Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = cell size, geometry and composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4954 KiB  
Article
Evaluation of the Characteristics of Digital Light Processing 3D-Printed Magnesium Calcium Phosphate for Bone Regeneration
by Peng Zhang, Meiling Zhang, Yoo-Na Jung, Seong-Won Choi, Yong-Seok Lee, Geelsu Hwang and Kwi-Dug Yun
J. Funct. Biomater. 2025, 16(4), 139; https://doi.org/10.3390/jfb16040139 - 14 Apr 2025
Viewed by 846
Abstract
Recent advancements in three-dimensional (3D) printing technology, particularly digital light processing (DLP) 3D printing, have enabled the customization of bone substitutes with specific shapes that match bone defect sizes and geometries. Magnesium calcium phosphate (MCP) has gained considerable attention due to its strong [...] Read more.
Recent advancements in three-dimensional (3D) printing technology, particularly digital light processing (DLP) 3D printing, have enabled the customization of bone substitutes with specific shapes that match bone defect sizes and geometries. Magnesium calcium phosphate (MCP) has gained considerable attention due to its strong mechanical properties, degradability, and ability to promote bone regeneration. In this study, we prepared MCP samples with five different molar ratios via DLP 3D printing. We analyzed the physicochemical properties of these five groups, including phase compositions and microstructures, which were examined using X-ray diffraction and scanning electron microscopy, respectively. Additionally, we assessed the effects of MCP on material density and shrinkage. Biaxial flexural strength and degradation rate were evaluated; biological properties were examined through WST-8 analysis and alkaline phosphatase activity assays. Among the tested samples, MCP1/1 exhibited the highest strength. A higher proportion of magnesium phosphate in MCP corresponded to an increased degradation rate. Cell response observations in the WST-8 assay indicated that cell proliferation was better in the MCP1/1 group than in the other groups on days 4 and 7 of culturing. Alkaline phosphatase activity assays demonstrated that MCP1/1 exhibited higher activity than calcium phosphate. Our findings suggest that MCP1/1 can be used effectively in bone-tissue-engineering applications. Full article
Show Figures

Figure 1

18 pages, 5664 KiB  
Article
Magnetohydrodynamic Blood-Carbon Nanotube Flow and Heat Transfer Control via Carbon Nanotube Geometry and Nanofluid Properties for Hyperthermia Treatment
by Nickolas D. Polychronopoulos, Evangelos Karvelas, Lefteris Benos, Thanasis D. Papathanasiou and Ioannis Sarris
Computation 2025, 13(3), 62; https://doi.org/10.3390/computation13030062 - 3 Mar 2025
Viewed by 823
Abstract
Hyperthermia is a promising medical treatment that uses controlled heat to target and destroy cancer cells while minimizing damage to the surrounding healthy tissue. Unlike conventional methods, it offers reduced risks of infection and shorter recovery periods. This study focuses on the integration [...] Read more.
Hyperthermia is a promising medical treatment that uses controlled heat to target and destroy cancer cells while minimizing damage to the surrounding healthy tissue. Unlike conventional methods, it offers reduced risks of infection and shorter recovery periods. This study focuses on the integration of carbon nanotubes (CNTs) within the blood to enable precise heat transfer to tumors. The central idea is that by adjusting the concentration, shape, and size of CNTs, as well as the strength of an external magnetic field, heat transfer can be controlled for targeted treatment. A theoretical model is developed to analyze laminar natural convection within a simplified rectangular porous enclosure resembling a tumor, considering the composition of blood, and the geometric characteristics of CNTs, including the interfacial nanolayer thickness. Using an asymptotic expansion method, ordinary differential equations for mass, momentum, and energy balances are derived and solved. Results show that increasing CNT concentration decelerates fluid flow and reduces heat transfer efficiency, while elongated CNTs and thicker nanolayers enhance conduction over convection, to the detriment of heat transfer. Finally, increased tissue permeability—characteristic of cancerous tumors—significantly impacts heat transfer. In conclusion, although the model simplifies real tumor geometries and treatment conditions, it provides valuable theoretical insights into hyperthermia and nanofluid applications for cancer therapy. Full article
(This article belongs to the Special Issue Post-Modern Computational Fluid Dynamics)
Show Figures

