Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Governing Resistance to Fusarium oxysporum f. sp. niveum in Watermelon (Citrullus lanatus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Fungal Transformation with GFP
2.3. Inoculation of Watermelon Plants
2.4. Microscopic Analysis
2.5. RNA Sequencing (RNA-Seq) and Data Analysis
2.6. Data Integration and Network Construction
2.7. Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Analysis by Confocal Laser Scanning Microscopy
3.2. Identification of DEGs
3.3. Determination of Key Clusters
3.4. Determination of Key Modules Associated with Fon Resistance Through Co-Expression Network Analysis
3.5. GO and KEGG Enrichment Analyses of Key Modules
3.6. Identification of Hub Genes Involved in FW Resistance Through WGCNA
3.7. qRT-PCR Validation of RNA-Seq Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org (accessed on 9 May 2025).
- Martyn, R.D. Resistance to Races 0, 1, and 2 of Fusarium Wilt of Watermelon in Citrullus sp. PI-296341-FR. Hortscience 1991, 26, 429. [Google Scholar] [CrossRef]
- Yvonne Couteaudier, C.A. Survival and Inoculum Potential of Conidia and Chlamydospores of Fusarium oxysporum f. sp. Lini in Soil. Dev. Agric. Manag. For. Ecol. 1991, 23, 551–556. [Google Scholar] [CrossRef]
- Lu, G.; Guo, S.; Zhang, H.; Geng, L.; Martyn, R.D.; Xu, Y. Colonization of Fusarium Wilt-Resistant and Susceptible Watermelon Roots by a Green-Fluorescent-Protein-Tagged Isolate of Fusarium oxysporum f. sp. Niveum. J. Phytopathol. 2014, 162, 228–237. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, J.H.; Liu, G.; Yao, X.F.; Li, P.F.; Yang, X.P. Characterization of the Watermelon Seedling Infection Process by Fusarium oxysporum f. sp. Niveum. Plant Pathol. 2015, 64, 1076–1084. [Google Scholar] [CrossRef]
- Ren, Y.; Jiao, D.; Gong, G.; Zhang, H.; Guo, S.; Zhang, J.; Xu, Y. Genetic Analysis and Chromosome Mapping of Resistance to Fusarium oxysporum f. sp. Niveum (FON) Race 1 and Race 2 in Watermelon (Citrullus lanatus L.). Mol. Breed. 2015, 35, 183. [Google Scholar] [CrossRef]
- Branham, S.E.; Levi, A.; Wechter, W.P. QTL Mapping Identifies Novel Source of Resistance to Fusarium Wilt Race 1 in Citrullus amarus. Plant Dis. 2019, 103, 984–989. [Google Scholar] [CrossRef]
- Xu, X.P.; Chen, C.H.; Fan, B.F.; Chen, Z.X. Physical and Functional Interactions between Pathogen-Induced Arabidopsis WRKY18, WRKY40, and WRKY60 Transcription Factors. Plant Cell 2006, 18, 1310–1326. [Google Scholar] [CrossRef]
- Agarwal, P.; Reddy, M.P.; Chikara, J. WRKY: Its Structure, Evolutionary Relationship, DNA-Binding Selectivity, Role in Stress Tolerance and Development of Plants. Mol. Biol. Rep. 2011, 38, 3883–3896. [Google Scholar] [CrossRef]
- Wang, L.; Guo, D.; Zhao, G.; Wang, J.; Zhang, S.; Wang, C.; Guo, X. Group IIc WRKY Transcription Factors Regulate Cotton Resistance to Fusarium oxysporum by Promoting GhMKK2-Mediated Flavonoid Biosynthesis. New Phytol. 2022, 236, 249–265. [Google Scholar] [CrossRef]
