Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (556)

Search Parameters:
Keywords = cellulosic sugars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2849 KB  
Review
Biodegradable Innovations: Harnessing Agriculture for Eco-Friendly Plastics
by Komal Pandey, Baljeet Singh Saharan, Yogender Singh, Pardeep Kumar Sadh, Joginder Singh Duhan and Dilfuza Jabborova
J. Xenobiot. 2026, 16(1), 8; https://doi.org/10.3390/jox16010008 - 6 Jan 2026
Viewed by 363
Abstract
Agricultural biomass has potential as a renewable and versatile carbon feedstock for developing eco-friendly and biodegradable polymers capable of replacing conventional petrochemical plastics. To address the growing environmental concerns associated with plastic waste and carbon emissions, lignocellulosic residues, edible crop by-products, and algal [...] Read more.
Agricultural biomass has potential as a renewable and versatile carbon feedstock for developing eco-friendly and biodegradable polymers capable of replacing conventional petrochemical plastics. To address the growing environmental concerns associated with plastic waste and carbon emissions, lignocellulosic residues, edible crop by-products, and algal biomass were utilized as sustainable raw materials. These biomasses provided carbohydrate-, lipid-, and lignin-rich fractions that were deconstructed through optimised physical, chemical, and enzymatic pretreatments to yield fermentable intermediates, such as reducing sugars, organic acids, and fatty acids. The intermediates were subsequently converted through tailored microbial fermentation processes into biopolymer precursors, primarily polyhydroxyalkanoates (PHAs) and lactate-based monomers. The resulting monomers underwent polymerization via polycondensation and ring-opening reactions to produce high-performance biodegradable plastics with tunable structural and mechanical properties. Additionally, the direct extraction and modification of naturally occurring polymers, such as starch, cellulose, and lignin, were explored to develop blended and functionalized bioplastic formulations. Comparative evaluation revealed that these biomass-derived polymers possess favourable physical strength, thermal stability, and biodegradability under composting conditions. Life-cycle evaluation further indicated a significant reduction in greenhouse gas emissions and improved carbon recycling compared to fossil-derived counterparts. The study demonstrates that integrating agricultural residues into bioplastic production not only enhances waste valorization and rural bioeconomy but also supports sustainable material innovation for packaging, farming, and consumer goods industries. These findings position agriculture-based biodegradable polymers as a critical component of circular bioeconomy strategies, contributing to reduced plastic pollution and improved environmental sustainability. Full article
Show Figures

Graphical abstract

24 pages, 1482 KB  
Review
Theobroma spp. Mucilage as a Valuable Natural Ingredient: Composition, Potential for Food Innovation, and Future Perspectives
by Frankdux Reynaldo Huanca-Ccompe, Hilka Mariela Carrión-Sánchez, Lucero Quispe Chambilla, Sylvia Carolina Alcázar-Alay and Augusto Pumacahua-Ramos
Foods 2026, 15(2), 185; https://doi.org/10.3390/foods15020185 - 6 Jan 2026
Viewed by 430
Abstract
Peru is currently distinguished by its remarkable biodiversity, which is characterized by a high level of endemism and a wide array of ecological niches. In the context of biodiversity, the genus Theobroma spp. is particularly noteworthy, encompassing the species Theobroma cacao, Theobroma [...] Read more.
Peru is currently distinguished by its remarkable biodiversity, which is characterized by a high level of endemism and a wide array of ecological niches. In the context of biodiversity, the genus Theobroma spp. is particularly noteworthy, encompassing the species Theobroma cacao, Theobroma grandiflorum and Theobroma bicolor, which are collectively referred to as cacao, cupuaçu, and macambo, respectively. The primary economic value of these species is derived from their mucilage-rich pulp and beans. In recent years, the mucilage of the genus Theobroma has gained economic relevance due to its flavor, floral and fruity aroma. The present review article aims to provide a comprehensive exploration of Theobroma spp. mucilage, addressing its characterization and potential applications. The present study investigates aspects related to its origin, cob morphology, proximal composition, bioactive compounds, volatile profile and its application in the food industry. The study highlights a high content of polysaccharides such as reducing sugars, organic acids, pectin, cellulose, hemicellulose, antioxidant capacity, presence of polyphenols and methylxanthines. Through this comprehensive review, a prospective vision is proposed on the opportunities for innovation and sustainable development around the Theobroma mucilage industry, highlighting its relevance not only as a agri-food byproduct, but also as a valuable resource in the productive circular economy and the sustainability of biodiversity. Full article
Show Figures

Graphical abstract

21 pages, 19614 KB  
Article
Hydrothermal–Membrane Valorization of Coffee Pulp for Xylooligosaccharide Production
by James Villar, Iris Paola Roncal Huaman, Delicia L. Bazán, Ruly Teran Hilares and Rita de Cássia Lacerda Brambilla Rodrigues
Processes 2026, 14(1), 153; https://doi.org/10.3390/pr14010153 - 2 Jan 2026
Viewed by 442
Abstract
Wet coffee pulp residues (WCPRs) are typically underutilized, and their accumulation increases alongside coffee production, generating significant environmental impacts. This study proposes a sustainable valorization approach through hydrothermal treatment followed by membrane filtration for the production of xylooligosaccharides (XOSs). Extractive-free WCPR contained 35.4% [...] Read more.
Wet coffee pulp residues (WCPRs) are typically underutilized, and their accumulation increases alongside coffee production, generating significant environmental impacts. This study proposes a sustainable valorization approach through hydrothermal treatment followed by membrane filtration for the production of xylooligosaccharides (XOSs). Extractive-free WCPR contained 35.4% structural carbohydrates (20.4% cellulose and 15.0% hemicellulose) and 27.0% lignin. Hydrothermal treatments (180 °C, 3 °C min−1, 15–60 min) were performed with and without citric acid as an organic catalyst. The acid-assisted treatment (T4) enhanced hemicellulose depolymerization and xylose release (16 g·kg−1 dry biomass), whereas milder, non-acidic conditions (T3) promoted the selective formation and recovery of short-chain XOS, reaching cumulative biomass-normalized yields of up to 14 g·kg−1 of xylobiose (X2) and 9 g·kg−1 of xylotriose (X3). Subsequent membrane processing (UF–DF–NF) enabled progressive purification and enrichment of XOS fractions. Diafiltration was identified as the main step governing XOS enrichment, whereas nanofiltration primarily refined separation by directing monomeric sugars to the permeate rather than substantially increasing XOS yields. Additionally, Multiple Factor Analysis (MFA) integrated process and compositional variables, explaining 79.6% of the total variance. Dimension 1 represented process intensity and xylose transport, while Dimension 2 reflected molecular-weight-driven XOS fractionation. The acid-assisted process (T4) exhibited a distinct multivariate signature, characterized by enhanced carbohydrate mobilization and improved XOS recovery with reduced dependence on dilution. Overall, coupling hydrothermal pretreatment with membrane fractionation proved to be an efficient, and environmentally friendly strategy for coffee by-product valorization, consistent with hemicellulose-first biorefinery models and the principles of the circular bioeconomy. Full article
(This article belongs to the Special Issue Advances in Green Extraction and Separation Processes)
Show Figures

Graphical abstract

21 pages, 3631 KB  
Article
Transcriptome and Metabolome Analyses Reveal the Accumulation Mechanism of Carbohydrates During Paeonia ostii Seed Development
by Zhen Li, Siyuan Lv, Yumeng Liu, Mengtian Cao, Hengjia Zhang and Qing Hao
Biomolecules 2026, 16(1), 17; https://doi.org/10.3390/biom16010017 - 22 Dec 2025
Viewed by 302
Abstract
Carbohydrate accumulation during seed development directly influences the oil yield and quality of oilseed plants. To clarify the metabolic and molecular mechanisms underlying this process, we examined seed morphology, metabolome, and transcriptome profiles of Paeonia ostii, a representative oil tree peony, using [...] Read more.
Carbohydrate accumulation during seed development directly influences the oil yield and quality of oilseed plants. To clarify the metabolic and molecular mechanisms underlying this process, we examined seed morphology, metabolome, and transcriptome profiles of Paeonia ostii, a representative oil tree peony, using molecular biology, bioinformatics, and GC-MS techniques. Seeds expanded rapidly and reached their maximum size at 60 days after pollination, coinciding with increased starch staining intensity. Carbohydrate metabolic patterns indicated the conversion of monosaccharides such as glucose, fructose, and inositol into disaccharides like sucrose and into polysaccharides, including starch, raffinose, cellulose, and hemicellulose. Differentially accumulated carbohydrates and associated genes were enriched in the starch and sucrose metabolism and ABC transporter pathways. We constructed a potential regulatory network comprising genes encoding sugar transporters (SWEET, SUS), glycosyl hydrolases, and transcription factors (NF-Y, MYB, LBD, Dof, and B3), which likely play essential roles in carbohydrate deposition and seed development. Therefore, this study clarifies the metabolic and molecular processes governing carbohydrate accumulation in developing seeds and provides a basis for breeding high-yield, high-quality oil tree peony varieties. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

18 pages, 1961 KB  
Article
Valorization of Brown Seaweed (Lessonia spicata): Cellulosic Saccharification for the Development of a Functional Fermented Beverage
by Sebastián Pizarro-Oteíza, Romina Cea, Millaray Aranda, Jéssica López, Pedro Valencia, Erasmo C. Macaya, Fernando Salazar, Oscar Cavieres, Agustín Zavala, Santiago P. Aubourg, Karlo Guerrero, Wladimir Silva-Vera and Paulina Aguirre
Foods 2026, 15(1), 5; https://doi.org/10.3390/foods15010005 - 19 Dec 2025
Viewed by 409
Abstract
This study explored the production of a fermented beverage using Huiro negro (Lessonia spicata), a brown seaweed, as a substrate. The cellulosic saccharification (CS) process was optimized via response surface methodology, identifying that the best conditions were 60 U/g of enzyme [...] Read more.
This study explored the production of a fermented beverage using Huiro negro (Lessonia spicata), a brown seaweed, as a substrate. The cellulosic saccharification (CS) process was optimized via response surface methodology, identifying that the best conditions were 60 U/g of enzyme at 60 °C for 1.9 h, yielding 2.5 g/100 g of reducing sugars. The resulting hydrolysate was fermented with Lactobacillus spp. for 48 h at 30 °C and compared with a non-saccharified control. The beverage’s proximate composition, total phenolic content (TPC), flavonoid content (TFC), antioxidant capacity (AC), and Lactobacillus spp. viability over 16 days of storage at 4 °C were assessed. CS-treated samples showed a progressive increase in TPC, reaching 126.59 ± 5.58 mg GA/L, which correlated with higher AC. However, no significant differences (p > 0.05) were observed in TPC and AC between saccharified and non-saccharified beverages. Notably, the CS-treated beverage achieved significantly higher (p < 0.05) Lactobacillus spp. counts (109 CFU/mL) compared to the control (107 CFU/mL), maintaining viability throughout storage. While further research is needed to confirm bioavailability and gut health effects, these findings shows that enzymatic saccharification substantially improves fermentation performance and functional properties in Lessonia spicata-based beverages. Full article
(This article belongs to the Special Issue Nutrition, Safety and Storage of Seafoods)
Show Figures

Graphical abstract

12 pages, 1093 KB  
Article
Innovative Retarders for Controlling the Setting Characteristics of Fly Ash-Slag Geopolymers
by Shaise Kurialanickal John, Alessio Cascardi, Madapurakkal Nandana, Femin Kurian, Niyas Aruna Fathima, M. Muhammed Arif and Yashida Nadir
Eng 2025, 6(12), 366; https://doi.org/10.3390/eng6120366 - 15 Dec 2025
Viewed by 335
Abstract
Geopolymers, as sustainable alternatives to traditional cementitious materials, offer superior mechanical and durability properties; however, they face challenges with rapid setting, particularly in fly ash–slag systems. Retarders play a crucial role in tailoring the setting behavior and workability of geopolymers, especially in applications [...] Read more.
Geopolymers, as sustainable alternatives to traditional cementitious materials, offer superior mechanical and durability properties; however, they face challenges with rapid setting, particularly in fly ash–slag systems. Retarders play a crucial role in tailoring the setting behavior and workability of geopolymers, especially in applications where extended setting time or placement under challenging conditions is required. Geopolymers, unlike traditional Portland cement, undergo a rapid alkali-activation process involving dissolution, polymerization, and hardening of aluminosilicate materials. This can lead to very short setting times, particularly at elevated temperatures. In this scenario, the present study investigates the effect of different retarders-including cellulose, starch, borax, and their different combinations the setting time. The effectiveness of a retarder depends on the geopolymer formulation, including the type of precursor, activator, and curing conditions. The initial and final setting times improved by the addition of retarders, whereas most of the retarders had a negative effect on compressive strength. The optimum retarder combination was starch and borax, with a remarkable improvement in setting time and a positive result on the compressive strength, while maintaining reasonable workability. The retarder was equally effective under both ambient and oven-cured conditions and for different mix proportions of fly ash (FA) and slag, indicating that its effectiveness depends only on the type of precursors used. The study reveals the use of borax along with cellulose- or sugar-based compounds, which balances the reaction kinetics, resulting in balanced mechanical characteristics. Full article
(This article belongs to the Special Issue Emerging Trends in Inorganic Composites for Structural Enhancement)
Show Figures

Figure 1

13 pages, 6175 KB  
Article
A Consolidated Saccharification, Fermentation, and Transesterification Process (cSFT) Converting Castor Oil to Biodiesel with Cellulose-Derived Ethanol
by Ester Korkus Hamal, Gilad Alfassi, Dmitry M. Rein and Yachin Cohen
Int. J. Mol. Sci. 2025, 26(24), 11902; https://doi.org/10.3390/ijms262411902 - 10 Dec 2025
Viewed by 355
Abstract
Environmental and economic concerns due to the increasing use of fossil-based chemicals, especially fuel, may be alleviated by production of renewable fuels based on plant biomass, in particular, waste. Multistep cascades of enzymatic reactions are being increasingly sought to enhance the effectiveness of [...] Read more.
Environmental and economic concerns due to the increasing use of fossil-based chemicals, especially fuel, may be alleviated by production of renewable fuels based on plant biomass, in particular, waste. Multistep cascades of enzymatic reactions are being increasingly sought to enhance the effectiveness of sustainable, environment-friendly processes. The biochemical transformation of lignocellulosic biomass and oils into fatty acid esters (“biodiesel”) involves biomass pretreatment, followed by polysaccharide hydrolysis and sugar fermentation to alcohol, either sequentially or simultaneously. Subsequent trans-esterification with waste or non-food-based oils is usually carried out in an organic solvent. Biocatalysis in aqueous emulsion offers significant advantages. This study presents a novel “one-pot” emulsion-based process for transforming unmodified cellulose and castor oil into biodiesel via hybridized yeasts with cellulose-coated micro-particles incorporating cellulolytic enzymes and lipases. The resultant consolidated bioprocess of saccharification, fermentation, and transesterification (cSFT) promotes effective substrate channeling and can potentially serve as a model for emulsion-based “one-pot” transformations of cellulose into valuable chemicals. Full article
(This article belongs to the Special Issue Conversion and Valorization of Lignocellulosic Biomass)
Show Figures

Figure 1

25 pages, 2749 KB  
Article
Sequential Extraction Transformation of Brown Onion Skin into Cellulose-Based Enzyme Immobilization Carrier
by Mirna Brekalo, Marta Ostojčić, Marija Stjepanović, Blanka Bilić Rajs, Petra Matić, Stjepan Šarić, Jovana Stanojev, Krunoslav Aladić, Lidija Jakobek Barron, Stela Jokić, Igor Djerdj, Ivica Strelec and Sandra Budžaki
Appl. Sci. 2025, 15(24), 12970; https://doi.org/10.3390/app152412970 - 9 Dec 2025
Viewed by 294
Abstract
The present study aimed to design a process of brown onion skin transformation by sequential extraction to a cellulose-based immobilization carrier, along with detailed analysis of obtained extracts, pointing to approaching a “zero-waste” model of circular economy. The process of brown onion skin [...] Read more.
The present study aimed to design a process of brown onion skin transformation by sequential extraction to a cellulose-based immobilization carrier, along with detailed analysis of obtained extracts, pointing to approaching a “zero-waste” model of circular economy. The process of brown onion skin transformation started with semi-continuous sequential subcritical extraction via consecutive use of five solvents of increasing polarity (96, 75, 50, and 25% ethanol and water), followed by alkaline liquefaction of solid residue by 10% aqueous solution of sodium hydroxide. The designed BOS transformation process resulted in 16.62 g of cellulose-based immobilization carrier derived from 100 g of brown onion skin. Extracts obtained by semi-continuous sequential subcritical extraction contained 37 mg/g of proteins, 40 mg/g of sugars, 17.5 mg/g of uronic acids, 28 mg/g of polyphenols, and 36 mg/g of flavonoids, while those obtained by alkaline liquefaction 19 mg/g of proteins, 58 mg/g of sugars, 10 mg/g of uronic acids, 6.6 mg/g of polyphenols, and 0.5 mg/g of flavonoids. The suitability of the cellulose-based enzyme immobilization carrier was evaluated by B. cepacia lipase immobilization by adsorption, where a maximal 31 U of lipase activity per 1 g of wet carrier was achieved. Based on the results obtained, it seems that the proposed process of brown onion skin transformation shows the possibility of being used for the production of a cellulose-based immobilization carrier, approaching the “zero-waste” model of a circular economy. Full article
Show Figures

Figure 1

28 pages, 3383 KB  
Review
Evaluation of Biomass Softwood Composites: Structural Features and Functional Properties of Advanced Engineered Wood
by Ria Aniza, Anelie Petrissans, Mathieu Petrissans, Erlan Rosyadi, Hana Nabila Anindita, Tyas Puspita Rini, Zulaicha Dwi Hastuti, Nurdiah Rahmawati, Bralin Dwiratna, Ena Marlina, Akhmad Faruq Alhikami and I Dewa Ayu Agung Warmadewanthi
Forests 2025, 16(12), 1823; https://doi.org/10.3390/f16121823 - 5 Dec 2025
Viewed by 720
Abstract
Softwood-based composites are increasingly used in structural and nonstructural applications owing to their renewability, cost-effectiveness, and favorable strength-to-weight performance. This study applies a systematic literature review and comparative analysis, drawing on approximately 140 sources, to synthesize current knowledge on the physicochemical, mechanical, thermal, [...] Read more.
Softwood-based composites are increasingly used in structural and nonstructural applications owing to their renewability, cost-effectiveness, and favorable strength-to-weight performance. This study applies a systematic literature review and comparative analysis, drawing on approximately 140 sources, to synthesize current knowledge on the physicochemical, mechanical, thermal, and environmental characteristics of engineered wood products derived from softwood species. The intrinsic lignocellulosic composition of softwood, comprising roughly 40%–45% cellulose, 25%–30% hemicelluloses (with mannose as the predominant sugar), and 27%–30% lignin, strongly influences hydrophilicity, stiffness, and thermal behavior. Mechanical properties vary across engineered wood product classes; for example, plywood exhibits a modulus of rupture of 33.72–42.61 MPa and a modulus of elasticity of 6.96–8.55 GPa. Microstructural and spectroscopic analyses highlight the importance of fiber–matrix interactions, chemical bonding, and surface modifications in determining composite performance. Emerging advanced materials, such as scrimber, with densities of 800–1390 kg/m3, and fluorescent transparent wood, achieving optical transmittance above 70%–85%, demonstrate the expanding functional potential of softwood-based composites. Sustainability assessments indicate that coatings, flame-retardants, and adhesives may contribute to volatile organic compound emissions, emphasizing the need for lower-emission, bio-based alternatives. Overall, the findings of this systematic review show that softwood-based composites deliver robust, quantifiable performance advantages and hold strong potential to meet the rising demand for sustainable, low-carbon engineered materials. Full article
(This article belongs to the Special Issue Wood Testing, Processing and Modification)
Show Figures

Graphical abstract

31 pages, 1933 KB  
Review
The Applications of Nanocellulose and Its Modulation of Gut Microbiota in Relation to Obesity and Diabetes
by Tai L. Guo, Ayushi Bhagat and Daniel J. Guo
J. Nanotheranostics 2025, 6(4), 34; https://doi.org/10.3390/jnt6040034 - 3 Dec 2025
Viewed by 796
Abstract
Obesity and type 2 diabetes are closely linked and often referred to as diabesity. Therapies of diabesity include improving intestinal health and reducing intake of fat and sugars. Diagnosis of diabesity-related metabolic disorders would involve monitoring of glucose and other factors. Nanocellulose, also [...] Read more.
Obesity and type 2 diabetes are closely linked and often referred to as diabesity. Therapies of diabesity include improving intestinal health and reducing intake of fat and sugars. Diagnosis of diabesity-related metabolic disorders would involve monitoring of glucose and other factors. Nanocellulose, also known as cellulose nanomaterials, is emerging as a potential material for various applications. It has unique properties, such as high surface area, biodegradable, biocompatibility and tunable surface chemistry. In this review, we initially provided a brief description of differently produced nanocellulose and their potential applications in different areas, including therapeutics and diagnostics, by focusing on obesity and diabetes. Then, the uptake, absorption, distribution, metabolism and excretion of nanocellulose were discussed. Further, the mechanisms of nanocellulose in modulating diabesity were summarized by emphasizing the role of gut microbiota. Finally, we discussed gut microbiota-related health effects of nanocellulose, both beneficial and detrimental. It was found that the interactions between nanocellulose and gut were complex, with alterations of microbial composition, metabolic activity, and the immune functions both locally and systemically. There seemed to be many beneficial changes following short-term exposure to nanocellulose (e.g., increased beneficial bacteria and decreased pathogenic ones); however, some of these effects were no longer seen after long-term consumption. Importantly, long-term nanocellulose consumption may be associated with certain detrimental health effects, e.g., malnutrition and its associated neurotoxicity, although additional studies are needed to substantiate such health implications. This information is critical for developing safe and effective nanocellulose derivatives that can be applied in food and medicine as well as to harness the benefits of the gut microbiota. Full article
Show Figures

Figure 1

21 pages, 3495 KB  
Article
Interactions of Potassium Fertilization and Straw Return in Modulating Maize Yield and Lodging Resistance
by Xiaowen Wang, Jia Liu, Shuang Liu, Yao Zhao, Hong Ren and Yan Gu
Plants 2025, 14(23), 3665; https://doi.org/10.3390/plants14233665 - 2 Dec 2025
Viewed by 464
Abstract
Maize lodging is a major factor limiting maize grain yield. Potassium (K) fertilization is known to reduce lodging, but the potential impact of straw return on lodging resistance remains unclear. A two-year field experiment was conducted with five K levels (0, 30, 60, [...] Read more.
Maize lodging is a major factor limiting maize grain yield. Potassium (K) fertilization is known to reduce lodging, but the potential impact of straw return on lodging resistance remains unclear. A two-year field experiment was conducted with five K levels (0, 30, 60, 90, and 120 kg ha−1) under straw return (S1) and no straw return (S0). Maize yield, stem lodging resistance index (SLRI), crushing strength (CS), stem morphological and physicochemical characteristics, and soil nutrient levels were measured. Compared to S0, increased K application with S1 significantly enhanced the SLRI (16.0%) and CS (19.8%) across two years, which was due to the improvement of stem morphological (internode dry weight, length, and plumpness) and physiological characteristics (soluble sugar, cellulose, lignin, phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), and cinnamyl alcohol dehydrogenase (CAD)), especially the third internode. The highest SLRI and CS of each internode of the two straw treatments were obtained in K120, while no significant difference between K90 and K120 was observed for these indicators under the same straw treatment. Grain yield and soil available K content of S1 were higher by an average of 5.0% and 18.0% than S0, respectively. Compared to K0, K120 increased the yield and soil available K content by 17.3% and 18.8%, but there was no significant difference with K90. As a result, S0 and S1 both achieved a soil K balance when the surplus rate was close to zero at a K input of 90 kg ha−1. Fitting analysis indicated that, compared to S0, the K application rate of S1 was reduced by an average of 11.8% while maintaining a K surplus rate of 0, which means S1 could enhance soil potassium cycling and supply capacity but also reduce fertilizer input. In conclusion, straw return combined with K fertilizer (e.g., 90 kg ha−1) is an effective strategy to enhance lodging resistance and maintain maize yield by improving stem morphological and physicochemical characteristics. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

18 pages, 1765 KB  
Review
Carbon Membranes Derived from Natural Polymer Precursors: Fundamentals, Developments, and Perspectives for Pervaporation Desalination
by Yue Yuan, Fang Wang, Yin Yu, Zhikai Qin, Hongbo Xi and Changyong Wu
Membranes 2025, 15(12), 354; https://doi.org/10.3390/membranes15120354 - 25 Nov 2025
Viewed by 673
Abstract
Carbon membranes have emerged as a promising class of inorganic membranes for desalination due to their tunable pore structures, superior chemical and thermal stability, and molecular-sieving properties. In pursuit of sustainability, recent research has shifted focus towards replacing petrochemical-based precursors with renewable natural [...] Read more.
Carbon membranes have emerged as a promising class of inorganic membranes for desalination due to their tunable pore structures, superior chemical and thermal stability, and molecular-sieving properties. In pursuit of sustainability, recent research has shifted focus towards replacing petrochemical-based precursors with renewable natural polymers. This review provides a comprehensive examination of the fundamentals, developments, and prospects of carbon membranes derived from natural polymer precursors—such as cellulose, chitosan, lignin, starch, and sugars—specifically for pervaporation desalination. It begins by summarizing the fundamentals of membrane separation and the mechanisms of carbon membrane formation, emphasizing the critical relationships between precursor structure, carbonization conditions, and the resulting membrane performance. The core of the review is dedicated to a detailed analysis of various natural polymer precursors, discussing their unique chemistries, carbonization behaviors, and the characteristics of the derived carbon membranes. Particular attention is given to their application in pervaporation desalination, where they demonstrate competitive water flux and high salt rejection (>99%) under moderate operating conditions, highlighting their potential for treating hypersaline brines. Finally, the challenges of large-scale fabrication, structural durability, and data-driven optimization are discussed, along with future directions toward scalable and sustainable membrane technologies. Full article
Show Figures

Figure 1

44 pages, 2228 KB  
Review
Innovative Applications of Sugarcane Bagasse in the Global Sugarcane Industry
by Sylvere Ndikumana, Omar Tanane, Youness Aichi, El Farissi Latifa and Lina Goudali
Processes 2025, 13(12), 3796; https://doi.org/10.3390/pr13123796 - 24 Nov 2025
Cited by 1 | Viewed by 2199
Abstract
Sugarcane bagasse (SCB), a major byproduct of the sugar industry produced in millions of tons annually, is traditionally burned for energy but holds untapped potential for sustainable valorization amid global shifts toward renewable resources and reduced fossil fuel reliance. This review synthesizes recent [...] Read more.
Sugarcane bagasse (SCB), a major byproduct of the sugar industry produced in millions of tons annually, is traditionally burned for energy but holds untapped potential for sustainable valorization amid global shifts toward renewable resources and reduced fossil fuel reliance. This review synthesizes recent advancements in SCB applications beyond energy, emphasizing bioenergy, bioplastics, construction materials, and agriculture to advance circular economy principles—addressing a gap in the existing literature by providing a holistic, comparative analysis of processing technologies, including their efficiency, costs, and scalability, which prior reviews have overlooked. Drawing from scientific literature, industry reports, case studies, and datasets, we evaluate SCB’s composition (40–50% cellulose, 25–30% hemicellulose, 20–25% lignin) and processing methods (e.g., pretreatment, hydrolysis, gasification, pyrolysis). Key findings highlight versatile applications: bioethanol production yielding 40–70% GHG reductions per life cycle assessments; pulp/paper substitution reducing water and chemical use; nanocellulose composites for automotive and medical sectors; particleboard and ash-cement in construction cutting deforestation and carbon footprints by ~20%; and biochar/processed feed enhancing crop yields by 25% while amending soil. Unlike previous reviews focused on isolated applications, this work integrates environmental, economic, and regulatory insights, identifying challenges like standardization gaps and proposing pathways for commercialization to drive scalable, green industry transitions. Continued research and policy support are essential for realizing SCB’s role in sustainable development. Full article
(This article belongs to the Special Issue Research on Conversion and Utilization of Waste Biomass)
Show Figures

Figure 1

24 pages, 8615 KB  
Article
Xylitol Modification of Electrospun Polymer Scaffolds: Impact on Physicochemical and Antibacterial Properties
by Francesco Boschetto, Matteo Zanocco, Kaeko Kamei, Huaizhong Xu and Elia Marin
Polymers 2025, 17(22), 3024; https://doi.org/10.3390/polym17223024 - 14 Nov 2025
Viewed by 814
Abstract
Electrospun fibrous scaffolds based on cellulose acetate (CA), polycaprolactone (PCL), and poly (L-lactic acid) (PLLA) are versatile materials with applications spanning diverse fields, but in their pristine form, they typically lack significant inherent antibacterial properties. To address this limitation and expand their utility, [...] Read more.
Electrospun fibrous scaffolds based on cellulose acetate (CA), polycaprolactone (PCL), and poly (L-lactic acid) (PLLA) are versatile materials with applications spanning diverse fields, but in their pristine form, they typically lack significant inherent antibacterial properties. To address this limitation and expand their utility, this study explored the incorporation of xylitol, a natural antibacterial sugar alcohol, into these polymer matrices to enhance their physicochemical and antimicrobial properties. Electrospinning was employed to fabricate pristine and xylitol-loaded scaffolds with varying xylitol concentrations. Morphological analysis revealed polymer-dependent changes in fiber diameter and porosity. Mechanical testing assessed the impact of xylitol on tensile properties, while thermal analysis investigated alterations in melting temperature and crystallinity. The antibacterial efficacy against Staphylococcus aureus and Escherichia coli was evaluated using WST assay and live/dead staining. Notably, xylitol significantly enhanced the antibacterial activity against both bacterial species, with a more pronounced and rapid effect observed against S. aureus. The tailored scaffold properties and imparted antimicrobial characteristics highlight the potential of these xylitol-modified electrospun materials: they are easily produced, low-cost, and appropriate for a range of applications (dental applications, filters, masks, wound dressing, and packaging) where preventing bacterial contamination is crucial. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

19 pages, 3237 KB  
Article
Genome-Wide Association Study and Candidate Gene Analysis of Seed Shattering Trait in Psathyrostachys juncea
by Yuru Lv, Lan Yun, Yixin Mu, Bohua Li, Xiaodi Jia and Miaomiao Jia
Genes 2025, 16(11), 1383; https://doi.org/10.3390/genes16111383 - 14 Nov 2025
Viewed by 595
Abstract
Background: Seed shattering enhances ecological adaptation in perennial grasses but severely limits harvestable seed yield in forage crops. Psathyrostachys juncea is an important perennial forage species in arid and cold regions, yet the genetic basis of its seed shattering remains largely unknown. Here [...] Read more.
Background: Seed shattering enhances ecological adaptation in perennial grasses but severely limits harvestable seed yield in forage crops. Psathyrostachys juncea is an important perennial forage species in arid and cold regions, yet the genetic basis of its seed shattering remains largely unknown. Here we asked which genomic regions and biological pathways underlie natural variation in seed shattering in P. juncea, and whether cellulose synthase (CESA)-mediated cell-wall formation contributes to abscission-zone strength. Results: We evaluated seed shattering in a diverse association panel of P. juncea across four environment–-year combinations and performed a genome-wide association study (GWAS) using genotyping-by-sequencing single-nucleotide polymorphism (SNP) markers. The analysis identified 36 significant SNP loci distributed on multiple chromosomes, consistent with a highly polygenic and environment-responsive architecture. Candidate-gene annotation highlighted pathways related to cell-wall biosynthesis, hormone signaling and sugar transport. Notably, in the BT23SHT environment a cluster of association signals on chromosome 3D co-localized with several genes annotated as cellulose synthase (CESA). Abscission-zone transcriptome profiling and qRT-PCR at 7, 14, 21 and 28 days after heading revealed that CESA genes, including TraesCS3D02G010100.1 located near the lead SNP Chr3D_3539055, showed higher early expression in low-shattering lines and a decline toward baseline in high-shattering lines. Comparative analyses placed P. juncea CESA proteins within a broadly conserved but lineage-divergent framework among grasses. Conclusion: Together, these results define the genetic landscape of seed shattering in P. juncea and nominate cellulose-biosynthetic genes on chromosome 3D as promising targets for marker-assisted selection of low-shattering, high-seed-yield forage cultivars. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop