Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = cell metabolism and detoxification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1004 KiB  
Article
Transcriptional Analysis of Spodoptera frugiperda Sf9 Cells Infected with Daphnis nerii Cypovirus-23
by Wendong Kuang, Jian Yang, Jinchang Wang, Chenghua Yan, Junhui Chen, Xinsheng Liu, Chunhua Yang, Zhigao Zhan, Limei Guan, Jianghuai Li, Tao Deng, Feiying Yang, Guangqiang Ma and Liang Jin
Int. J. Mol. Sci. 2025, 26(15), 7487; https://doi.org/10.3390/ijms26157487 - 2 Aug 2025
Viewed by 115
Abstract
Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus that has a lethal effect on many species of Sphingidae pests. DnCPV-23 can replicate in Spodoptera frugiperda Sf9 cells, but the replication characteristics of the virus in this cell line are still unclear. [...] Read more.
Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus that has a lethal effect on many species of Sphingidae pests. DnCPV-23 can replicate in Spodoptera frugiperda Sf9 cells, but the replication characteristics of the virus in this cell line are still unclear. To determine the replication characteristics of DnCPV-23 in Sf9 cells, uninfected Sf9 cells and Sf9 cells at 24 and 72 h after DnCPV-23 infection were collected for transcriptome analysis. Compared to uninfected Sf9 cells, a total of 188 and 595 differentially expressed genes (DEGs) were identified in Sf9 cells collected at 24 hpi and 72 h, respectively. KEGG analyses revealed that 139 common DEGs in two treatment groups were related to nutrition and energy metabolism-related processes, cell membrane integrity and function-related pathways, detoxification-related pathways, growth and development-related pathways, and so on. We speculated that these cellular processes might be manipulated by viruses to promote replication. This study provides an important basis for further in-depth research on the mechanism of interaction between viruses and hosts. It provides additional basic information for the future exploitation of DnCPV-23 as a biological insecticide. Full article
Show Figures

Figure 1

21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 - 1 Aug 2025
Viewed by 189
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

23 pages, 839 KiB  
Review
Catechins and Human Health: Breakthroughs from Clinical Trials
by Elena Ferrari and Valeria Naponelli
Molecules 2025, 30(15), 3128; https://doi.org/10.3390/molecules30153128 - 25 Jul 2025
Viewed by 246
Abstract
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated [...] Read more.
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated with various chronic conditions, including cardiovascular diseases, neurodegenerative disorders, metabolic diseases, and cancer. This review presents a comprehensive analysis of recent clinical studies focused on the therapeutic benefits and potential risks of interventions involving green tea extracts or EGCG. A systematic literature survey identified 17 relevant studies, classified into five key areas related to catechin interventions: toxicity and detoxification, drug pharmacokinetics, cognitive functions, anti-inflammatory and antioxidant properties, and obesity and metabolism. Findings from these clinical studies suggest that the health benefits of green tea catechins outweigh the potential risks. The review highlights the importance of subject genotyping for enzymes involved in catechin metabolism to aid in interpreting liver injury biomarkers, the necessity of assessing drug–catechin interactions in clinical contexts, and the promising effects of topical EGCG in reducing inflammation. This analysis underscores the need for further research to refine therapeutic applications while ensuring the safe and effective use of green tea catechins. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

30 pages, 4989 KiB  
Article
Proteomic Analysis of CHIKV-nsP3 Host Interactions in Liver Cells Identifies Novel Interacting Partners
by Nimisha Mishra, Yash Chaudhary, Sakshi Chaudhary, Anjali Singh, Priyanshu Srivastava and Sujatha Sunil
Int. J. Mol. Sci. 2025, 26(14), 6832; https://doi.org/10.3390/ijms26146832 - 16 Jul 2025
Viewed by 463
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has re-emerged, causing widespread outbreaks and a significant clinical burden. Despite advances in virology, the molecular mechanisms governing CHIKV’s interaction with host cells remain poorly understood. In this study, we aimed to identify novel host protein interactors [...] Read more.
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has re-emerged, causing widespread outbreaks and a significant clinical burden. Despite advances in virology, the molecular mechanisms governing CHIKV’s interaction with host cells remain poorly understood. In this study, we aimed to identify novel host protein interactors of the CHIKV nonstructural protein 3 (nsP3), a critical component of the viral replication complex, using mass spectrometry-based proteomic profiling in liver-derived Huh7 cells. Co-immunoprecipitation followed by LC-MS/MS identified a wide array of host proteins associated with nsP3, revealing 52 proteins classified as high-confidence (FDR of 1%, and unique peptides > 2) CHIKV-specific interactors. A bioinformatic analysis using STRING and Cytoscape uncovered interaction networks enriched in metabolic processes, RNA processing, translation regulation, cellular detoxification, stress responses, and immune signaling pathways. A subcellular localization analysis showed that many interactors reside in the cytosol, while others localize to the nucleus, nucleolus, and mitochondria. Selected novel host protein interactions were validated through co-immunoprecipitation and immunofluorescence assays. Our findings provide new insights into the host cellular pathways hijacked by CHIKV and highlight potential targets for therapeutic intervention. This is the first report mapping direct nsP3–host protein interactions in Huh7 cells during CHIKV infection. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction, 6th Edition)
Show Figures

Graphical abstract

23 pages, 4011 KiB  
Review
Current Advances and Future Perspectives of Liver-on-a-Chip Platforms Incorporating Dynamic Fluid Flow
by Jingyeong Yun, Tae-Joon Jeon and Sun Min Kim
Biomimetics 2025, 10(7), 443; https://doi.org/10.3390/biomimetics10070443 - 4 Jul 2025
Viewed by 570
Abstract
The liver is a vital organ responsible for a broad range of metabolic functions, including glucose and lipid metabolism, detoxification, and protein synthesis. Its structural complexity, characterized by hexagonal hepatic lobules composed of diverse parenchymal and non-parenchymal cell types, supports its broad spectrum [...] Read more.
The liver is a vital organ responsible for a broad range of metabolic functions, including glucose and lipid metabolism, detoxification, and protein synthesis. Its structural complexity, characterized by hexagonal hepatic lobules composed of diverse parenchymal and non-parenchymal cell types, supports its broad spectrum of physiological activities. Traditional in vitro liver models have contributed significantly to our understanding of hepatic biology and the development of therapies for liver-related diseases. However, static culture systems fail to replicate the dynamic in vivo microenvironment, particularly the continuous blood flow and shear stress that are critical for maintaining hepatocyte function and metabolic zonation. Recent advances in microphysiological systems (MPS) incorporating dynamic fluid flow have addressed these limitations by providing more physiologically relevant platforms for modeling liver function. These systems offer improved fidelity for applications in drug screening, toxicity testing, and disease modeling. Furthermore, the integration of liver MPS with other organ models in multi-organ-on-chip platforms has enabled the investigation of inter-organ crosstalk, enhancing the translational potential of in vitro systems. This review summarizes recent progress in the development of dynamic liver MPS, highlights their biomedical applications, and discusses future directions for creating more comprehensive and predictive in vitro models. Full article
(This article belongs to the Special Issue Organ-on-a-Chip Platforms for Drug Delivery and Tissue Engineering)
Show Figures

Figure 1

18 pages, 2096 KiB  
Article
Effect of Dead-Cell Limosilactobacillus ingluviei on Hematological Parameters and Jejunal Transcriptome Profile in Calves During the Weaning Period
by Chao Ban, Supreena Srisaikham, Xingzhou Tian and Pipat Lounglawan
Animals 2025, 15(13), 1905; https://doi.org/10.3390/ani15131905 - 28 Jun 2025
Viewed by 355
Abstract
Weaning is challenging for dairy calves, frequently resulting in digestive issues. This highlights the importance of implementing appropriate nutritional strategies to enhance gut health and support optimal growth. Postbiotics is a promising alternative to traditional probiotics, conferring health benefits without the risks associated [...] Read more.
Weaning is challenging for dairy calves, frequently resulting in digestive issues. This highlights the importance of implementing appropriate nutritional strategies to enhance gut health and support optimal growth. Postbiotics is a promising alternative to traditional probiotics, conferring health benefits without the risks associated with live bacteria. This study aimed to investigate the effect of dietary supplementation with a postbiotic from dead-cell Limosilactobacillus ingluviei C37 (postbiotic LIC37) on blood biochemical parameters and jejunal epithelium transcriptomic profiles in calves. Fourteen Holstein bull calves were randomly allocated into two groups (n = 7). The control group (CON) received a basic diet, while the postbiotic group (DCLI) was supplemented with 1 g/d of postbiotic LIC37 for 90 days. Blood samples were collected on days 76, 83, and 90, respectively. The jejunal epithelial tissue was obtained from four randomly selected calves per group at day 90 for transcriptome analysis. The results showed that postbiotic LIC37 supplementation reduced globulin, total protein, neutrophil (Neu) levels, and neutrophil-to-lymphocyte ratio (NLR) levels in the DCLI group (p < 0.05). Transcriptomic analysis identified 76 differentially expressed genes (DEGs), with significant upregulation of genes involved in fatty acid metabolism (FABP1), intestinal barrier function (B4GALNT2), and detoxification (GSTA1), alongside downregulation of immune response regulation (FCRLA, FCRL4). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted enrichment in pathways related to glutathione metabolism, drug metabolism, and vitamin digestion, indicating that postbiotic supplementation improved detoxification, oxidative stress defense, and nutrient absorption in calves. This study provides novel insights into the molecular mechanisms underlying the benefits of postbiotic LIC37 and supports its potential as a sustainable alternative to probiotics in calf nutrition. Full article
Show Figures

Figure 1

21 pages, 1915 KiB  
Article
CYP1B1 Knockout in a Bovine Hepatocyte-like Cell Line (BFH12) Unveils Its Role in Liver Homeostasis and Aflatoxin B1-Induced Hepatotoxicity
by Silvia Iori, Ludovica Montanucci, Caterina D’Onofrio, Maija Lahtela-Kakkonen, Lorena Lucatello, Anisa Bardhi, Andrea Barbarossa, Francesca Capolongo, Anna Zaghini, Marianna Pauletto, Mauro Dacasto and Mery Giantin
Toxins 2025, 17(6), 294; https://doi.org/10.3390/toxins17060294 - 10 Jun 2025
Viewed by 699
Abstract
CYP1B1 is a key enzyme involved in xenobiotic and endogenous metabolism, yet its physiological role in bovine liver homeostasis remains unclear. In this study, we generated a CYP1B1 knockout (CYP1B1KO) bovine hepatocyte-like cell line to indirectly investigate its role in [...] Read more.
CYP1B1 is a key enzyme involved in xenobiotic and endogenous metabolism, yet its physiological role in bovine liver homeostasis remains unclear. In this study, we generated a CYP1B1 knockout (CYP1B1KO) bovine hepatocyte-like cell line to indirectly investigate its role in liver function. Transcriptomic analysis revealed alterations in immune regulation, epithelial barrier integrity, and detoxification pathways, with concurrent compensatory CYP1A1 upregulation. Beyond its physiological role, CYP1B1 was found to actively participate in Aflatoxin B1 (AFB1) metabolism, a mycotoxin posing significant health risks to humans and livestock. Molecular docking suggested that CYP1B1 facilitates the conversion of AFB1 into AFM1 and AFBO. In agreement with these predictions, CYP1B1KO cells exposed to AFB1 showed reduced AFM1 production and decreased cytotoxicity. Further transcriptomic analysis indicated that CYP1B1KO cells exhibited mitigated oxidative stress and inflammatory responses, along with downregulation of CYP3A74, a key enzyme in AFB1 bioactivation. This suggests that CYP1B1 KO reduces AFB1 toxicity by directly limiting AFB1 bioactivation and indirectly modulating the broader hepatic CYP network, further limiting the formation of toxic intermediates. These findings provide novel insights into CYP1B1’s function in bovine hepatocytes, highlighting its dual role in maintaining liver homeostasis and mediating AFB1 metabolism. The observed interplay between CYP1B1, CYP1A1, and CYP3A74 underscores the complexity of AFB1 biotransformation and warrants further investigation into the coordinated regulation of xenobiotic metabolism in cattle. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

19 pages, 5405 KiB  
Article
Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Governing Resistance to Fusarium oxysporum f. sp. niveum in Watermelon (Citrullus lanatus)
by Chen Zhang, Xufeng Fang, Jing Zhang, Xinying Wang, Zhao Liu, Shusen Liu, Zhengfeng Song, Peng Gao and Feishi Luan
Horticulturae 2025, 11(6), 625; https://doi.org/10.3390/horticulturae11060625 - 3 Jun 2025
Viewed by 583
Abstract
Watermelon (Citrullus lanatus), a vital economic crop, is severely threatened by Fusarium wilt (FW), which is caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. niveum (Fon). To elucidate the molecular mechanisms underlying FW resistance in watermelon, we tracked the [...] Read more.
Watermelon (Citrullus lanatus), a vital economic crop, is severely threatened by Fusarium wilt (FW), which is caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. niveum (Fon). To elucidate the molecular mechanisms underlying FW resistance in watermelon, we tracked the infection process via microscopy, identifying three critical time points (1, 6, and 8 days post-inoculation) corresponding to spore germination, hyphal invasion of the xylem vascular system, and symptom onset, respectively. Transcriptional profiling at these stages revealed six disease-resistance-associated gene modules through differential expression analysis, expression pattern clustering, weighted gene co-expression network analysis, and functional enrichment. These modules exhibited strong correlations with distinct infection phases. Protein–protein interaction networks identified 35 hub genes, including receptor-like kinases; WRKY and ethylene-responsive factor transcription factors; and genes involved in cell wall reinforcement, hormone signaling, defense metabolism/detoxification, programmed cell death regulation, and antimicrobial compound biosynthesis. Differential expressions of these genes across infection stages likely underpin the observed phenotypic disparities. Five hub regulatory genes were identified by quantitative real-time PCR in the SRgreen and SRblack modules, namely, Cla97C01G014990 (WRKY transcription factor 42), Cla97C02G042360 (calcium-transporting ATPase), Cla97C08G155710 (AIG2), Cla97C09G170380 (ethylene-responsive factor 1B-like), and Cla97C06G121810 (receptor kinase, putative). These genes mediate early rapid defense responses via SRgreen and sustain long-term resistance through SRblack. By validating the expression patterns of hub genes, the study elucidated the watermelon resistance response and provided insights into transcriptional regulation during different stages of Fon–watermelon interactions. Additionally, it identified candidate genes that could enhance watermelon resistance to wilt disease. Full article
(This article belongs to the Special Issue Vegetable Genomics and Breeding Research)
Show Figures

Figure 1

40 pages, 661 KiB  
Review
Liver Toxicity Induced by Exposure to Bisphenol Analogs at Environmentally Relevant Levels: Insights from a Literature Review on Multiple Species
by Tai L. Guo, Fatma Eldefrawy and Kevin M. Guo
Livers 2025, 5(2), 24; https://doi.org/10.3390/livers5020024 - 27 May 2025
Viewed by 1852
Abstract
Bisphenol analogs and their derivatives have been identified in human tissue and our living environment. There are major concerns over exposure to bisphenol analogs, especially the low-dose- and mixture-related toxicities, as they are considered potential endocrine-disrupting chemicals that may cause adverse effects in [...] Read more.
Bisphenol analogs and their derivatives have been identified in human tissue and our living environment. There are major concerns over exposure to bisphenol analogs, especially the low-dose- and mixture-related toxicities, as they are considered potential endocrine-disrupting chemicals that may cause adverse effects in multiple organ systems. The liver is a critical organ responsible for an array of functions, e.g., metabolism, immunity, digestion, detoxification and vitamin storage, in addition to being a leading chemical target site. In this literature review of multiple species, we discussed the metabolism of bisphenol analogs in the liver, which was followed by discussions of bisphenol analog-induced liver toxicity in various species, including humans, rodents (mice and rats) and other species (chicken, pig, sheep, etc.). Further, the mechanisms of action and markers of liver damage such as oxidative stress, apoptosis, inflammation and fibrosis were discussed. It was concluded that bisphenol analogs can produce toxic effects on the liver in different species through various mechanisms, including epigenetic modifications and disruptions of the cell signaling pathways, gene expression, microbiome and metabolome. More research should be conducted to study the toxicity of bisphenol analogs other than bisphenol A and the underlying mechanisms of action, and in particular the potential for causing dysbiosis. Understanding the mechanisms of liver injury holds promise for improving the prediction of liver toxicity from bisphenol analogs and other environmental chemicals, and their risk assessment and legislation. Full article
Show Figures

Figure 1

16 pages, 4133 KiB  
Protocol
The Optimization of a Protocol for the Directed Differentiation of Induced Pluripotent Stem Cells into Liver Progenitor Cells and the Delivery of Transgenes
by Irina Panchuk, Valeriia Kovalskaia, Natalia Balinova, Oxana Ryzhkova and Svetlana Smirnikhina
Biology 2025, 14(6), 586; https://doi.org/10.3390/biology14060586 - 22 May 2025
Viewed by 920
Abstract
The liver plays a pivotal role in metabolism, detoxification, and protein synthesis and comprises several cell types, including hepatocytes and cholangiocytes. Primary human hepatocytes in 2D cultures rapidly dedifferentiate and lose their function, making their use as a reliable cell model challenging. Therefore, [...] Read more.
The liver plays a pivotal role in metabolism, detoxification, and protein synthesis and comprises several cell types, including hepatocytes and cholangiocytes. Primary human hepatocytes in 2D cultures rapidly dedifferentiate and lose their function, making their use as a reliable cell model challenging. Therefore, developing robust three-dimensional cell culture models is crucial, especially for diseases lacking reliable animal models. The aim of this study was to optimize a protocol for the directed differentiation of induced pluripotent stem cells into liver progenitor cells, achieving the high-level expression of specific markers. As a result, we established a 2D culture of liver progenitor cells capable of differentiating into three cell types: a 3D organoid culture containing hepatocyte- and cholangiocyte-like cells and a 2D cell culture comprising stellate-like cells. To evaluate gene delivery efficiency, liver progenitor cells were transduced with various rAAV serotypes carrying an eGFP reporter cassette at different multiplicities of infection (MOIs). Our results revealed that rAAV serotype 2/2 at MOI of 100,000 achieved the highest transduction efficiency of 93.6%, while electroporation demonstrated a plasmid delivery efficiency of 54.3%. These findings suggest that liver progenitor cells are a promising tissue-like cell model for regenerative medicine and demonstrate high amenability to genetic manipulation, underscoring their potential in gene therapy and genome editing studies. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

31 pages, 2919 KiB  
Review
Molecular Targets of Oxidative Stress: Focus on Nuclear Factor Erythroid 2–Related Factor 2 Function in Leukemia and Other Cancers
by Syed K. Hasan, Sundarraj Jayakumar, Eliezer Espina Barroso, Anup Jha, Gianfranco Catalano, Santosh K. Sandur and Nelida I. Noguera
Cells 2025, 14(10), 713; https://doi.org/10.3390/cells14100713 - 14 May 2025
Viewed by 1279
Abstract
Nuclear factor erythroid 2–related factor 2 (Nrf2) is a transcription factor that plays a central role in regulating cellular responses to oxidative stress. It governs the expression of a broad range of genes involved in antioxidant defense, detoxification, metabolism, and other cytoprotective pathways. [...] Read more.
Nuclear factor erythroid 2–related factor 2 (Nrf2) is a transcription factor that plays a central role in regulating cellular responses to oxidative stress. It governs the expression of a broad range of genes involved in antioxidant defense, detoxification, metabolism, and other cytoprotective pathways. In normal cells, the transient activation of Nrf2 serves as a protective mechanism to maintain redox homeostasis. However, the persistent or aberrant activation of Nrf2 in cancer cells has been implicated in tumor progression, metabolic reprogramming, and resistance to chemotherapy and radiotherapy. These dual roles underscore the complexity of Nrf2 signaling and its potential as a therapeutic target. A deeper understanding of Nrf2 regulation in both normal and malignant contexts is essential for the development of effective Nrf2-targeted therapies. This review provides a comprehensive overview of Nrf2 regulation and function, highlighting its unique features in cancer biology, particularly its role in metabolic adaptation and drug resistance. Special attention is given to the current knowledge of Nrf2′s involvement in leukemia and emerging strategies for its therapeutic modulation. Full article
Show Figures

Graphical abstract

21 pages, 1128 KiB  
Review
Applications of Yeasts in Heavy Metal Remediation
by Qi Shao, Shihui Yan, Xin Sun, Hongming Chen, Yixiao Lu, Siqi Li, Yunjie Huang, Shimei Wang, Min Zhang and Zhen Li
Fermentation 2025, 11(5), 236; https://doi.org/10.3390/fermentation11050236 - 23 Apr 2025
Cited by 2 | Viewed by 1570
Abstract
Yeasts have been extensively recognized as a type of model microorganism due to their facile cultivation, short growth cycle, and genetic stability. Different yeast strains, such as Saccharomyces cerevisiae and Rhodotorula mucilaginosa, have exhibited notable sorption capacities for heavy metals and metalloids. [...] Read more.
Yeasts have been extensively recognized as a type of model microorganism due to their facile cultivation, short growth cycle, and genetic stability. Different yeast strains, such as Saccharomyces cerevisiae and Rhodotorula mucilaginosa, have exhibited notable sorption capacities for heavy metals and metalloids. Yeast employs diverse pathways for detoxifying heavy metals via its cell walls, intracellular organelles, and extracellular polymeric substances (EPSs). The cell wall has many functional groups to adsorb metals, decreasing their concentrations in the environment. In intracellular regions, some proteins are capable of transporting metals into biological metabolic processes for detoxification. In extracellular regions, electrostatic as well as complexation mechanisms between protein in EPSs and heavy metals is well accepted. Meanwhile, mannose and glucose within EPSs are target sugars for complexation with metals. Many yeasts can hence work as excellent biomaterials for the bioremediation of metal pollution. Meanwhile, they can be combined with other materials to enhance remediation efficiency. This study reviews underlying mechanisms and cases of yeast-mediated metal detoxification, alongside highlighting yeasts’ industrial applications as bioremediation materials. Full article
Show Figures

Figure 1

21 pages, 2810 KiB  
Article
Myrobalan Fruit Extracts Modulate Immunobiochemical Pathways In Vitro
by Stefanie Hofer, Marcel Jenny, Angela Klein, Kathrin Becker, Lucia Parráková, Florian Überall, Markus Ganzera, Dietmar Fuchs, Hubert Hackl, Pablo Monfort-Lanzas and Johanna M. Gostner
Antioxidants 2025, 14(3), 350; https://doi.org/10.3390/antiox14030350 - 17 Mar 2025
Viewed by 743
Abstract
Myrobalan fruits are important ingredients of traditional remedies, such as the Ayurvedic formulation Triphala or the Tibetan formulation Bras bu 3. Myrobalan-containing remedies are described to have positive effects on metabolism, the cardiovascular system, and the immune system. The chemical composition of botanical [...] Read more.
Myrobalan fruits are important ingredients of traditional remedies, such as the Ayurvedic formulation Triphala or the Tibetan formulation Bras bu 3. Myrobalan-containing remedies are described to have positive effects on metabolism, the cardiovascular system, and the immune system. The chemical composition of botanical mixtures can be very complex, and it is often impossible to identify individual compounds as specific active ingredients, which suggests a multi-target mode of action. In this in vitro study, the effect of myrobalan extracts in human cell models was investigated to gain more information about the molecular mechanism of action and to find possible synergistic effects. Direct and indirect antioxidant effects were investigated, and the activation of immunobiochemical metabolic pathways involved in the cellular immune response was examined in cell lines treated with extracts of the fruits of Phyllanthus emblica, Terminalia chebula and Terminalia bellirica, as well as a combination of them. In particular, a synergistic effect on the activation of the endogenous antioxidant defence system was observed with the combined treatment of the three fruit extracts. An integrated transcriptome analysis of cells treated with a combination of fruit extracts confirmed an effect on immune pathways, oxidative stress, and detoxification processes. This study shows the modulation of various signalling pathways and cellular processes that may be part of the multi-target mechanism of individual and combined myrobalan fruit extracts. Although the results are limited to in vitro data, they contribute to a better understanding of how botanical mixtures work and provide hypotheses for further research. Full article
Show Figures

Figure 1

53 pages, 12782 KiB  
Review
Brain Cytochrome P450: Navigating Neurological Health and Metabolic Regulation
by Pradeepraj Durairaj and Zixiang Leonardo Liu
J. Xenobiot. 2025, 15(2), 44; https://doi.org/10.3390/jox15020044 - 14 Mar 2025
Cited by 2 | Viewed by 3749
Abstract
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain’s complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling [...] Read more.
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain’s complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling pathways, modulates enzyme functions, and leads to distinct CYP gene expression and regulation patterns compared to the liver. Despite their relatively low levels of expression, brain CYPs exert significant influence on drug responses, neurotoxin susceptibility, behavior, and neurological disease risk. These enzymes are essential for maintaining brain homeostasis, mediating cholesterol turnover, and synthesizing and metabolizing neurochemicals, neurosteroids, and neurotransmitters. Moreover, they are key participants in oxidative stress responses, neuroprotection, and the regulation of inflammation. In addition to their roles in metabolizing psychotropic drugs, substances of abuse, and endogenous compounds, brain CYPs impact drug efficacy, safety, and resistance, underscoring their importance beyond traditional drug metabolism. Their involvement in critical physiological processes also links them to neuroprotection, with significant implications for the onset and progression of neurodegenerative diseases. Understanding the roles of cerebral CYP enzymes is vital for advancing neuroprotective strategies, personalizing treatments for brain disorders, and developing CNS-targeting therapeutics. This review explores the emerging roles of CYP enzymes, particularly those within the CYP1–3 and CYP46 families, highlighting their functional diversity and the pathological consequences of their dysregulation on neurological health. It also examines the potential of cerebral CYP-based biomarkers to improve the diagnosis and treatment of neurodegenerative disorders, offering new avenues for therapeutic innovation. Full article
Show Figures

Figure 1

15 pages, 5317 KiB  
Article
Metabolomics Provides New Insights into the Mechanisms of Wolbachia-Induced Plant Defense in Cotton Mites
by Xinlei Wang, Sha Wang, Ali Basit, Qianchen Wei, Kedi Zhao, Feng Liu and Yiying Zhao
Microorganisms 2025, 13(3), 608; https://doi.org/10.3390/microorganisms13030608 - 6 Mar 2025
Viewed by 699
Abstract
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider [...] Read more.
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider mites using parthenogenetic backcrossing and antibiotic treatment methods. A total of 55 differential metabolites were identified, which involved lipids, phenylpropanoids, and polyketides. KEGG pathway enrichment analysis revealed seven significantly enriched metabolic pathways. Among them, flavonoid and flavonol biosynthesis, glycerophospholipid metabolism, and ether lipid metabolism showed extremely significant differences. In Wolbachia-infected cotton leaves, the flavonoid biosynthesis pathway was significantly up-regulated, including quercetin and myricetin, suggesting that the plant produces more secondary metabolites to enhance its defense capability. Glycerophosphocholine (GPC) and sn-glycerol-3-phosphoethanolamine (PE) were significantly down-regulated, suggesting that Wolbachia may impair the integrity and function of plant cell membranes. The downregulation of lysine and the upregulation of L-malic acid indicated that Wolbachia infection may shorten the lifespan of spider mites. At various developmental stages of the spider mites, Wolbachia infection increased the expression of detoxification metabolism-related genes, including gene families such as cytochrome P450, glutathione S-transferase, carboxylesterase, and ABC transporters, thereby enhancing the detoxification capability of the host spider mites. This study provides a theoretical basis for further elucidating the mechanisms by which endosymbiotic bacteria induce plant defense responses and expands the theoretical framework of insect–plant co-evolution. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction State-of-the-Art Research in China)
Show Figures

Figure 1

Back to TopTop