- Diao, J.; Wang, J.; Zhang, P.; Hao, X.; Wang, Y.; Liang, L.; Zhang, Y.; Ma, W.; Ma, L. Transcriptome Analysis Reveals the Important Role of WRKY28 in Fusarium oxysporum Resistance. Front. Plant Sci. 2021, 12, 720679. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, M.; Li, L.; Xu, Z.; Chen, X.; Guo, J.; Ma, Y. Overexpression of the Soybean GmERF3 Gene, an AP2/ERF Type Transcription Factor for Increased Tolerances to Salt, Drought, and Diseases in Transgenic Tobacco. J. Exp. Bot. 2009, 60, 3781–3796. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Jiang, L.; Du, B.; Ning, B.; Ding, X.; Zhang, C.; Song, B.; Liu, S.; Zhao, M.; Zhao, Y.; et al. GmMKK4-Activated GmMPK6 Stimulates GmERF113 to Trigger Resistance to Phytophthora sojae in Soybean. Plant J. 2022, 111, 473–495. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Jin, L.; Miao, Y.; He, X.; Hu, Q.; Guo, K.; Zhu, L.; Zhang, X. An Ethylene Response-Related Factor, GbERF1-like, from Gossypium barbadense Improves Resistance to Verticillium dahliae via Activating Lignin Synthesis. Plant Mol. Biol. 2016, 91, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-J.; Zhang, J.; Lin, Z.; Yu, P.; Lu, M.; Li, N. The AP2/ERF Transcription Factor ORA59 Regulates Ethylene-Induced Phytoalexin Synthesis through Modulation of an Acyltransferase Gene Expression. J. Cell. Physiol. 2024, 239, e30935. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Xu, X.; Lu, X.; Tang, Z.; Zhang, X.; Lei, F.; Hou, L.; Li, M. Combined Analysis of Carotenoid Metabolites and the Transcriptome to Reveal the Molecular Mechanism Underlying Fruit Colouration in Zucchini (Cucurbita pepo L.). Food Chem. Mol. Sci. 2021, 2, 100021. [Google Scholar] [CrossRef]
- Anees, M.; Gao, L.; Umer, M.J.; Yuan, P.; Zhu, H.; Lu, X.; He, N.; Gong, C.; Kaseb, M.O.; Zhao, S.; et al. Identification of Key Gene Networks Associated With Cell Wall Components Leading to Flesh Firmness in Watermelon. Front. Plant Sci. 2021, 12, 630243. [Google Scholar] [CrossRef]
- Shen, Q.; Wu, X.; Tao, Y.; Yan, G.; Wang, X.; Cao, S.; Wang, C.; He, W. Mining Candidate Genes Related to Heavy Metals in Mature Melon (Cucumis melo L.) Peel and Pulp Using WGCNA. Genes 2022, 13, 1767. [Google Scholar] [CrossRef]
- Mullins, E.D.; Chen, X.; Romaine, P.; Raina, R.; Geiser, D.M.; Kang, S. Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer. Phytopathology 2001, 91, 173–180. [Google Scholar] [CrossRef]
- Chen, S. Ultrafast One-Pass FASTQ Data Preprocessing, Quality Control, and Deduplication Using Fastp. iMeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.T.; Franz, M.; Kazi, F.; Donaldson, S.L.; Morris, Q.; Bader, G.D. Cytoscape Web: An Interactive Web-Based Network Browser. Bioinformatics 2010, 26, 2347–2348. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shao, J.; Wang, Y.; Li, W.; Guo, D.; Yan, B.; Xia, Y.; Peng, M. Analysis of Banana Transcriptome and Global Gene Expression Profiles in Banana Roots in Response to Infection by Race 1 and Tropical Race 4 of Fusarium oxysporum f. sp. Cubense. BMC Genom. 2013, 14, 851. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Z.; Zhang, C.; Song, J.; Wang, Q.; Luan, F.; Gao, P. Evaluation of Differential miRNA Expression between Fusarium Wilt-Resistant and -Susceptible Watermelon Varieties. Sci. Hortic. 2024, 332, 113189. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, H.; Li, J. Transcriptome Analysis Reveals the Response Mechanism of Frl-Mediated Resistance to Fusarium oxysporum f. sp. Radicis-Lycopersici (FORL) Infection in Tomato. Int. J. Mol. Sci. 2022, 23, 7078. [Google Scholar] [CrossRef]
- Kaushal, M.; Mahuku, G.; Swennen, R. Comparative Transcriptome and Expression Profiling of Resistant and Susceptible Banana Cultivars during Infection by Fusarium oxysporum. Int. J. Mol. Sci. 2021, 22, 3002. [Google Scholar] [CrossRef]
- Lu, G.; Guo, S.; Zhang, H.; Geng, L.; Song, F.; Fei, Z.; Xu, Y. Transcriptional Profiling of Watermelon during Its Incompatible Interaction with Fusarium oxysporum f. sp. Niveum. Eur. J. Plant Pathol. 2011, 131, 585–601. [Google Scholar] [CrossRef]
- Thatcher, L.F.; Williams, A.H.; Garg, G.; Buck, S.-A.G.; Singh, K.B. Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. Medicaginis during Colonisation of Resistant and Susceptible Medicago truncatula Hosts Identifies Differential Pathogenicity Profiles and Novel Candidate Effectors. BMC Genom. 2016, 17, 860. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, A.; Tan, K.; Yang, S.; Ma, X.; Bai, X.; Hou, Y.; Bai, J. Study on the Interaction Mechanism between Crocus Sativus and Fusarium oxysporum Based on Dual RNA-Seq. Plant Cell Rep. 2023, 42, 91–106. [Google Scholar] [CrossRef]
- Kuang, W.; Huang, J.; Yang, Y.; Liao, Y.; Zhou, Z.; Liu, Q.; Wu, H. Identification of Markers Correlating with Mitochondrial Function in Myocardial Infarction by Bioinformatics. PLoS ONE 2024, 19, e0316463. [Google Scholar] [CrossRef] [PubMed]
- Manzo, D.; Ferriello, F.; Puopolo, G.; Zoina, A.; D’Esposito, D.; Tardella, L.; Ferrarini, A.; Ercolano, M.R. Fusarium oxysporum f. sp. Radicis-Lycopersici Induces Distinct Transcriptome Reprogramming in Resistant and Susceptible Isogenic Tomato Lines. BMC Plant Biol. 2016, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wei, L.; Liu, T.; Ma, J.; Huang, K.; Guo, H.; Huang, Y.; Zhang, L.; Zhao, J.; Tsuda, K.; et al. Suppression of ETI by PTI Priming to Balance Plant Growth and Defense through an MPK3/MPK6-WRKYs-PP2Cs Module. Mol. Plant 2023, 16, 903–918. [Google Scholar] [CrossRef] [PubMed]
- Pitzschke, A.; Djamei, A.; Bitton, F.; Hirt, H. A Major Role of the MEKK1-MKK1/2-MPK4 Pathway in ROS Signalling. Mol. Plant 2009, 2, 120–137. [Google Scholar] [CrossRef]
- Shubchynskyy, V.; Boniecka, J.; Schweighofer, A.; Simulis, J.; Kvederaviciute, K.; Stumpe, M.; Mauch, F.; Balazadeh, S.; Mueller-Roeber, B.; Boutrot, F.; et al. Protein Phosphatase AP2C1 Negatively Regulates Basal Resistance and Defense Responses to Pseudomonas syringae. J. Exp. Bot. 2017, 68, 1169–1183. [Google Scholar] [CrossRef]
- Douchkov, D.; Lueck, S.; Hensel, G.; Kumlehn, J.; Rajaraman, J.; Johrde, A.; Doblin, M.S.; Beahan, C.T.; Kopischke, M.; Fuchs, R.; et al. The Barley (Hordeum vulgare) Cellulose Synthase-like D2 Gene (HvCslD2) Mediates Penetration Resistance to Host-Adapted and Nonhost Isolates of the Powdery Mildew Fungus. New Phytol. 2016, 212, 421–433. [Google Scholar] [CrossRef]
- Edgar, C.I.; McGrath, K.C.; Dombrecht, B.; Manners, J.M.; Maclean, D.C.; Schenk, P.M.; Kazan, K. Salicylic Acid Mediates Resistance to the Vascular Wilt Pathogen Fusarium oxysporum in the Model Host Arabidopsis thaliana. Austral. Plant Pathol. 2006, 35, 581–591. [Google Scholar] [CrossRef]
- Bollhoner, B.; Zhang, B.; Stael, S.; Denance, N.; Overmyer, K.; Goffner, D.; Van Breusegem, F.; Tuominen, H. Post mortem Function of AtMC9 in Xylem Vessel Elements. New Phytol. 2013, 200, 498–510. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, J.; Liu, G.; Yang, X. Antifungal Properties of a Thaumatin-like Protein from Watermelon. Acta Physiol. Plant. 2018, 40, 186. [Google Scholar] [CrossRef]
- Pauwels, L.; Barbero, G.F.; Geerinck, J.; Tilleman, S.; Grunewald, W.; Perez, A.C.; Chico, J.M.; Vanden Bossche, R.; Sewell, J.; Gil, E.; et al. NINJA Connects the Co-Repressor TOPLESS to Jasmonate Signalling. Nature 2010, 464, 788–791. [Google Scholar] [CrossRef]
- Han, Q.; Chen, R.; Yang, Y.; Cui, X.; Ge, F.; Chen, C.; Liu, D. A Glutathione S-Transferase Gene from Lilium regale Wilson Confers Transgenic Tobacco Resistance to Fusarium oxysporum. Sci. Hortic. 2016, 198, 370–378. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L.; Jander, G.; Bhawal, R.; Zhang, S.; Liu, Z.; Oakley, A.; Hua, J. AIG2A and AIG2B Limit the Activation of Salicylic Acid-Regulated Defenses by Tryptophan-Derived Secondary Metabolism in Arabidopsis. Plant Cell 2022, 34, 4641–4660. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Li, M.; Zhang, P.; Zong, C.; Ma, W.; Ma, L. Overexpression of the PdpapERF109 Gene Enhances Resistance of Populus davidiana x P. alba Var. Pyramidalis to Fusarium oxysporum Infection. J. For. Res. 2022, 33, 1925–1937. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, D.; Zheng, W.; He, H.; Ji, B.; Han, Q.; Ge, F.; Chen, C. A bZIP Transcription Factor, LrbZIP1, Is Involved in Lilium regale Wilson Defense Responses against Fusarium oxysporum f. sp. Lilii. Genes Genom. 2014, 36, 789–798. [Google Scholar] [CrossRef]
- Yue, Z.-L.; Tian, Z.-J.; Zhang, J.-W.; Zhang, S.-W.; Li, Y.-D.; Wu, Z.-M. Overexpression of Lectin Receptor-Like Kinase 1 in Tomato Confers Resistance to Fusarium oxysporum f. sp. Radicis-Lycopersici. Front. Plant Sci. 2022, 13, 836269. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Z.; Li, X.; Cheng, Q.; Li, R. Two Sugarcane Expansin Protein-Coding Genes Contribute to Stomatal Aperture Associated with Structural Resistance to Sugarcane Smut. J. Fungi 2024, 10, 631. [Google Scholar] [CrossRef]
- La Camera, S.; Balague, C.; Goebel, C.; Geoffroy, P.; Legrand, M.; Feussner, I.; Roby, D.; Heitz, T. The Arabidopsis Patatin-Like Protein 2 (PLP2) Plays an Essential Role in Cell Death Execution and Differentially Affects Biosynthesis of Oxylipins and Resistance to Pathogens. Mol. Plant-Microbe Interact. 2009, 22, 469–481. [Google Scholar] [CrossRef]
- Yu, X.; Cui, X.; Wu, C.; Shi, S.; Yan, S. Salicylic Acid Inhibits Gibberellin Signaling through Receptor Interactions. Mol. Plant 2022, 15, 1759–1771. [Google Scholar] [CrossRef]
- Wang, H.; Li, P.; Wang, Y.; Chi, C.; Jin, X.; Ding, G. Overexpression of Cucumber CYP82D47 Enhances Resistance to Powdery Mildew and Fusarium oxysporum f. sp. Cucumerinum. Funct. Integr. Genom. 2024, 24, 14. [Google Scholar] [CrossRef]
- Zhu, X.; Caplan, J.; Mamillapalli, P.; Czymmek, K.; Dinesh-Kumar, S.P. Function of Endoplasmic Reticulum Calcium ATPase in Innate Immunity-Mediated Programmed Cell Death. Embo J. 2010, 29, 1007–1018. [Google Scholar] [CrossRef]
- Leslie, M.E.; Rogers, S.W.; Heese, A. Increased Callose Deposition in Plants Lacking DYNAMIN-RELATED PROTEIN 2B Is Dependent upon POWDERY MILDEW RESISTANT 4. Plant Signal. Behav. 2016, 11, e1244594. [Google Scholar] [CrossRef]
- Kotera, Y.; Komori, H.; Tasaki, K.; Takagi, K.; Imano, S.; Katou, S. The Peroxisomal β-Oxidative Pathway and Benzyl Alcohol O-Benzoyltransferase HSR201 Cooperatively Contribute to the Biosynthesis of Salicylic Acid. Plant Cell Physiol. 2023, 64, 758–770. [Google Scholar] [CrossRef]
ID | Degree | Description | Module |
---|---|---|---|
Cla97C07G140960 | 15 | Cytochrome P450 | SRblack |
Cla97C01G014990 | 15 | WRKY transcription factor 42 | |
Cla97C02G042360 | 11 | Calcium-transporting ATPase | |
Cla97C11G216240 | 9 | Dynamin-related protein 4C | |
Cla97C01G007750 | 8 | Basic leucine zipper 43 | |
Cla97C02G034580 | 8 | Benzyl alcohol O-benzoyltransferase-like | |
Cla97C08G155710 | 20 | Protein AIG2 | SRgreen |
Cla97C05G105320 | 7 | Basic-leucine zipper (BZIP) transcription factor family | |
Cla97C09G170380 | 7 | Ethylene-responsive transcription factor 1B-like | |
Cla97C06G121810 | 7 | Receptor kinase, putative | |
Cla97C09G175480 | 7 | Expansin-like B1 | |
Cla97C08G159250 | 6 | Patatin | |
Cla97C11G215260 | 6 | Gibberellin receptor GID1B-like | |
Cla97C02G035430 | 28 | Cellulose synthase-like protein H1 | SRblue |
Cla97C03G057720 | 19 | Salicylic acid-binding protein 2-like | |
Cla97C07G132770 | 15 | Gibberellin 2-beta-dioxygenase 8 | |
Cla97C02G035420 | 13 | Cellulose synthase-like protein B3 | |
Cla97C11G218300 | 5 | Xylose isomerase | |
Cla97C09G173070 | 4 | Protein detoxification | |
Cla97C08G145130 | 8 | Mannan endo-1,4-beta-mannosidase 1-like | SRbrown |
Cla97C03G057380 | 8 | Receptor-like protein kinase 4 | |
Cla97C07G130430 | 8 | NINJA family protein AFP2-like | |
Cla97C08G158320 | 8 | bZIP transcription factor 53 | |
Cla97C04G071580 | 22 | Metacaspase-9 | SRturquoise |
Cla97C01G025380 | 20 | FAD-binding berberine family protein | |
Cla97C05G089640 | 18 | Peroxidase | |
Cla97C05G099940 | 14 | MADS-box transcription factor | |
Cla97C05G098940 | 9 | Endo-1,4-beta-xylanase 1 | |
Cla97C11G225100 | 8 | NAC domain | |
Cla97C10G197610 | 6 | Thaumatin-like protein | |
Cla97C06G125610 | 6 | PMEI domain-containing protein | |
Cla97C06G110100 | 6 | Pectin methylesterase inhibitor superfamily protein | |
Cla97C04G074260 | 16 | Glutathione S-transferase U8-like | SRmagenta |
Cla97C07G136250 | 9 | MADS-box protein, putative | |
Cla97C04G079260 | 7 | Glutathione S-transferase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Fang, X.; Zhang, J.; Wang, X.; Liu, Z.; Liu, S.; Song, Z.; Gao, P.; Luan, F. Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Governing Resistance to Fusarium oxysporum f. sp. niveum in Watermelon (Citrullus lanatus). Horticulturae 2025, 11, 625. https://doi.org/10.3390/horticulturae11060625
Zhang C, Fang X, Zhang J, Wang X, Liu Z, Liu S, Song Z, Gao P, Luan F. Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Governing Resistance to Fusarium oxysporum f. sp. niveum in Watermelon (Citrullus lanatus). Horticulturae. 2025; 11(6):625. https://doi.org/10.3390/horticulturae11060625
Chicago/Turabian StyleZhang, Chen, Xufeng Fang, Jing Zhang, Xinying Wang, Zhao Liu, Shusen Liu, Zhengfeng Song, Peng Gao, and Feishi Luan. 2025. "Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Governing Resistance to Fusarium oxysporum f. sp. niveum in Watermelon (Citrullus lanatus)" Horticulturae 11, no. 6: 625. https://doi.org/10.3390/horticulturae11060625
APA StyleZhang, C., Fang, X., Zhang, J., Wang, X., Liu, Z., Liu, S., Song, Z., Gao, P., & Luan, F. (2025). Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Governing Resistance to Fusarium oxysporum f. sp. niveum in Watermelon (Citrullus lanatus). Horticulturae, 11(6), 625. https://doi.org/10.3390/horticulturae11060625