notable increases in surface temperature and wind speed. These findings offer a valuable reference for the early warning and forecasting of intense convection. Full article
Show Figures

Figure 1

19 pages, 12447 KiB  
Article
Characteristics of Strong Cooling Events in Winter of Northeast China and Their Association with 10–20 d Atmosphere Low-Frequency Oscillation
by Qianhao Wang and Liping Li
Atmosphere 2024, 15(12), 1486; https://doi.org/10.3390/atmos15121486 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1132
Abstract
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) [...] Read more.
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) days. The minimum temperature series in 60 events exists in 10–20 d of significant low-frequency (LF) periods. The key LF circulation systems affecting RSCEs include the Lake Balkhash–Baikal ridge, the East Asian trough (EAT), the robust Siberian high (SH) and the weaker (stronger) East Asian temperate (subtropical) jet, with the related anomaly centers moving from northwest to southeast and developing into a nearly north–south orientation. The LF wave energy of the northern branch from the Atlantic Ocean disperses to Northeast China, which excites the downstream disturbance wave train. The corresponding LF positive vorticity enhances and moves eastward, leading to the formation of deep EAT. The enhanced subsidence motion behind the EAT leads to SH strengthening. The cold advection related to the northeast cold vortex is the main thermal factor causing the local temperature to decrease. The Scandinavian Peninsula is the primary cold air source, and the Laptev Sea is the secondary one, with cold air from the former along northwest path via the West Siberian Plain and Lake Baikal, and from the latter along the northern path via the Central Siberian Plateau, both converging towards Northeast China. Full article
Show Figures

Figure 1

21 pages, 5869 KiB  
Article
Impacts of Typhoons on the Evolution of Surface Anticyclonic Eddies into Subsurface Anticyclonic Eddies in the Northwestern Subtropical Pacific Ocean
by Shangzhan Cai, Jindian Xu, Weibo Wang, Chunsheng Jing, Kai Li, Junpeng Zhang and Fangfang Kuang
Remote Sens. 2024, 16(22), 4282; https://doi.org/10.3390/rs16224282 - 17 Nov 2024
Viewed by 932
Abstract
In this study, we investigated the impacts of typhoons on the transformation of anticyclonic eddies (AEs) into subsurface anticyclonic eddies (SAEs) in the northwestern subtropical Pacific Ocean (NWSP) based on an ocean reanalysis product and multiple satellite observations. Results suggest that while the [...] Read more.
In this study, we investigated the impacts of typhoons on the transformation of anticyclonic eddies (AEs) into subsurface anticyclonic eddies (SAEs) in the northwestern subtropical Pacific Ocean (NWSP) based on an ocean reanalysis product and multiple satellite observations. Results suggest that while the heavy precipitation and strong positive wind stress curl (WSC) induced by the passage of typhoons may be two main driving factors that transformed shallow mixed layer depth (MLD) AEs (i.e., those shallower than 50 m at the eddy core) into SAEs, the latter played a greater role in such transformation. In addition, shallow MLD AEs with a less depressed isopycnal structure near the eddy center before the passage of typhoons were more likely to be transformed into SAEs under the impacts of typhoons. The likely timing of such transformation may be within 9 days after the passage of typhoons. For deep MLD AEs (i.e., those deeper than 80 m at the eddy core), the impacts of typhoons may be much less prominent below the mixed layer. Based on a diagnostic analysis of the vertical potential vorticity (PV) flux at the surface, we examined the mechanism and dynamic processes involved in the transformation of deep MLD AEs into SAEs under the impacts of typhoons. Results show that while typhoons played a positive role in maintaining low PV within deep MLD AEs, which was favorable for further transformation into SAEs, the diabatic process associated with the net air–sea heat flux was the crucial favorable condition for the transformation of deep MLD AEs into SAEs. Full article
(This article belongs to the Special Issue Recent Advances on Oceanic Mesoscale Eddies II)
Show Figures