Figure 1

18 pages, 5155 KiB  
Article
Antibacterial UV-Curable Gel with Hydroxyapatite Nanoparticles for Regenerative Medicine in the Field of Orthopedics
by Julia A. Burunkova, Valeria V. Semykina, Vera E. Sitnikova, Dmitry M. Dolgintsev, Faliya F. Zaripova, Alina A. Ponomareva, Diana R. Mizina, Attila Csick, Sandor Kokenyesi and Anton Zhilenkov
J. Compos. Sci. 2025, 9(2), 65; https://doi.org/10.3390/jcs9020065 - 1 Feb 2025
Cited by 1 | Viewed by 1039
Abstract
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because [...] Read more.
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because it covers any surface geometry of metal implants and hardens under ultraviolet light. In this work, sorption properties, changes in porosity, and mechanical properties of the material were investigated. The conditions for obtaining hydroxyapatite (HA) nanoparticles and the presence of silicon oxide nanoparticles and organic for the shell in an aqueous medium were studied for the pH of the medium, the sequence of administration and concentration of the material components, as well as antibacterial properties. This polymer material is partially resorbable. That supports not only the growth of bone cells but also serves as a protective layer. It reduces friction between organic tissues and a metal implant and can be a solution to the problem of the aseptic instability of metal implants. The material can also be used to repair damaged bones and cartilage tissues, especially in cases where the application and curing procedure is performed using laparoscopic methods. In this work, the authors propose a simple and quite cheap method for obtaining material based on photopolymerizable acrylates and natural gelatin with nanoparticles of HA, zinc oxide, and silicon oxide. The method allows one to obtain a composite material with different nanoparticles in a polymer matrix which retain the requisite properties needed such as active-sized HA, antibacterial ZnO, and structure-forming and stability-improving SiO2 nanoparticles. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

20 pages, 5507 KiB  
Article
Features of Hydrogen-Enriched Methane–Air Flames Propagating in Hele-Shaw Channels
by Sergey Yakush, Sergey Rashkovskiy, Maxim Alexeev and Oleg Semenov
Energies 2025, 18(2), 335; https://doi.org/10.3390/en18020335 - 14 Jan 2025
Viewed by 1302
Abstract
Mixtures of hydrogen with common hydrocarbon fuels are considered viable for reducing carbon footprint in modern industry, power production, and transportation. The addition of hydrogen alters the kinetics and thermophysical properties of the mixtures, as well as the composition and properties of combustion [...] Read more.
Mixtures of hydrogen with common hydrocarbon fuels are considered viable for reducing carbon footprint in modern industry, power production, and transportation. The addition of hydrogen alters the kinetics and thermophysical properties of the mixtures, as well as the composition and properties of combustion products, requiring detailed research into the features of flame propagation in hydrogen-enriched hydrocarbon–air mixtures. Of particular interest are also the safety aspects of such fuels. In this paper, experimental results are presented on the premixed laminar flame propagation in channels formed by two closely spaced plates (Hele-Shaw cell), with the internal straight walls forming a diverging (diffuser) channel with the opening angles between 5 and 25 degrees. Methane–hydrogen–air mixtures with the hydrogen relative contents of 0%, 25%, and 50% and global equivalence ratio of unity were ignited by a spark near the closed narrow end of the channel. Experiments were performed with the gap width of 3.5 mm; video recordings were processed in order to determine the quantitative features of the flame front propagation (leading and trailing point coordinate, coordinates of the cusps, cell sizes and shapes). The main features of flame propagation (fast initial expansion, development of cellular flame, self-induced longitudinal oscillations) are obtained and compared to clarify the effect of hydrogen contents in the fuel and channel geometry (gap width, opening angle). Full article
(This article belongs to the Special Issue Advanced Studies on Clean Hydrogen Energy Systems of the Future)
Show Figures

Figure 1

15 pages, 4672 KiB  
Article
Impact of Cell Design Parameters on Mechanical Properties of 3D-Printed Cores for Carbon Epoxy Sandwich Composites
by Mustafa Aslan, Kutay Çava, Altuğ Uşun and Onur Güler
Polymers 2025, 17(1), 2; https://doi.org/10.3390/polym17010002 - 24 Dec 2024
Viewed by 918
Abstract
The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as [...] Read more.
The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as cell geometry (honeycomb and auxetic) and cell size (cell thickness and width), are examined on acrylonitrile butadiene styrene (ABS) core materials produced using fusion deposition modeling (FDM). They are produced as a result of the epoxy bonding of carbon epoxy prepreg composite materials to the surfaces of core materials. Increasing the wall thickness from 0.6 mm to 1 mm doubled the elastic modulus of the re-entrant structures (5 GPa to 10 GPa) and improved compressive strength by 50–60% for both geometries. In contrast, increasing cell size from 6 mm to 10 mm significantly reduced compressive strength by 80% (from 2.5–2.8 MPa to 0.5–0.6 MPa) and elastic modulus by 70–78% (from 9–10 GPa to 2–3 GPa). Flexural testing showed that the re-entrant cores, with a maximum load capacity of 148 N, exhibited more uniform deformation, while the honeycomb cores achieved a higher load capacity of 273 N but were prone to localized failures. These findings emphasize the directional anisotropy and specific advantages of auxetic and honeycomb designs, offering valuable insights for lightweight, high-strength structural applications. Full article
(This article belongs to the Special Issue Research on Additive Manufacturing of Polymer Composites)
Show Figures

Figure 1

48 pages, 6072 KiB  
Article
Numerical Homogenization of Orthotropic Functionally Graded Periodic Cellular Materials: Method Development and Implementation
by Behnam Shahbazian, Victor Bautista Katsalukha and Mirmilad Mirsayar
Materials 2024, 17(24), 6080; https://doi.org/10.3390/ma17246080 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1011
Abstract
This study advances the state of the art by computing the macroscopic elastic properties of 2D periodic functionally graded microcellular materials, incorporating both isotropic and orthotropic solid phases, as seen in additively manufactured components. This is achieved through numerical homogenization and several novel [...] Read more.
This study advances the state of the art by computing the macroscopic elastic properties of 2D periodic functionally graded microcellular materials, incorporating both isotropic and orthotropic solid phases, as seen in additively manufactured components. This is achieved through numerical homogenization and several novel MATLAB implementations (known in this study as Cellular_Solid, Homogenize_test, homogenize_ortho, and Homogenize_test_ortho_principal). The developed codes in the current work treat each cell as a material point, compute the corresponding cell elasticity tensor using numerical homogenization, and assign it to that specific point. This is conducted based on the principle of scale separation, which is a fundamental concept in homogenization theory. Then, by deriving a fit function that maps the entire material domain, the homogenized material properties are predicted at any desired point. It is shown that this method is very capable of capturing the effects of orthotropy during the solid phase of the material and that it effectively accounts for the influence of void geometry on the macroscopic anisotropies, since the obtained elasticity tensor has different E1 and E2 values. Also, it is revealed that the complexity of the void patterns and the intensity of the void size changes from one cell to another can significantly affect the overall error in terms of the predicted material properties. As the stochasticity in the void sizes increases, the error also tends to increase, since it becomes more challenging to interpolate the data accurately. Therefore, utilizing advanced computational techniques, such as more sophisticated fitting methods like the Fourier series, and implementing machine learning algorithms can significantly improve the overall accuracy of the results. Furthermore, the developed codes can easily be extended to accommodate the homogenization of composite materials incorporating multiple orthotropic phases. This implementation is limited to periodic void distributions and currently supports circular, rectangular, square, and hexagonal void shapes. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

19 pages, 4612 KiB  
Article
Tibial Damage Caused by T-2 Toxin in Goslings: Bone Dysplasia, Poor Bone Quality, Hindered Chondrocyte Differentiation, and Imbalanced Bone Metabolism
by Wang Gu, Lie Hou, Qiang Bao, Qi Xu and Guohong Chen
Animals 2024, 14(15), 2281; https://doi.org/10.3390/ani14152281 - 5 Aug 2024
Cited by 2 | Viewed by 1397
Abstract
T-2 toxin, the most toxic type A trichothecene, is widely present in grain and animal feed, causing growth retardation and tissue damage in poultry. Geese are more sensitive to T-2 toxin than chickens and ducks. Although T-2 toxin has been reported to cause [...] Read more.
T-2 toxin, the most toxic type A trichothecene, is widely present in grain and animal feed, causing growth retardation and tissue damage in poultry. Geese are more sensitive to T-2 toxin than chickens and ducks. Although T-2 toxin has been reported to cause tibial growth plate (TGP) chondrodysplasia in chickens, tibial damage caused by T-2 toxin in geese has not been fully demonstrated. This study aims to investigate the adverse effects of T-2 toxin on tibial bone development, bone quality, chondrocyte differentiation, and bone metabolism. Here, forty-eight one-day-old male Yangzhou goslings were randomly divided into four groups and daily gavaged with T-2 toxin at concentrations of 0, 0.5, 1.0, and 2.0 mg/kg body weight for 21 days, respectively. The development of gosling body weight and size was determined by weighing and taking body measurements after exposure to different concentrations of T-2 toxin. Changes in tibial development and bone characteristics were determined by radiographic examination, phenotypic measurements, and bone quality and composition analyses. Chondrocyte differentiation in TGP and bone metabolism was characterized by cell morphology, tissue gene-specific expression, and serum marker levels. Results showed that T-2 toxin treatment resulted in a lower weight, volume, length, middle width, and middle circumference of the tibia in a dose-dependent manner (p < 0.05). Moreover, decreased bone-breaking strength, bone mineral density, and contents of ash, Ca, and P in the tibia were observed in T-2 toxin-challenged goslings (p < 0.05). In addition, T-2 toxin not only reduced TGP height (p < 0.05) but also induced TGP chondrocytes to be disorganized with reduced numbers and indistinct borders. As expected, the apoptosis-related genes (CASP9 and CASP3) were significantly up-regulated in chondrocytes challenged by T-2 toxin with a dose dependence, while cell differentiation and maturation-related genes (BMP6, BMP7, SOX9, and RUNX2) were down-regulated (p < 0.05). Considering bone metabolism, T-2 toxin dose-dependently and significantly induced a decreased number of osteoblasts and an increased number of osteoclasts in the tibia, with inhibited patterns of osteogenesis-related genes and enzymes and increased patterns of osteoclast-related genes and enzymes (p < 0.05). Similarly, the serum Ca and P concentrations and parathyroid hormone, calcitonin, and 1, 25-dihydroxycholecalciferol levels decreased under T-2 toxin exposure (p < 0.05). In summary, 2.0 mg/kg T-2 toxin significantly inhibited tibia weight, length, width, and circumference, as well as decreased bone-breaking strength, density, and composition (ash, calcium, and phosphorus) in 21-day-old goslings compared to the control and lower dose groups. Chondrocyte differentiation in TGP was delayed by 2.0 mg/kg T-2 toxin owing to cell apoptosis. In addition, 2.0 mg/kg T-2 toxin promoted bone resorption and inhibited osteogenesis in cellular morphology, gene expression, and hormonal modulation patterns. Thus, T-2 toxin significantly inhibited tibial growth and development with a dose dependence, accompanied by decreased bone geometry parameters and properties, hindered chondrocyte differentiation, and imbalanced bone metabolism. Full article
Show Figures

Figure 1

19 pages, 11576 KiB  
Article
In Vitro Biological Evaluation of an Alginate-Based Hydrogel Loaded with Rifampicin for Wound Care
by Tudor Bibire, Radu Dănilă, Cătălina Natalia Yilmaz, Liliana Verestiuc, Isabella Nacu, Ramona Gabriela Ursu and Cristina Mihaela Ghiciuc
Pharmaceuticals 2024, 17(7), 943; https://doi.org/10.3390/ph17070943 - 14 Jul 2024
Cited by 3 | Viewed by 5705
Abstract
We report a biocompatible hydrogel dressing based on sodium alginate-grafted poly(N-vinylcaprolactam) prepared by encapsulation of Rifampicin as an antimicrobial drug and stabilizing the matrix through the repeated freeze–thawing method. The hydrogel structure and polymer-drug compatibility were confirmed by FTIR, and a series of [...] Read more.
We report a biocompatible hydrogel dressing based on sodium alginate-grafted poly(N-vinylcaprolactam) prepared by encapsulation of Rifampicin as an antimicrobial drug and stabilizing the matrix through the repeated freeze–thawing method. The hydrogel structure and polymer-drug compatibility were confirmed by FTIR, and a series of hydrogen-bond-based interactions between alginate and Rifampicin were identified. A concentration of 0.69% Rifampicin was found in the polymeric matrix using HPLC analysis and spectrophotometric UV–Vis methods. The hydrogel’s morphology was evaluated by scanning electron microscopy, and various sizes and shapes of pores, ranging from almost spherical geometries to irregular ones, with a smooth surface of the pore walls and high interconnectivity in the presence of the drug, were identified. The hydrogels are bioadhesive, and the adhesion strength increased after Rifampicin was encapsulated into the polymeric matrix, which suggests that these compositions are suitable for wound dressings. Antimicrobial activity against S. aureus and MRSA, with an increased effect in the presence of the drug, was also found in the newly prepared hydrogels. In vitro biological evaluation demonstrated the cytocompatibility of the hydrogels and their ability to stimulate cell multiplication and mutual cell communication. The in vitro scratch assay demonstrated the drug-loaded alginate-grafted poly(N-vinylcaprolactam) hydrogel’s ability to stimulate cell migration and wound closure. All of these results suggest that the prepared hydrogels can be used as antimicrobial materials for wound healing and care applications. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

23 pages, 9167 KiB  
Article
Deformation Analysis of Different Lithium Battery Designs Using the DIC Technique
by Szabolcs Kocsis Szürke, Mátyás Szabó, Szabolcs Szalai and Szabolcs Fischer
Energies 2024, 17(2), 323; https://doi.org/10.3390/en17020323 - 9 Jan 2024
Cited by 6 | Viewed by 2762
Abstract
The growing number of electric vehicles and devices drives the demand for lithium-ion batteries. The purpose of the batteries used in electric vehicles and applications is primarily to preserve the cells and extend their lifetime, but they will wear out over time, even [...] Read more.
The growing number of electric vehicles and devices drives the demand for lithium-ion batteries. The purpose of the batteries used in electric vehicles and applications is primarily to preserve the cells and extend their lifetime, but they will wear out over time, even under ideal conditions. Most battery system failures are caused by a few cells, but the entire system may have to be scrapped in such cases. To address this issue, the goal is to create a concept that will extend the life of batteries while reducing the industrial and chemical waste generated by batteries. Secondary use can increase battery utilization and extend battery life. However, processing a large number of used battery cells at an industrial level is a significant challenge for both manufacturers and users. The different battery sizes and compositions used by various manufacturers of electric vehicles and electronic devices make it extremely difficult to solve the processing problem at the system level. The purpose of this study is to look into non-destructive battery diagnostic options. During the tests, the condition of the cells is assessed using a new diagnostic technique, 3D surface digitalization, and the fusion of electrical parameters. In the case of surface digitalization, the digital image correlation (DIC) technique was used to estimate the cell state. The tests were conducted on various cells with widely used geometries and encapsulations. These included a lithium polymer (soft casing), 18650 standard sizes (hard casing), and prismatic cells (semi-hard). The study also included testing each battery at various charge states during charging and discharging. The findings help to clarify the changes in battery cell geometry and their localization. The findings can be applied to cell diagnostic applications such as recycling, quality assurance, and vehicle diagnostics. Full article
(This article belongs to the Special Issue Recent Advances in Lithium-Ion Batteries and Supercapacitors)
Show Figures

Figure 1

19 pages, 7595 KiB  
Article
Structural Evolution in a Series of Isomorphous Rare Earth Compounds as Response of Lanthanide Contraction
by Hans Reuter, Marcel Böltken, Maik Horstmann and Markus Haase
Crystals 2023, 13(7), 1043; https://doi.org/10.3390/cryst13071043 - 30 Jun 2023
Cited by 4 | Viewed by 1366
Abstract
The structural parameters of the rare-earth diacetate halide trihydrates, RE(OAc)2Hal·3H2O with RE = Ce − (Pm) − Lu and Hal = Cl, Br, have been determined by low temperature, high-resolution SCXRD in order to examine the effect of lanthanide [...] Read more.
The structural parameters of the rare-earth diacetate halide trihydrates, RE(OAc)2Hal·3H2O with RE = Ce − (Pm) − Lu and Hal = Cl, Br, have been determined by low temperature, high-resolution SCXRD in order to examine the effect of lanthanide contraction on the coordination geometry in this series of isomorphous compounds consisting of cationic, acetate-bridged, non-linear, one-dimensional coordination polymers of composition [RE(H2O)3(OAc)2]+ and laterally hydrogen bonded halide ions, Hal. Although the shrinkage of the unit cell volume follows lanthanide contraction very well over the complete range of investigated RE elements, many other parameters (i.e., lattice constants, angles and distances in the RE··· RE alignment, RE-O bond lengths, etc.) exhibit a more complex response on lanthanide contraction often expressed by sigmoid curves that can be ascribed to a continuous transition from CN9 (RE = Ce) to CN8 (RE = Lu) as one acetate group loses the chelate function, an effect accompanied by significant structural changes of the carboxylate group. Therefore, data are best analyzed by use of two subsets represented by the two different structure types of Ce and Lu, the structural features of which change with decreasing/increasing the size of RE3+, up to the borderline between both subsets. Full article
(This article belongs to the Special Issue Emerging Rare-Earth Doped Materials)
Show Figures

Figure 1

19 pages, 3905 KiB  
Article
Surface Modification of 3D-Printed PCL/BG Composite Scaffolds via Mussel-Inspired Polydopamine and Effective Antibacterial Coatings for Biomedical Applications
by Kanwal Ilyas, Muhammad Asim Akhtar, Ezzeddine Ben Ammar and Aldo R. Boccaccini
Materials 2022, 15(23), 8289; https://doi.org/10.3390/ma15238289 - 22 Nov 2022
Cited by 10 | Viewed by 3589
Abstract
A wide variety of composite scaffolds with unique geometry, porosity and pore size can be fabricated with versatile 3D printing techniques. In this work, we fabricated 3D-printed composite scaffolds of polycaprolactone (PCL) incorporating bioactive glass (BG) particles (13-93 and 13-93B3 compositions) by using [...] Read more.
A wide variety of composite scaffolds with unique geometry, porosity and pore size can be fabricated with versatile 3D printing techniques. In this work, we fabricated 3D-printed composite scaffolds of polycaprolactone (PCL) incorporating bioactive glass (BG) particles (13-93 and 13-93B3 compositions) by using fused deposition modeling (FDM). The scaffolds were modified with a “mussel-inspired surface coating” to regulate biological properties. The chemical and surface properties of scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). Polydopamine (PDA) surface-modified composite scaffolds exhibited attractive properties. Firstly, after the surface modification, the adhesion of a composite coating based on gelatin incorporated with strontium-doped mesoporous bioactive glass (Sr-MBGNs/gelatin) was significantly improved. In addition, cell attachment and differentiation were promoted, and the antibacterial properties of the scaffolds were increased. Moreover, the bioactivity of these scaffolds was also significantly influenced: a hydroxyapatite layer formed on the scaffold surface after 3 days of immersion in SBF. Our results suggest that the promoting effect of PDA coating on PCL-BG scaffolds leads to improved scaffolds for bone tissue engineering. Full article
(This article belongs to the Special Issue Porous Ceramics, Glasses and Composites)
Show Figures

Figure 1

16 pages, 3835 KiB  
Article
A Novel 3D Printing Particulate Manufacturing Technology for Encapsulation of Protein Therapeutics: Sprayed Multi Adsorbed-Droplet Reposing Technology (SMART)
by Niloofar Heshmati Aghda, Yu Zhang, Jiawei Wang, Anqi Lu, Amit Raviraj Pillai and Mohammed Maniruzzaman
Bioengineering 2022, 9(11), 653; https://doi.org/10.3390/bioengineering9110653 - 5 Nov 2022
Cited by 10 | Viewed by 4749
Abstract
Recently, various innovative technologies have been developed for the enhanced delivery of biologics as attractive formulation targets including polymeric micro and nanoparticles. Combined with personalized medicine, this area can offer a great opportunity for the improvement of therapeutics efficiency and the treatment outcome. [...] Read more.
Recently, various innovative technologies have been developed for the enhanced delivery of biologics as attractive formulation targets including polymeric micro and nanoparticles. Combined with personalized medicine, this area can offer a great opportunity for the improvement of therapeutics efficiency and the treatment outcome. Herein, a novel manufacturing method has been introduced to produce protein-loaded chitosan particles with controlled size. This method is based on an additive manufacturing technology that allows for the designing and production of personalized particulate based therapeutic formulations with a precise control over the shape, size, and potentially the geometry. Sprayed multi adsorbed-droplet reposing technology (SMART) consists of the high-pressure extrusion of an ink with a well determined composition using a pneumatic 3D bioprinting approach and flash freezing the extrudate at the printing bed, optionally followed by freeze drying. In the present study, we attempted to manufacture trypsin-loaded chitosan particles using SMART. The ink and products were thoroughly characterized by dynamic light scattering, rheometer, Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red (FTIR) and Circular Dichroism (CD) spectroscopy. These characterizations confirmed the shape morphology as well as the protein integrity over the process. Further, the effect of various factors on the production were investigated. Our results showed that the concentration of the carrier, chitosan, and the lyoprotectant concentration as well as the extrusion pressure have a significant effect on the particle size. According to CD spectra, SMART ensured Trypsin’s secondary structure remained intact regardless of the ink composition and pressure. However, our study revealed that the presence of 5% (w/v) lyoprotectant is essential to maintain the trypsin’s proteolytic activity. This study demonstrates, for the first time, the viability of SMART as a single-step efficient process to produce biologics-based stable formulations with a precise control over the particulate morphology which can further be expanded across numerous therapeutic modalities including vaccines and cell/gene therapies. Full article
Show Figures

Graphical abstract

14 pages, 4992 KiB  
Article
Composite Structured M/Ce0.75Zr0.25O2/Al2O3/FeCrAl (M = Pt, Rh, and Ru) Catalysts for Propane and n-Butane Reforming to Syngas
by Natalia Ruban, Vladimir Rogozhnikov, Sergey Zazhigalov, Andrey Zagoruiko, Vyacheslav Emelyanov, Pavel Snytnikov, Vladimir Sobyanin and Dmitriy Potemkin
Materials 2022, 15(20), 7336; https://doi.org/10.3390/ma15207336 - 20 Oct 2022
Cited by 9 | Viewed by 2088
Abstract
Here, we report the preparation, characterization, and performance of reforming propane and n-butane into a syngas of composite structured M/Ce0.75Zr0.25O2/Al2O3/FeCrAl (M = 0.46 wt.% Pt, 0.24 wt.% Rh, and 0.24 wt.% Ru) catalysts. [...] Read more.
Here, we report the preparation, characterization, and performance of reforming propane and n-butane into a syngas of composite structured M/Ce0.75Zr0.25O2/Al2O3/FeCrAl (M = 0.46 wt.% Pt, 0.24 wt.% Rh, and 0.24 wt.% Ru) catalysts. The catalysts are composed of a high-heat-conducting FeCrAl block with preset geometry, with a surface nearly totally covered by θ-Al2O3. Afterwards, a layer of ceria–zirconia mixed oxide was deposited. The formed oxide coating was used as a support for 2–3 nm sized Pt, Rh, or Ru nanoparticles. The performance of the catalysts in propane steam reforming decreased in the order of Rh ≈ Ru > Pt. The reformates obtained in the propane steam reforming over Rh- and Ru/Ce0.75Zr0.25O2/Al2O3/FeCrAl at 600 °C and GHSV = 8300 h−1 contained 65.2 and 62.4 vol.% of H2, respectively, and can be used as a fuel for solid oxide fuel cells. In the oxidative steam reforming of propane at 700 °C and GHSV= 17,000 h−1, the activities of the Rh- and Pt-based catalysts were similar and the compositions of the outlet gas mixtures were quite close to equilibrium in both cases. Increasing the reagent flow rate to 25,600 h−1 showed stability of the Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl performance, whereas the Pt/Ce0.75Zr0.25O2/Al2O3/FeCrAl activity decreased. A mathematical model considering the velocity field, mass balance, pressure, and temperature distribution, as well as the reaction kinetics, was suggested for the propane steam and oxidative steam reforming over the Pt- and Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl catalysts. The model well described the experimental results. Full article
(This article belongs to the Special Issue Advanced Materials in Catalysis and Adsorption)
Show Figures

Figure 1

24 pages, 2146 KiB  
Review
How Metabolic Rate Relates to Cell Size
by Douglas S. Glazier
Biology 2022, 11(8), 1106; https://doi.org/10.3390/biology11081106 - 25 Jul 2022
Cited by 34 | Viewed by 6787
Abstract
Metabolic rate and its covariation with body mass vary substantially within and among species in little understood ways. Here, I critically review explanations (and supporting data) concerning how cell size and number and their establishment by cell expansion and multiplication may affect metabolic [...] Read more.
Metabolic rate and its covariation with body mass vary substantially within and among species in little understood ways. Here, I critically review explanations (and supporting data) concerning how cell size and number and their establishment by cell expansion and multiplication may affect metabolic rate and its scaling with body mass. Cell size and growth may affect size-specific metabolic rate, as well as the vertical elevation (metabolic level) and slope (exponent) of metabolic scaling relationships. Mechanistic causes of negative correlations between cell size and metabolic rate may involve reduced resource supply and/or demand in larger cells, related to decreased surface area per volume, larger intracellular resource-transport distances, lower metabolic costs of ionic regulation, slower cell multiplication and somatic growth, and larger intracellular deposits of metabolically inert materials in some tissues. A cell-size perspective helps to explain some (but not all) variation in metabolic rate and its body-mass scaling and thus should be included in any multi-mechanistic theory attempting to explain the full diversity of metabolic scaling. A cell-size approach may also help conceptually integrate studies of the biological regulation of cellular growth and metabolism with those concerning major transitions in ontogenetic development and associated shifts in metabolic scaling. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

16 pages, 4030 KiB  
Article
Powder 3D Printing of Bone Scaffolds with Uniform and Gradient Pore Sizes Using Cuttlebone-Derived Calcium Phosphate and Glass-Ceramic
by Francesca Cestari, Yuejiao Yang, Janka Wilbig, Jens Günster, Antonella Motta and Vincenzo M. Sglavo
Materials 2022, 15(15), 5139; https://doi.org/10.3390/ma15155139 - 24 Jul 2022
Cited by 9 | Viewed by 2911
Abstract
The pore geometry of bone scaffolds has a major impact on their cellular response; for this reason, 3D printing is an attractive technology for bone tissue engineering, as it allows for the full control and design of the porosity. Calcium phosphate materials synthesized [...] Read more.
The pore geometry of bone scaffolds has a major impact on their cellular response; for this reason, 3D printing is an attractive technology for bone tissue engineering, as it allows for the full control and design of the porosity. Calcium phosphate materials synthesized from natural sources have recently attracted a certain interest because of their similarity to natural bone, and they were found to show better bioactivity than synthetic compounds. Nevertheless, these materials are very challenging to be processed by 3D printing due to technological issues related to their nanometric size. In this work, bone scaffolds with different pore geometries, with a uniform size or with a size gradient, were fabricated by binder jetting 3D printing using a biphasic calcium phosphate (BCP) nanopowder derived from cuttlebones. To do so, the nanopowder was mixed with a glass-ceramic powder with a larger particle size (45–100 µm) in 1:10 weight proportions. Pure AP40mod scaffolds were also printed. The sintered scaffolds were shown to be composed mainly by hydroxyapatite (HA) and wollastonite, with the amount of HA being larger when the nanopowder was added because BCP transforms into HA during sintering at 1150 °C. The addition of bio-derived powder increases the porosity from 60% to 70%, with this indicating that the nanoparticles slow down the glass-ceramic densification. Human mesenchymal stem cells were seeded on the scaffolds to test the bioactivity in vitro. The cells’ number and metabolic activity were analyzed after 3, 5 and 10 days of culturing. The cellular behavior was found to be very similar for samples with different pore geometries and compositions. However, while the cell number was constantly increasing, the metabolic activity on the scaffolds with gradient pores and cuttlebone-derived powder decreased over time, which might be a sign of cell differentiation. Generally, all scaffolds promoted fast cell adhesion and proliferation, which were found to penetrate and colonize the 3D porous structure. Full article
Show Figures

Figure 1

Back to TopTop