Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,084)

Search Parameters:
Keywords = cell nucleus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2988 KB  
Article
Microhand Platform Equipped with Plate-Shaped End-Effectors Enables Precise Probing of Intracellular Structure Contribution to Whole-Cell Mechanical Properties
by Masahiro Kawakami, Masaru Kojima, Toshihiko Ogura, Atsushi Kubo, Tatsuo Arai and Shinji Sakai
Micromachines 2025, 16(11), 1272; https://doi.org/10.3390/mi16111272 - 12 Nov 2025
Abstract
Cellular mechanical properties are critical indicators of cellular state and promising disease biomarkers. This study introduces a novel microhand system, featuring chopstick-like plate-shaped end-effectors, designed for stable and high-precision single-cell mechanical characterization. First, we automated the force sensor calibration to overcome the inefficiency [...] Read more.
Cellular mechanical properties are critical indicators of cellular state and promising disease biomarkers. This study introduces a novel microhand system, featuring chopstick-like plate-shaped end-effectors, designed for stable and high-precision single-cell mechanical characterization. First, we automated the force sensor calibration to overcome the inefficiency and unreliability of conventional manual methods. To validate the system’s sensitivity, we precisely quantified the mechanical contributions of subcellular components, such as the actin cytoskeleton and chromatin, by measuring stiffness reductions after treatment with Cytochalasin D and Trichostatin A, respectively. Notably, when applied to a cellular model of Hutchinson–Gilford progeria syndrome, we successfully captured disease-induced mechanical alterations. A distinct population of high-stiffness cells was detected in progerin-overexpressing cells, a feature not observed in the control groups. Furthermore, by controlling the indentation speed and depth, the mechanical properties of the cytoplasm and nucleus could be distinctly evaluated. These results demonstrate that our microhand system is a highly sensitive and robust platform, capable of detecting subtle, disease-related changes and elucidating the contributions of specific subcellular structures to cell mechanics. Full article
(This article belongs to the Special Issue Next-Generation Biomedical Devices)
Show Figures

Figure 1

30 pages, 11826 KB  
Article
Expression of Dystroglycanopathy-Related Enzymes, POMGNT2 and POMGNT1, in the Mammalian Retina and 661W Cone-like Cell Line
by Cristina Quereda, Violeta Gómez-Vicente, Mercedes Palmero and José Martín-Nieto
Biomedicines 2025, 13(11), 2759; https://doi.org/10.3390/biomedicines13112759 - 11 Nov 2025
Abstract
Background. Dystroglycanopathies (DGPs) constitute a set of recessive, neuromuscular congenital dystrophies that result from impaired glycosylation of dystroglycan (DG). These disorders typically course with CNS alterations, which, alongside gradual muscular dystrophy, may include brain malformations, intellectual disability and a panoply of ocular defects. [...] Read more.
Background. Dystroglycanopathies (DGPs) constitute a set of recessive, neuromuscular congenital dystrophies that result from impaired glycosylation of dystroglycan (DG). These disorders typically course with CNS alterations, which, alongside gradual muscular dystrophy, may include brain malformations, intellectual disability and a panoply of ocular defects. In this process, the protein products of 22 genes, collectively dubbed DGP-associated genes, directly or indirectly participate sequentially along a complex, branched biosynthetic pathway. POMGNT2 and POMGNT1 are two enzymes whose catalytic activity consists of transferring the same substrate, a molecule of N-acetylglucosamine (GlcNAc) to a common substrate, the O-mannosylated α subunit of DG. Despite their presumptive role in retinal homeostasis, there are currently no reports describing their expression pattern or function in this tissue. Purpose. This work focuses on POMGNT2 and POMGNT1 expression in the mammalian retina, and on the characterization of their distribution across retinal layers, and in the 661W photoreceptor cell line. Methods. The expression of POMGNT2 protein in different mammalian species’ retinas, including those of mice, rats, cows and monkeys, was assessed by immunoblotting. Additionally, POMGNT2 and POMGNT1 distribution profiles were analyzed using immunofluorescence confocal microscopy in retinal sections of monkeys and mice, and in 661W cultured cells. Results. Expression of POMGNT2 was detected in the neural retina of all species studied, being present in both cytoplasmic and nuclear fractions of the monkey and mouse, and in 661W cells. In the cytoplasm, POMGNT2 was concentrated in the endoplasmic reticulum (ER) and/or Golgi complex, depending on the species and cell type, whereas POMGNT1 accumulated only in the Golgi complex in both monkey and mouse retinas. Additionally, both proteins were present in the nucleus of the 661W cells, concentrating in the euchromatin and heterochromatin, as well as in nuclear PML and Cajal bodies, and nuclear speckles. Conclusions. Our results are indicative that POMGNT2 and POMGNT1 participate in the synthesis of O-mannosyl glycans added to α-dystroglycan in the ER and/or Golgi complex in the cytoplasm of mammalian retinal cells. Also, they could play a role in the modulation of gene expression at the mRNA level, which remains to be established, in a number of nuclear compartments in transformed retinal neurons. Full article
Show Figures

Figure 1

50 pages, 3304 KB  
Review
Perspective for Modulation of Hypothalamic Neurogenesis: Integrating Anatomical Insights with Exercise and Dietary Interventions
by Javier Choquet de Isla, Manuel Bández-Ruiz, Ignacio Rosety-Rodríguez, Inmaculada Pérez-López, Miguel Ángel Rosety-Rodríguez, Cristina Verástegui-Escolano, Ismael Sánchez-Gomar and Noelia Geribaldi-Doldán
Int. J. Mol. Sci. 2025, 26(22), 10914; https://doi.org/10.3390/ijms262210914 - 11 Nov 2025
Abstract
Adult neurogenesis is well established in canonical niches—the dentate gyrus and the subventricular zone, where aerobic exercise reliably enhances progenitor proliferation, survival, and synaptic integration via increased cerebral blood flow, neurotrophins (e.g., BDNF, IGF-1), neurotransmitter regulation, and reduced neuroinflammation. Nutraceuticals (e.g., polyphenols, omega-3, [...] Read more.
Adult neurogenesis is well established in canonical niches—the dentate gyrus and the subventricular zone, where aerobic exercise reliably enhances progenitor proliferation, survival, and synaptic integration via increased cerebral blood flow, neurotrophins (e.g., BDNF, IGF-1), neurotransmitter regulation, and reduced neuroinflammation. Nutraceuticals (e.g., polyphenols, omega-3, creatine, vitamins) further support neuroplasticity and neuronal survival through convergent trophic, anti-inflammatory, and metabolic pathways. By contrast, the hypothalamus, a metabolically pivotal, non-canonical niche, remains comparatively understudied. Here, we synthesize anatomical and functional features of hypothalamic neural stem cells, primarily tanycytes (α1, α2, β1, β2), which line the third ventricle and differentially contribute to neuronal activity regulation, metabolic signaling, and cerebrospinal fluid–portal vasculature coupling, thereby linking neurogenesis to endocrine control. Notably, tanycytes can form neurospheres in vitro, enabling mechanistic interrogation. Although evidence for adult hypothalamic neurogenesis in humans is debated due to methodological constraints, animal data suggest potential relevance to disorders characterized by neuronal loss, metabolic dysregulation, and impaired neuroendocrine function. We propose that an integrative framework is timely: exercise and diet likely interact in the hypothalamic niche through shared mediators (BDNF, IGF-1, CNTF, GPR40) and exercise-derived signals (e.g., lactate, IL-6) that may be complemented by defined nutraceuticals. Yet critical uncertainties persist, including the extent of bona fide hypothalamic neurogenesis, nucleus-specific responses (arcuate nucleus, paraventricular nucleus, ventromedial hypothalamic nucleus), and the mechanistic integration of lifestyle signals in this region. To address these gaps, we outline actionable priorities: (i) single-cell and lineage-tracing studies of tanycyte subtypes under distinct training modalities (aerobic, high-intensity interval training, resistance); (ii) combinatorial interventions pairing structured exercise with nutraceuticals to test synergy on progenitor dynamics and inflammation; and (iii) multi-omics and translational studies to identify biomarkers and establish clinical relevance. Clarifying these interactions will determine whether lifestyle and supplementation strategies can synergistically modulate hypothalamic neurogenesis and inform therapies for neurological, neuropsychiatric, and metabolic disorders. Full article
Show Figures

Figure 1

13 pages, 1484 KB  
Article
Stage-Specific Expression and Subcellular Localization of Calcineurin in Infective Forms of Leishmania amazonensis
by Deborah Brandt-Almeida, Ismael Pretto Sauter, Mario Costa Cruz, Cristian Cortez, Patricio Reyes Orrego and Mauro Cortez
Pathogens 2025, 14(11), 1139; https://doi.org/10.3390/pathogens14111139 - 10 Nov 2025
Abstract
Calcineurin (CaN), a Ca2+-dependent phosphatase, plays key roles in eukaryotic cell signaling. We investigated whether Leishmania amazonensis’ two infective forms—promastigotes and amastigotes—exhibit differences in CaN expression, localization, and functional impact, using two canonical inhibitors (cyclosporin A, CsA; tracolimus, FK506). At [...] Read more.
Calcineurin (CaN), a Ca2+-dependent phosphatase, plays key roles in eukaryotic cell signaling. We investigated whether Leishmania amazonensis’ two infective forms—promastigotes and amastigotes—exhibit differences in CaN expression, localization, and functional impact, using two canonical inhibitors (cyclosporin A, CsA; tracolimus, FK506). At high 40 µM CsA, promastigotes showed reduced viability, whereas amastigotes remained resistant. FK506 had no effect on either form. At a sub-lethal 25 µM CsA, parasite proliferation remained unaffected. In parasite–macrophage co-incubation assays, phosphorylation patterns differed: amastigotes—but not promastigotes—showed increased serine/threonine phosphorylation upon CaN inhibition. Western blotting and in silico data revealed higher CaN catalytic (CaNA2) and regulatory (CaNB) subunit expression in amastigotes than promastigotes. Immunofluorescence localized CaNA prominently in both cytoplasm and nucleus of promastigotes, but predominantly cytoplasmic in amastigotes; CaNB was largely cytoplasmic in both. In silico localization predictions suggested strong membrane associations for CaNA in Leishmania, contrasting with mammalian models. Subcellular fractionation confirmed CaNA enrichment in membrane fractions, with CaNB in cytoplasmic and nuclear fractions. Collectively, these findings reveal form-specific differences in expression, subcellular distribution, and inhibitor responses of CaN in L. amazonensis, highlighting its potential as a stage-specific therapeutic target in leishmaniasis. Full article
(This article belongs to the Special Issue Virulence and Molecular Cell Biology of Parasites)
Show Figures

Graphical abstract

19 pages, 7156 KB  
Article
Granulosa Cell-Secreted KITL Is Involved in Maintaining Zinc Homeostasis in the Oocytes of Neonatal Mouse Ovaries
by Yan Du, Lincheng Han, Hongwei Wei, Xiaodan Zhang, Wenbo Zhang, Yashuang Weng, Weiyong Wang, Luchun Zhang, Sihui He, Meijia Zhang and Jingjie Li
Antioxidants 2025, 14(11), 1345; https://doi.org/10.3390/antiox14111345 - 10 Nov 2025
Abstract
Proto-oncogenic receptor tyrosine kinase (KIT) ligand (KITL) secreted by granulosa cells and its receptor KIT on oocytes are crucial for primordial follicle formation and activation, and follicular development. In the present study, ZnSO4 decreased the number of primordial and growing follicles in [...] Read more.
Proto-oncogenic receptor tyrosine kinase (KIT) ligand (KITL) secreted by granulosa cells and its receptor KIT on oocytes are crucial for primordial follicle formation and activation, and follicular development. In the present study, ZnSO4 decreased the number of primordial and growing follicles in cultured neonatal mouse ovaries when KITL-KIT signaling was inhibited by ISCK03. ZnSO4 also significantly increased the mRNA and protein levels of Zrt/Irt-like protein 6 (ZIP6, a zinc importer) and zinc levels in the oocytes of cultured neonatal mouse ovaries in the presence of ISCK03, suggesting that the increase in ZIP6 levels results in zinc overload in the oocytes of cultured neonatal mouse ovaries. Further experiments indicated that zinc overload resulted in oocyte apoptosis in cultured neonatal mouse ovaries via oxidative stress-driven dual mechanisms: irreversible DNA damage in the nucleus and autophagic flux blockade in the cytoplasm of oocytes. Moreover, the intraperitoneal injection of ZnSO4 and ISCK03 significantly increased ZIP6 expression, DNA damage, autophagic flux blockade, and apoptosis of oocytes in neonatal mice. Taken together, these findings indicate that granulosa cell-secreted KITL is involved in maintaining zinc homeostasis in the oocytes of neonatal mouse ovaries. This study not only reveals a novel function of granulosa cells in supporting oocyte homeostasis, but also provides a theoretical basis for identifying individuals susceptible to zinc dyshomeostasis caused by the impaired KITL-KIT signaling. Full article
Show Figures

Graphical abstract

15 pages, 2458 KB  
Article
Functional Characterization of a Novel PBX1 De Novo Missense Variant Identified in a Pediatric Patient with CAKUT
by Caterina Scolari, Angelo Corso Faini, Giulia Verra, Martina Migliorero, Giulia Margherita Brach Del Prever, Claudia Saglia, Fiorenza Mioli, Carmelo Maria Romeo, Tullia Carradori, Maria Luca, Francesca Arruga, Francesca Mattozzi, Licia Peruzzi, Silvia Deaglio and Tiziana Vaisitti
Genes 2025, 16(11), 1346; https://doi.org/10.3390/genes16111346 - 7 Nov 2025
Viewed by 192
Abstract
Background: Genetic variants in Pre-B cell Leukemia Factor 1 (PBX1) transcription factor (TF) have been associated with Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). This study aims to functionally characterize a novel missense variant in a 4-year-old patient presenting with horseshoe [...] Read more.
Background: Genetic variants in Pre-B cell Leukemia Factor 1 (PBX1) transcription factor (TF) have been associated with Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). This study aims to functionally characterize a novel missense variant in a 4-year-old patient presenting with horseshoe kidney with preserved function, in the absence of a positive familial history. Methods: Clinical exome sequencing was performed on a 4-year-old child, followed by Sanger sequencing and family segregation studies to validate the identified variant. Functional assays to study the protein expression, molecular interactions and localization were then performed. Results: Genetic analysis identified a novel de novo variant [c.712C>T, p.(Arg238Trp), NM_002585.3], mapping in the first nuclear localization signal (NLS) of PBX1. When introduced in HEK293T cells, PBX1c.712C>T did not affect protein expression, which was comparable to the wild-type (WT) counterpart. Similar results were obtained when modeling a missense variant [c.863G>A; p.(Arg288Gln)], located in the second NLS of the protein, previously reported in the literature but never functionally characterized. As a TF, PBX1 may work in association with MEIS and PKNOX1/2 cofactors, but none of the two variants modified the interactions with its cofactor PKNOX1. However, both variants significantly affected the nuclear localization of PBX1, increasing its retention in the cytoplasm while limiting its availability in the nucleus. Conclusions: In conclusion, we identified a novel de novo heterozygous missense variant in PBX1 that impairs nuclear localization of the protein, potentially limiting its role as a TF and possibly explaining the clinical phenotype of the patient. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 3076 KB  
Article
LoQANT: An ImageJ Plugin for Quantifying Nuclear Staining in Immunohistochemistry and Immunofluorescence
by Katerina Cizkova
Int. J. Mol. Sci. 2025, 26(21), 10799; https://doi.org/10.3390/ijms262110799 - 6 Nov 2025
Viewed by 216
Abstract
A large number of regulatory proteins are found in both the cytoplasm and the nucleus. Changes in their nuclear abundance are important for cellular signalling, biological activity, and disease mechanisms. Accurate quantification of nuclear staining is therefore essential in studies of cellular function, [...] Read more.
A large number of regulatory proteins are found in both the cytoplasm and the nucleus. Changes in their nuclear abundance are important for cellular signalling, biological activity, and disease mechanisms. Accurate quantification of nuclear staining is therefore essential in studies of cellular function, therapeutic targeting, drug design, and drug resistance. However, manual scoring is time-consuming, unsuitable for high-throughput applications, and introduces potential bias. As expected, manual scoring by six observers with varying levels of expertise led to highly variable results. Moreover, it was far from achieving good interobserver reliability. To overcome these limitations, LoQANT (Localisation and Quantification of Antigen Nuclear sTaining), an open, freely available ImageJ plugin, was developed for reliable and efficient quantification of nuclear signals. LoQANT is a single cell-based approach to assess the proportion of cells with a positive nuclear signal, independent of cytoplasmic staining, in both immunohistochemically and fluorescently stained samples across various sample types. It also provides semiquantitative and quantitative measurements of nuclear staining intensity. The script, its version for batch analysis, and complete user guide are available at GitHub. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 27354 KB  
Article
Integrated Analysis of Transcriptomes and Pectinase Gene Families Reveals a Novel Pathway Mediating Tomato Fruit Malformation
by Junqin Wen, Quanhui Li, Xiaoyan Tao, Rong Zhou, Chaofan Yan and Qiwen Zhong
Int. J. Mol. Sci. 2025, 26(21), 10739; https://doi.org/10.3390/ijms262110739 - 4 Nov 2025
Viewed by 200
Abstract
Tomato fruit malformation causes substantial yield and economic losses, but its molecular mechanisms are not well understood. This study compared floral traits of WT ‘QT57’ and malformed-fruit mutant ‘QT2’, integrated transcriptomic data, and qRT-PCR analysis to screen key candidate genes, and analyzed the [...] Read more.
Tomato fruit malformation causes substantial yield and economic losses, but its molecular mechanisms are not well understood. This study compared floral traits of WT ‘QT57’ and malformed-fruit mutant ‘QT2’, integrated transcriptomic data, and qRT-PCR analysis to screen key candidate genes, and analyzed the pectinase gene family. The results found the ‘QT2’ mutant differed from WT ‘QT57’ in flower and fruit development. Expression analysis of CLAVATA-WUSCHEL pathway genes preliminarily validated the compensatory mechanism of SlCRCa and SlCRCb in ‘QT2’ malformed fruit. Six pectinase genes were identified as key candidates via RNA-seq and qRT-PCR analysis. Transcriptomic and qRT-PCR analyses of the pectinase gene family revealed their potential role in regulating tomato fruit malformation. Family analysis showed 34 pectinase genes distributed unevenly across 12 chromosomes. Subcellular localization confirmed SlPL7 in the nucleus and SlPME9 in the cell membrane/endoplasmic reticulum. The PL and PME genes were evolutionarily close, suggesting a potential functional overlap. Gibberellin-responsive elements were found in most pectinase genes. Pectinase genes may regulate tomato fruit malformation through the gibberellin-WUS pathway, carbohydrate metabolism, or cell wall metabolic disorder. This pathway provides new targets gene for the precise regulation of fruit malformation and offers significant reference value for practical production. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

25 pages, 7422 KB  
Article
Vitamin B1 Involved in Dendrobium Taiseed Tosnobile Extract Mediates Protection Against Cancer-Induced Muscle Wasting by Suppressing IL-6 Pathogenicity and Enhancing Myoblast Fusion
by Chen-Chu Lin, Wan-Ting Liao, Tsung-Ying Yang, Jing-Hua Tsai, Yi-Ju Lee, Chi-Luan Wen, Shih-Lan Hsu and Chun-Chi Wu
Int. J. Mol. Sci. 2025, 26(21), 10704; https://doi.org/10.3390/ijms262110704 - 3 Nov 2025
Viewed by 197
Abstract
In this report, we showed that oral administration of Dendrobium Taiseed Tosnobile (DTT, also known as Taiwan Emperor No.1) allowed Lewis Lung Carcinoma (LLC) tumor-bearing mice to maintain body weight and grip strength in a dose-dependent manner. Histological analysis showed that treatment with [...] Read more.
In this report, we showed that oral administration of Dendrobium Taiseed Tosnobile (DTT, also known as Taiwan Emperor No.1) allowed Lewis Lung Carcinoma (LLC) tumor-bearing mice to maintain body weight and grip strength in a dose-dependent manner. Histological analysis showed that treatment with DTT water extract significantly reduced muscle fiber damage by inducing muscle regeneration and improved the cross-sectional area of the rectus femoris, soleus, and gastrocnemius of LLC tumor-bearing C57BL/6 female mice. Further studies revealed that DTT water extract also reduced the expression of inflammatory cytokines such as IL-6 and TNF-α, both in vitro and in vivo. Other analyses showed that DTT water extract promoted the differentiation of C2C12 myoblasts with or without IL-6 by maintaining Myosin Heavy Chain (MyHC) levels. This suggests that DTT water extract acts against muscle wasting via multiple mechanisms. Interestingly, vitamin B1 was identified as an ingredient in DTT water extract through an HPLC analysis. Vitamin B1 was shown to ameliorate IL-6 but not TNF-α generation in active THP-1 cells and protected C2C12 myotubes against IL-6. Further studies showed that DTT and vitamin B1 promoted the multi-nucleus fusion step of C2C12 differentiation by inducing E-cadherin-β-catenin expression with or without IL-6 treatment. In summary, DTT water extract protects muscle cells under cancer conditions through direct and indirect mechanisms, with vitamin B1 being a key functional ingredient that reduces IL-6 generation and aids muscle cell fusion against IL-6 treatment. Full article
(This article belongs to the Special Issue The Role of Natural Products in Treating Human Diseases)
Show Figures

Graphical abstract

11 pages, 3855 KB  
Article
ORF3 Gene of Porcine Epidemic Diarrhea Virus Causes Nuclear and Morphological Distortions with Associated Cell Death
by Ndirangu A. Kamau, Jae-Rang Rho, Eui-Soon Park, Jung-Eun Yu, Ji-Yun Yu, Gianmarco Ferrara and Hyun-Jin Shin
Viruses 2025, 17(11), 1468; https://doi.org/10.3390/v17111468 - 1 Nov 2025
Viewed by 322
Abstract
There is increasing research interest in the ORF3 accessory protein of PEDV as a critical element for viral virulence. Here, wild type ORF3 (ORF3wt) gene was constructed in pEGFP-C1 vector. Additionally, two truncation mutants, ORF3-N (1-98 amino acids [aa]) and ORF3-C [...] Read more.
There is increasing research interest in the ORF3 accessory protein of PEDV as a critical element for viral virulence. Here, wild type ORF3 (ORF3wt) gene was constructed in pEGFP-C1 vector. Additionally, two truncation mutants, ORF3-N (1-98 amino acids [aa]) and ORF3-C (99-224 aa) were inserted in the same vector. Results of ORF3 expression revealed early cytoplasmic localization but 12 h after transfection, ORF3 accumulated around the nucleus, especially ORF3-N. This caused chromosome condensation and morphological distortion that culminated in cell death. In comparison with the native cells expressing GFP alone, ORF3wt-induced lethality was 6.61% above baseline while ORF3- C expression resulted in moderate increase in cell death (0.64%). ORF3-N was affected the most with 220.32% increased lethality. It was, therefore, inferred that the ORF3 gene encodes a protein that causes nuclear damage, distorts cell morphology and leads to cell death. Furthermore, the role of the protein could be inherent in the N-terminal domain, which consists of the transmembrane domains. These findings underpin the importance of ORF3 gene expression in the host and are rudimental insights for further exploration into the mechanistic interactions of ORF3 and the host, as well as a possible role in pathogenesis in PEDV and other coronaviruses. Full article
Show Figures

Figure 1

11 pages, 2574 KB  
Article
Effect of Metarhizium anisopliae IPPM202 Extracellular Proteinases on Midgut of Locusta migratoria manilensis
by Lei Huang, Zhenghao Wang, Undarmaa Davaasambuu, Hongmei Li, Mark Richard McNeill, Guangchun Cao, Xiongbing Tu, Changzhong Liu, Zehua Zhang, Guangjun Wang and Jing Chang
Insects 2025, 16(11), 1111; https://doi.org/10.3390/insects16111111 - 31 Oct 2025
Viewed by 304
Abstract
Metarhizium anisopliae, an entomopathogenic fungus, can produce four extracellular proteases, subtilisin (Pr1), trypsin (Pr2), metalloproteases (Pr3), and cysteine proteases (Pr4), which are important for pathogenicity of M. anisopliae in target hosts. In order to understand their function in M. anisopliae pathogenicity, third-instar [...] Read more.
Metarhizium anisopliae, an entomopathogenic fungus, can produce four extracellular proteases, subtilisin (Pr1), trypsin (Pr2), metalloproteases (Pr3), and cysteine proteases (Pr4), which are important for pathogenicity of M. anisopliae in target hosts. In order to understand their function in M. anisopliae pathogenicity, third-instar nymphs of Locusta migratoria were fed with a diet containing either conidia of M. anisopliae strain IPPM202 or in combination with one of the four inhibitors (TPCK: tosyl-phenylalanine chloromethyl-ketone, inhibitor of Pr1; EDTA: ethylenediaminetetraacetic acid, inhibitor of Pr3; APMSF: 4-amidinophenyl methanesulfonyl fluoride, inhibitor of Pr2; CI1: cathepsin inhibitor 1, inhibitor of Pr4). The effects on mortality, midgut integrity, and the gut enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and phenol oxidase (PO) were examined. The results indicated that exposure to IPPM202/TPCK and IPPM202/CI1 caused decreased mortality to L. migratoria with no loss of midgut epithelial cellular integrity. On the other hand, exposure to IPPM202/APMSF or IPPM202/EDTA mixtures resulted in higher mortality similar to PPM202, with severely damaged epithelial gut cells with fragmented microvilli, broken endoplasmic reticulum, and disrupted nucleus membrane. The activity of the protective enzymes POD, SOD, CAT, and PO all increased significantly when L. migratoria was treated with IPPM202 only, but decreased when any one of the inhibitors was added. We further concluded that TPCK, a subtilisin (Pr1) inhibitor, and CI1, a cysteine protease (Pr4) inhibitor, played important roles in the pathogenicity of the M. anisopliae strain IPPM202. Conversely, trypsin (Pr2) and metalloproteases (Pr3) did not have a role in the given process. We further concluded that trypsin (Pr2) and metalloproteases (Pr3) do not contribute to the fungal infection process, while the subtilisin (Pr1) inhibitor TPCK and cysteine protease (Pr4) inhibitor CI1 play critical roles in the pathogenicity of Metarhizium anisopliae strain IPPM202, thus providing a foundation for targeted biocontrol strategies. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

37 pages, 2371 KB  
Review
Visual Neurorestoration: An Expert Review of Current Strategies for Restoring Vision in Humans
by Jonathon Cavaleri, Michelle Lin, Kevin Wu, Zachary Gilbert, Connie Huang, Yu Tung Lo, Vahini Garimella, Jonathan C. Dallas, Robert G. Briggs, Austin J. Borja, Jae Eun Lee, Patrick R. Ng, Kimberly K. Gokoffski and Darrin J. Lee
Brain Sci. 2025, 15(11), 1170; https://doi.org/10.3390/brainsci15111170 - 30 Oct 2025
Viewed by 1086
Abstract
Visual impairment impacts nearly half a billion people globally. Corrective glasses, artificial lens replacement, and medical management have markedly improved the management of diseases inherent to the eye, such as refractive errors, cataracts, and glaucoma. However, therapeutic strategies for retinopathies, optic nerve damage, [...] Read more.
Visual impairment impacts nearly half a billion people globally. Corrective glasses, artificial lens replacement, and medical management have markedly improved the management of diseases inherent to the eye, such as refractive errors, cataracts, and glaucoma. However, therapeutic strategies for retinopathies, optic nerve damage, and distal optic pathways remain limited. The complex optic apparatus comprises multiple neural structures that transmit information from the retina to the diencephalon to the cortex. Over the last few decades, innovations have emerged to address the loss of function at each step of this pathway. Given the retina’s lack of regenerative potential, novel treatment options have focused on replacing lost retinal cell types through cellular replacement with stem cells, restoring lost gene function with genetic engineering, and imparting new light sensation capabilities with optogenetics. Additionally, retinal neuroprosthetics have shown efficacy in restoring functional vision, and neuroprosthetic devices targeting the optic nerve, thalamus, and cortex are in early stages of development. Non-invasive neuromodulation has also shown some promise in modulating the visual cortex. Recently, the first in-human whole-eye transplant was performed. While functional vision was not restored, the feasibility of such a transplant with viable tissue graft at one year was demonstrated. Subsequent studies are now focused on guidance cues for axonal regeneration past the graft site to reach the lateral geniculate nucleus. Although the methods discussed above have shown promise individually, improvements in vision have been modest at best. Achieving the goal of restoration of functional vision will clearly require further development of cellular therapies, genetic engineering, transplantation, and neuromodulation. A concerted multidisciplinary effort involving scientists, engineers, ophthalmologists, neurosurgeons, and reconstructive surgeons will be necessary to restore vision for patients with vision loss from these challenging pathologies. In this expert review article, we describe the current literature in visual neurorestoration with respect to cellular therapeutics, genetic therapies, optogenetics, neuroprosthetics, non-invasive neuromodulation, and whole-eye transplant. Full article
(This article belongs to the Special Issue Novel Neuroimaging of Neurological and Psychiatric Disorders)
Show Figures

Figure 1

20 pages, 6533 KB  
Article
The Regulation of the Hippo Signalling Pathway Effector YAP Through a Novel Lipid-Dependent Extracellular Matrix Complex
by Simge Karagil, Natalia Haddad, Michael Stolinski, Natasha Hill, Darren Johnson, Nadine Wehida and Ahmed Elbediwy
Cells 2025, 14(21), 1701; https://doi.org/10.3390/cells14211701 - 30 Oct 2025
Viewed by 496
Abstract
Lipid metabolism plays a significant role in the regulation of various critical pathways within cells, where enhanced lipid metabolism is a hallmark of cancer cell metabolism. The Hippo signalling pathway poses as an important signalling pathway that governs tissue growth control and tumorigenesis. [...] Read more.
Lipid metabolism plays a significant role in the regulation of various critical pathways within cells, where enhanced lipid metabolism is a hallmark of cancer cell metabolism. The Hippo signalling pathway poses as an important signalling pathway that governs tissue growth control and tumorigenesis. The effector of the Hippo signalling pathway, Yes-associated protein (YAP), serves as a central regulator for this growth control. Once a tissue develops to its correct size, YAP is phosphorylated and inactivated within the cytoplasm by the activation of the Hippo pathway, where its inactivation results in YAP nucleus translocation. This allows its dephosphorylation, modulating various cellular behaviours such as cellular proliferation and the inhibition of apoptosis. Moreover, it has been established that YAP is positively regulated by the extracellular matrix (ECM). The interplay between the Hippo signalling pathway, the ECM, and lipid metabolism, however, is not entirely clear. Thus, this study illustrates a novel link between the Hippo signalling pathway, the ECM, and lipid metabolism. Furthermore, the project identifies a novel ECM complex which is dependent upon lipids and regulates YAP in a positive manner. Full article
Show Figures

Figure 1

27 pages, 2791 KB  
Review
Key Signals Produced by Gut Microbiota Associated with Metabolic Syndrome, Cancer, Cardiovascular Diseases, and Brain Functions
by Leon M. T. Dicks
Int. J. Mol. Sci. 2025, 26(21), 10539; https://doi.org/10.3390/ijms262110539 - 29 Oct 2025
Viewed by 1092
Abstract
Gut microbiota have a significant impact neurotransmitters, short-chain fatty acids (SCFAs), immune signaling molecules, and gut hormones. These signaling molecules interact with receptors on the gut wall, immune cells, or the enteric nervous system (ENS), and reach the central nervous system (CNS) via [...] Read more.
Gut microbiota have a significant impact neurotransmitters, short-chain fatty acids (SCFAs), immune signaling molecules, and gut hormones. These signaling molecules interact with receptors on the gut wall, immune cells, or the enteric nervous system (ENS), and reach the central nervous system (CNS) via the Vagus nerve (VN). SCFAs interact with G protein-coupled receptors (GPCRs), Toll-like receptors (TLRs), and proliferator-activated receptors (PPARs), influencing inflammatory reactions, gut motility, nutrient absorption, hormone secretion, neurochemical signaling, and brain functions. Olfactory receptor OR51E1 influences blood pressure, vascular reactivity, and arterial stiffness. Activation of the brainstem nucleus tractus solitarius (NTS) by glucagon-like peptide 1 (GLP-1) influences mood, cognition, and gastrointestinal motility. Prolactin-releasing peptide (PrRP) binds to its receptor (PrRPR), suppressing food intake, and regulating stress, cardiovascular reactions, and circadian rhythms. In-depth studies on how gut microbiota control cognitive behavior, mood, and neuropsychiatric disorders are lacking. G protein receptor 119 (GPR119) suppresses appetite and may find an application in the treatment of type 2 diabetes and obesity. The binding of butyrate to nuclear factor kappa B (NF-κB) and proliferator-activated receptor γ (PPARγ) regulates the production of pro-and anti-inflammatory cytokines. This suppresses protein CD36, preventing the uptake of oxidized low-density lipoprotein (ox-LDL) and cardiovascular diseases (CVDs). This review focuses on a few prominent health conditions related to CVDs, i.e., metabolic syndrome (MetS), cancer, and brain functions. Information in this review is based on animal and preclinical studies published in repositories such as PubMed, the National Institutes of Health (NIH), NIH PubChem, ScienceDirect, MDPI, Frontiers, Cell Press, and the CAS Content Collection. Full article
Show Figures

Figure 1

10 pages, 4601 KB  
Commentary
Cable Cars to the Nucleus: TM4SF1-Enriched Microdomains Conduct Signaling in Endothelial Cells for Blood Vessel Formation
by Shou-Ching Jaminet
Int. J. Mol. Sci. 2025, 26(21), 10491; https://doi.org/10.3390/ijms262110491 - 29 Oct 2025
Viewed by 309
Abstract
Endothelial cell proliferation, migration, and intercellular interactions for blood vessel formation require coordinated signaling by a myriad of molecules. Following endothelial cell activation by growth factors and cytokines, a variety of signaling molecules are activated on the surface and transported intracellularly by TM4SF1-enriched [...] Read more.
Endothelial cell proliferation, migration, and intercellular interactions for blood vessel formation require coordinated signaling by a myriad of molecules. Following endothelial cell activation by growth factors and cytokines, a variety of signaling molecules are activated on the surface and transported intracellularly by TM4SF1-enriched microdomains (TMEDs), 100–300 nm diameter protein–lipid complexes recruited by the transmembrane protein TM4SF1. TMEDs internalize via microtubules from the cell surface toward the microtubule-organizing center (MTOC) and then enter the nucleus via nuclear pores (see Graphic Illustration). This internalization pathway permits delivery of activated proteins and other signaling molecules from the cell surface to the nucleus, which directly translates extracellular stimuli to modulation of gene expression. Molecules transported by this route include phospholipase C, gamma 1 (PLCγ1), histone deacetylase 6 (HDAC6), and importins. In the absence of TMEDs, endothelial cells lose the ability to divide into cultures in vitro and to support blood vessel formation in mouse embryos in vivo. We liken TMEDs to cable cars, which take in passengers at the cell surface, travel along microtubule cables, and deliver their passengers to various locations, including the “city center”, the nucleus. This commentary aims to elucidate the functions of TMEDs in endothelial cells, to show that cells, like busy cities, need efficient transport systems to deliver molecules to the destinations where they perform their cellular functions. TMEDs offer a novel and curated transport system providing selected molecules with access to the nucleus. Full article
Show Figures

Graphical abstract

Back to TopTop