Graphical abstract

24 pages, 13880 KiB  
Article
Size Classification and Material Sorting of Fine Powders with a Deflector Wheel Air Classifier and an Electrostatic Separator
by Mohamed Abohelwa, Annett Wollmann, Bernd Benker, Alexander Plack, Mehran Javadi and Alfred P. Weber
Powders 2024, 3(4), 550-573; https://doi.org/10.3390/powders3040029 - 12 Nov 2024
Cited by 1 | Viewed by 1695
Abstract
In this study, a two-dimensional separation of microparticles based on their settling velocity and triboelectric charge ability is achieved using an air classifier for size fractionation and simultaneous charging, followed by an electrostatic separator. In the first part, considerations for enhancing particle classification [...] Read more.
In this study, a two-dimensional separation of microparticles based on their settling velocity and triboelectric charge ability is achieved using an air classifier for size fractionation and simultaneous charging, followed by an electrostatic separator. In the first part, considerations for enhancing particle classification with high sharpness and low-pressure drops are discussed through improvements in blade design investigated with CFD simulations and validated experimentally. Blades with extended lengths towards the center of the classifier prevent the formation of high-velocity vortices, thereby minimizing the back-mixing of particles and enhancing separation sharpness. This approach also reduces pressure drops associated with these flow vortices. In the second part of the study, the modified blades within the classifier are utilized for two-dimensional separation. Powders from two different materials are fed into the classification system, where particles become triboelectrically charged, mainly through collisions with the walls of the classification system components. Coarse particles are rejected at the wheel and exit the classifier, while differently charged fine particles of the two materials are directed into an electrostatic separator for material sorting. An enrichment of approximately 25–35% for both materials has been achieved on the electrodes of the separator. Full article
Show Figures

Figure 1

20 pages, 15528 KiB  
Article
Analysis of Lofoten Vortex Merging Based on Altimeter Data
by Jing Meng, Yu Liu, Guoqing Han, Xiayan Lin and Juncheng Xie
Remote Sens. 2024, 16(20), 3796; https://doi.org/10.3390/rs16203796 - 12 Oct 2024
Viewed by 972
Abstract
The Lofoten Vortex (LV), which is identified as a quasi-permanent anticyclonic eddy, strengthens through continuous merging with external anticyclonic eddies. Our investigation used the Lagrangian method to monitor the LV on a daily basis. Utilizing satellite altimeter data, we conducted multi-year tracking and [...] Read more.
The Lofoten Vortex (LV), which is identified as a quasi-permanent anticyclonic eddy, strengthens through continuous merging with external anticyclonic eddies. Our investigation used the Lagrangian method to monitor the LV on a daily basis. Utilizing satellite altimeter data, we conducted multi-year tracking and statistical analysis of merging events involving the LV. The results indicate a characteristic radius of approximately 42.72 km and a mean vorticity at the eddy center of approximately −2.23 × 10−5 s−1. The eddy exhibits oscillatory motion within the sea basin depression, centered at 70°N, 3°E, characterized by counterclockwise trajectories between 0.5°E and 6°E and between 69°N and 70.5°N. There are two types of merging events: fusion events (55%), in which eddies of similar strengths interact within a closed flow line and then merge to form a new eddy; and absorption events (45%), in which the stronger LV absorbs the weaker anticyclonic eddies without destroying the structure of the LV itself. The nodes where strong vorticity advection occurs correspond to the nodes where merging occurs, suggesting that their effect on merging can be well characterized by the vorticity advection time series. We also observe occasional fluctuations and substitution events involving the LV and external anticyclonic eddies, suggesting a dynamic succession rather than a single vortex entity. Full article
Show Figures

Figure 1

19 pages, 7505 KiB  
Article
Stereo Particle Image Velocimetry Measurement of the Flow around SUBOFF Submarine under Yaw Conditions
by Mo Chen, Nan Zhang, Ziyan Li, Junliang Liu, Lan Yu, Wentao Zheng and Xuan Zhang
J. Mar. Sci. Eng. 2024, 12(9), 1576; https://doi.org/10.3390/jmse12091576 - 6 Sep 2024
Cited by 1 | Viewed by 3970
Abstract
To gain a better understanding of the complex flow dynamics and stealth characteristics of submarines under maneuvering conditions, flow field experiments were conducted on the SUBOFF submarine model in the large low-speed wind tunnel at the China Ship Scientific Research Center (CSSRC). The [...] Read more.
To gain a better understanding of the complex flow dynamics and stealth characteristics of submarines under maneuvering conditions, flow field experiments were conducted on the SUBOFF submarine model in the large low-speed wind tunnel at the China Ship Scientific Research Center (CSSRC). The three-dimensional velocity field above the hull at 6° and 9° yaw angles was captured using the stereo particle image velocimetry (SPIV) system. The experimental Reynolds numbers were selected as ReL = 0.46 × 107 and ReL = 1.08 × 107. The wake of the sail and the junction between the sail root and the hull were analyzed in detail, focusing on the core flow of the sail-tip vortex. The results revealed that at a larger yaw angle, the vorticity magnitude and turbulent kinetic energy (TKE) of the wake increased, and the downwash effect of the sail-tip vortex center became more pronounced. Furthermore, a higher Reynolds number resulted in an even more significant downwash of the vortex center, accompanied by a slight deviation towards the suction side. These experimental findings can contribute to the enrichment of the benchmark database for validating and improving numerical simulations of submarine wakes. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop