Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = cell hydraulic conductivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1567 KB  
Article
Osteogenic Potential of Various Premixed Hydraulic Calcium Silicate-Based Sealers on Human Bone Marrow Stem Cells
by Na-Hyun You, Donghee Lee, Yemi Kim, Sieun Nam and Sin-Young Kim
Materials 2025, 18(23), 5326; https://doi.org/10.3390/ma18235326 - 26 Nov 2025
Viewed by 328
Abstract
This study aims to compare the osteogenic potential of premixed hydraulic calcium silicate-based sealers (HCSSs) with an epoxy resin-based sealer in human bone marrow-derived stem cells (hBMSCs). Three HCSSs (White Endoseal MTA, One-Fil, EndoSequence BC Sealer) were compared with AH Plus Jet, an [...] Read more.
This study aims to compare the osteogenic potential of premixed hydraulic calcium silicate-based sealers (HCSSs) with an epoxy resin-based sealer in human bone marrow-derived stem cells (hBMSCs). Three HCSSs (White Endoseal MTA, One-Fil, EndoSequence BC Sealer) were compared with AH Plus Jet, an epoxy resin-based sealer. Disk-shaped specimens were prepared using sterilized Teflon tubes and immersed in osteogenic medium to create eluates. hBMSCs were cultured in each eluate, and osteogenic potential was assessed by alkaline phosphatase (ALP) activity (n = 6), Alizarin Red-S (ARS) staining (n = 6), quantitative real-time polymerase chain reaction (qPCR) (n = 3), and Western blot analysis. Statistical analyses were conducted using SPSS (version 24.0), with significance set at p < 0.05. All experimental groups exhibited higher ALP activity than the control on day 4. ARS staining of HCSSs differed significantly from AH Plus Jet on day 14 (p < 0.05), while White Endoseal MTA exhibited the highest intensity. qPCR revealed that EndoSequence BC Sealer induced the highest SMAD1 expression on day 4, while One-Fil and EndoSequence BC Sealer significantly upregulated RUNX2 expression compared with AH Plus Jet (p < 0.05). Western blotting confirmed that EndoSequence BC Sealer induced the highest RUNX2 protein expression. Collectively, premixed HCSSs promoted superior mineralization and RUNX2 expression compared to conventional resin-based sealer in hBMSCs. Full article
(This article belongs to the Special Issue Development and Research of New Dental Materials)
Show Figures

Figure 1

22 pages, 2899 KB  
Article
Integrated Bioprocess and Response Surface Methodology-Based Design for Hydraulic Conductivity Reduction Using Sporosarcina pasteurii
by Şule Eryürük, Kağan Eryürük and Arata Katayama
Minerals 2025, 15(11), 1215; https://doi.org/10.3390/min15111215 - 18 Nov 2025
Viewed by 388
Abstract
This study examines key bioprocess parameters influencing the reduction in hydraulic conductivity in porous media via Microbially-Induced Calcite Precipitation (MICP), highlighting its relevance to environmental engineering applications such as bio-barriers and landfill liners. Sporosarcina pasteurii was utilized as the ureolytic bacterium to induce [...] Read more.
This study examines key bioprocess parameters influencing the reduction in hydraulic conductivity in porous media via Microbially-Induced Calcite Precipitation (MICP), highlighting its relevance to environmental engineering applications such as bio-barriers and landfill liners. Sporosarcina pasteurii was utilized as the ureolytic bacterium to induce calcium carbonate precipitation under controlled laboratory conditions. Experimental variables included bacterial cell density (OD600), diameter of glass beads, concentrations of precipitation solution, bentonite, and yeast extract. A total of 42 experimental runs were conducted based on a custom design in Design-Expert software. Hydraulic conductivity was selected as the response variable to evaluate treatment performance. Response surface methodology (RSM) was applied to develop a second-order polynomial model, with statistical analyses indicating a strong model fit (R2 = 0.948, adjusted R2 = 0.929, predicted R2 = 0.868). ANOVA confirmed the significance of the main effects and interactions, particularly those involving glass bead diameter and OD600. Among the tested factors, the precipitation solution exhibited the strongest individual effect, while bentonite and yeast extract demonstrated supportive roles. Optimization revealed that a balanced combination of microbial density and chemical inputs minimized hydraulic conductivity to 0.0399 cm/s (≈95% reduction), with an overall desirability score of 1.000. Laboratory-scale experiments demonstrated field-scale applicability, underscoring the potential of biotechnological soil treatment and empirical modeling for developing sustainable low-permeability barriers. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

30 pages, 16086 KB  
Article
Conjugate Study on Thermal–Hydraulic Performance of Topology-Optimized Lattice-Filled Cooling Channel for Thermal Management of Solid-Oxide Fuel Cells
by Kirttayoth Yeranee, Yuli Cheng and Yu Rao
Energies 2025, 18(22), 6001; https://doi.org/10.3390/en18226001 - 15 Nov 2025
Viewed by 499
Abstract
Integrated additional cooling channels offer precise thermal management for solid-oxide fuel cells (SOFCs), mitigating temperature gradients. This research studies the thermal–hydraulic performance of cooling channels integrated between SOFC interconnectors, including a Diamond-type triply periodic minimal surface (TPMS), a conventional topology-optimized structure, and a [...] Read more.
Integrated additional cooling channels offer precise thermal management for solid-oxide fuel cells (SOFCs), mitigating temperature gradients. This research studies the thermal–hydraulic performance of cooling channels integrated between SOFC interconnectors, including a Diamond-type triply periodic minimal surface (TPMS), a conventional topology-optimized structure, and a topology-optimized lattice-filled structure. A conjugate heat transfer analysis is employed to investigate the influences of flow rate within the range of Reynolds numbers from 300 to 5000, and the effects of coolant type, including air and liquid metals, as well as the impacts of structural material. The results demonstrate that the topology-optimized lattice-filled structure, generating high turbulence mixing, achieves superior temperature uniformity, especially at high flow rates, despite having higher thermal resistance and pressure loss than the conventional topology-optimized design. The coolant types show the largest influence on thermal–hydraulic performance, and the use of liquid gallium in the conventional optimized design obtains the best temperature uniformity, yielding differences between the maximum and minimum temperatures of less than 5 K. Moreover, the higher-thermal-conductivity material improves temperature uniformity, even at low flow rates. Overall, the optimized-baffle designs in the conventional topology-optimized model, utilizing high-conductivity coolant and structural materials, could be the most suitable for thermal management of the SOFC. Full article
Show Figures

Figure 1

26 pages, 5149 KB  
Article
The Impact of Climate Change on Anatomical Characteristics of Silver Fir and European Beech Wood from Three Sites in the Carpathians, Romania
by Pia Caroline Adamič, Peter Prislan, Tom Levanič, Jernej Jevšenak, Jakub Kašpar and Matjaž Čater
Forests 2025, 16(9), 1497; https://doi.org/10.3390/f16091497 - 21 Sep 2025
Viewed by 662
Abstract
Structural adaptations of wood to environmental conditions play a crucial role in shaping its mechanical and hydraulic properties, which are vital for the performance and survival of fir and beech. In this study, we investigated how site-specific climatic conditions influence tree-ring widths and [...] Read more.
Structural adaptations of wood to environmental conditions play a crucial role in shaping its mechanical and hydraulic properties, which are vital for the performance and survival of fir and beech. In this study, we investigated how site-specific climatic conditions influence tree-ring widths and wood-anatomical traits of fir and beech in the Carpathians. Increment cores were collected from three forest stands across the Carpathians, each characterized by distinct climate regimes. We developed chronologies for mean tree-ring width (MRW), mean lumen area of vessels/tracheids (MLA), cell density (CD), relative conductive tissue area (RCTA), and, for fir, mean tangential cell wall thickness (CWTTAN), covering the period from 1980 to 2016. By comparing MRW and wood-anatomical traits with climatic variables—daily minimum and maximum temperatures and daily precipitation sums from E-OBS climate data—we identified clear differences among the three sites. The relationships between tree-ring widths and wood-anatomical traits varied between fir and beech, reflecting species-specific responses to local climate conditions. Notably, beech appeared more sensitive to warm summer temperatures, while fir was comparatively less affected. Evaluating the variability in radial growth and wood anatomy is essential for understanding the plasticity of fir and beech under diverse environmental conditions, and represents a first step toward predicting their responses to future climate scenarios. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

32 pages, 6751 KB  
Article
Investigation of the Effectiveness of a Compact Heat Exchanger with Metal Foam in Supercritical Carbon Dioxide Cooling
by Roman Dyga
Energies 2025, 18(17), 4736; https://doi.org/10.3390/en18174736 - 5 Sep 2025
Viewed by 1543
Abstract
Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described [...] Read more.
Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described work was to evaluate the potential for improving the performance of printed circuit heat exchangers by incorporating open-cell metal foam as the heat exchanger packing material. The evaluation was conducted based on the results of numerical simulation of supercritical carbon dioxide cooling flowing through printed circuit heat exchanger channels filled with 40 PPI copper foam with 90% porosity. A unit periodic region of the heat exchanger comprising two adjacent straight channels for cold and hot fluid was analyzed. The channels had a semicircular cross-section and a length of 200 mm. Studies were conducted for three different channel diameters—2, 3, and 4 mm. The range of mass flux variations for cold fluid (water) and hot fluid (sCO2) were 300–1500 kg/(m2·s) and 200–800 kg/(m2·s), respectively. It was found that in channels filled with metal foam, carbon dioxide cooling is characterized by a higher heat transfer coefficient than in channels without metal foam. In channels of the same diameter, heat flux was 33–63% higher in favor of the channel with metal foam. Thermal effectiveness of the heat exchanger with metal foam can be up to 20% higher than in the case of a heat exchanger without foam. Despite very high pressure drop through channels filled with metal foam, thermal–hydraulic performance can also be higher—even 4.7 in the case of a 2 mm channel. However, both these parameters depend on flow conditions and channel diameter, and under certain conditions may be lower than in a heat exchanger without metal foam. The results of the presented work indicate a new direction for the development of PCHE heat exchangers and confirm that the use of metal foams in the construction of PCHE heat exchangers can contribute to increasing the efficiency and effectiveness of the processes in which they are used. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 1142 KB  
Article
Effect of Hydraulic Retention Time on Municipal Wastewater Treatment Using a Membraneless Single-Chamber Microbial Fuel Cell
by Brenda Verónica Borrego-Limón, Silvia Yudith Martínez-Amador, Miguel Ángel Pérez-Rodríguez, Pedro Pérez-Rodríguez, Alfredo Valentín Reyes-Acosta, Leopoldo Javier Ríos-González and José Antonio Rodríguez-De la Garza
Processes 2025, 13(8), 2564; https://doi.org/10.3390/pr13082564 - 14 Aug 2025
Viewed by 1624
Abstract
Microbial fuel cells (MFCs) can have high pollutant removal efficiencies and generate electricity; however, the use of selective membranes represents a considerable expense. In this investigation, the performance of a membraneless MFC was evaluated at different hydraulic retention times (HRTs) of 12, 24, [...] Read more.
Microbial fuel cells (MFCs) can have high pollutant removal efficiencies and generate electricity; however, the use of selective membranes represents a considerable expense. In this investigation, the performance of a membraneless MFC was evaluated at different hydraulic retention times (HRTs) of 12, 24, 36, and 48 h. The chemical oxygen demand removal efficiencies (CODREs) were 93.5, 90.9, 87.3, and 85.4%, and the biochemical oxygen demand (BODRE) values were 94.5, 91.5, 88.9, and 85.5 at HRTs of 48, 36, 24, and 12 h, respectively. Lower concentrations of solids (suspended solids and total dissolved solids), total nitrogen, phosphorus, fats and oils, and microbiological contamination (helminth eggs and fecal coliforms) were detected when operating the system at a 48 h HRT. At an HRT of 12 h, no decrease in electrical conductivity was detected, whereas at 48 h, it decreased by 19.6%. The oxidation–reduction potential and OCV increased at longer HRTs. The microorganisms detected at the anode were Achromobacter denitrificans, Achromobacter anxifer, and Pseudomonas aeruginosa. The 48 h HRT improved the chemical, physical, and microbiological quality of the municipal wastewater, favoring voltage generation. Full article
Show Figures

Figure 1

34 pages, 4629 KB  
Article
Evaluation of Infiltration Swale Media Using Small-Scale Testing Techniques and Its SWMM Modeling Considerations
by Diego Armando Ramírez Flórez, Yuting Ji, Parker J. Austin, Michael A. Perez, Xing Fang and Wesley N. Donald
Water 2025, 17(16), 2390; https://doi.org/10.3390/w17162390 - 12 Aug 2025
Viewed by 1089
Abstract
Impervious surfaces reduce natural infiltration, leading to increased runoff, erosion, and pollutant transport. The Alabama Department of Transportation (ALDOT) relies on implementing infiltration swales, a linear bioretention-based practice, along roadside drainage channels to reduce surface runoff. This study developed and constructed modified permeameters [...] Read more.
Impervious surfaces reduce natural infiltration, leading to increased runoff, erosion, and pollutant transport. The Alabama Department of Transportation (ALDOT) relies on implementing infiltration swales, a linear bioretention-based practice, along roadside drainage channels to reduce surface runoff. This study developed and constructed modified permeameters and infiltrometers to evaluate and optimize media used to construct infiltration swales. The average measured falling head infiltration rate of sandy topsoil used in the media matrix was 0.63 ft/day (0.19 m/day). A series of amended topsoil mixtures were tested to improve the infiltration rate of the media. In particular, the mixture of 80% topsoil and 20% pine bark fines (by weight) significantly improved the infiltration rates of the swale media. Through iterative testing, the F3 design with 6 in. (15.2 cm) mixture and 10 in. (25.4 cm) sand achieved up to 13.73 ft/day (4.18 m/day) of infiltration rate under constant head, far surpassing the infiltration rate of the current ALDOT design. SWMM bioretention cell models were developed to understand the swale infiltration process and revealed that the infiltration rates obtained from column tests were the saturated hydraulic conductivities of the soil layer when there was no other restriction on vertical flow. The simulated swale hydrological performance depends not only on variations in soil conductivity but also on other swale characteristics under field conditions. Findings from this research can be used to enhance the performance of infiltration-based stormwater practices. Full article
(This article belongs to the Special Issue Urban Drainage Systems and Stormwater Management)
Show Figures

Figure 1

10 pages, 4976 KB  
Article
Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform
by Yao Qu, Jiahuan Qian, Zhihua Lu, Ruihong Chen, Sheng Zhang, Jingyuan Cui, Chenyu Song, Haiping Zhang and Yafei Cui
Microorganisms 2025, 13(8), 1776; https://doi.org/10.3390/microorganisms13081776 - 30 Jul 2025
Viewed by 475
Abstract
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell [...] Read more.
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell dynamic continuous observation platform (ACDCOP) is proposed with a parallel-plate flow chamber (PPFC) to capture cellular growth images which are then used as input to a computer vision algorithm featuring a pre-trained backpropagation neural network to quantitatively evaluate the volumes and volumetric growth rates of individual cells. The platform was applied to investigate the growth of Scenedesmus quadricauda cells under different hydraulic shear stress conditions. The results indicated that the threshold shear stress for the development of Scenedesmus quadricauda cells was 270 µL min−1 (5.62 × 10−5 m2 s−3). Cellular growth was inhibited at very low and very high intensities of hydraulic shear. Among all the experimental groups, the longest growth period for a cell, from attachment to PPFC to cell division, was 5.7 days. Cells with larger initial volumes produced larger volumes at division. The proposed platform could provide a novel approach for algal research by enabling direct observation of algal growth at the cell scale, and could potentially be applied to investigate the impacts of various environmental stressors such as nutrient, temperature, and light on cellular growth in different algal species. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 4356 KB  
Article
Unveiling the Impact of 0–20 Gpa Hydrostatic Pressure on the Physical Properties of (Cs2HfCl6) Double Perovskite
by Umar Farooq, Nabeel Israr, Belqees Hassan, Ali Alnakhlani, Mohamed Kallel, Wasif ur Rehman and Yong-Long Wang
Crystals 2025, 15(5), 395; https://doi.org/10.3390/cryst15050395 - 24 Apr 2025
Viewed by 793
Abstract
The current work determines the physical properties of Cs2HfCl6 photovoltaic compounds including their structural, electronic, and optical behavior, utilizing the DFT approach. The simulated Cs2HfCl6 lattice constants, cell volumes, and bond lengths decrease as the pressure increases [...] Read more.
The current work determines the physical properties of Cs2HfCl6 photovoltaic compounds including their structural, electronic, and optical behavior, utilizing the DFT approach. The simulated Cs2HfCl6 lattice constants, cell volumes, and bond lengths decrease as the pressure increases from 0 to 20 GPa. The band structure analysis reveals that the calculated under-pressure (0–20 GPa) of Cs2HfCl6 is semiconducting with a flexible indirect bandgap (5.44, 2.76, 2.02, 1.45, and 0.99) eV. The electronic bandgap diminishes (0–20 GPa), transitioning the compound from the UV to the visible spectra. This alteration improves the transition from the VBM to the CBM, hence augmenting the optical effectiveness. Concurrently, the dielectric function escalates, enhancing the absorption and conductivity, and causing a red shift in the optical spectra, while diminishing the reflection in the visible spectra. Our findings on the hydraulic pressure (0–20 GPa) and the electrical and optical properties indicate that Cs2HfCl6 may be utilized in the development of next-generation solar cells, LEDs, UV sensors, and high-pressure optical instruments. Full article
Show Figures

Figure 1

26 pages, 13387 KB  
Article
Three-Dimensional Groundwater and Geochemical Reactive Transport Modeling to Assess Reclamation Techniques at the Quémont 2 Mine, Rouyn-Noranda, Canada
by Mohamed Jalal El Hamidi, Abdelkabir Maqsoud, Tikou Belem and Marie-Elise Viger
Water 2025, 17(8), 1191; https://doi.org/10.3390/w17081191 - 15 Apr 2025
Viewed by 1376
Abstract
Many countries employ mining and ore processing techniques to concentrate and extract precious natural resources. However, the slow leaching of numerous dissolved elements and compounds from large quantities of waste rock and mine tailings can significantly threaten groundwater quality in the affected region. [...] Read more.
Many countries employ mining and ore processing techniques to concentrate and extract precious natural resources. However, the slow leaching of numerous dissolved elements and compounds from large quantities of waste rock and mine tailings can significantly threaten groundwater quality in the affected region. When exposed to oxygen and water, sulfide minerals in mine tailing oxidize, potentially forming acid mine drainage (AMD). Various reclamation techniques can inhibit AMD generation, including monolayer cover combined with an elevated water table (EWT), hydraulic barrier, and cover with capillary barrier effect (CCBE). Selecting the most suitable technique requires consideration of site-specific hydrogeological conditions (e.g., water table depth) and available cover materials. Numerical modeling tools such as PHT3D and MT3D can help identify optimal reclamation methods during preliminary planning stages. The 119-hectare Quémont 2 mine site near Rouyn-Noranda city will undergo reclamation following the closure of its tailings storage facilities (TSF). A three-dimensional numerical groundwater and solute-transport model were constructed and calibrated to simulate the site’s hydrogeological behavior post-closure, enabling selection of the most effective AMD control technique. Subsequently, a three-dimensional multicomponent reactive transport model incorporating various cover designs was developed, with simulations considering climate change impacts. The PHT3D model code, which integrates the PHREEQC geochemical model with the MT3D three-dimensional transport simulator, was employed to evaluate cover performance on the Quémont 2 TSF. Four reclamation configurations were tested: Cell #1 (80 cm single-layer clay cover), Cell #2 (60 cm single-layer clay-sand cover), Cell #3 (60 cm single-layer clay-silt cover), and Cell #4 (120 cm multilayer clay-sand-clay sequence). Simulations were conducted under various climate change scenarios (Representative Concentration Pathways—RCPs 2.6, 4.5, and 8.5). This paper describes the numerical model, cover materials, and modeling results both with and without covers. Results indicate that Cells #1 and #4, completely reduced sulfate in groundwater, suggesting these configurations would provide the most effective reclamation solutions for the Quémont 2 mine site. Full article
Show Figures

Figure 1

19 pages, 4588 KB  
Article
A New Yield Surface for Cemented Paste Backfill Based on the Modified Structured Cam-Clay
by Amin Safari, Abbas Taheri and Murat Karakus
Minerals 2025, 15(1), 4; https://doi.org/10.3390/min15010004 - 24 Dec 2024
Cited by 4 | Viewed by 1211
Abstract
Cemented paste backfill (CPB) is a cemented void filling method gaining popularity over traditional hydraulic or rockfill methods. As mining depth increases, CPB-filled stopes are subjected to higher confining pressures. Due to the soil triaxial apparatus limitations, as the conventional method of triaxial [...] Read more.
Cemented paste backfill (CPB) is a cemented void filling method gaining popularity over traditional hydraulic or rockfill methods. As mining depth increases, CPB-filled stopes are subjected to higher confining pressures. Due to the soil triaxial apparatus limitations, as the conventional method of triaxial testing on CPB, no confining pressures higher than 5 MPa can be applied to CPB over a range of curing time. This lack of data introduces uncertainty in predicting CPB behavior, potentially leading to an overestimation of the required strength. To address this, this study introduces a new testing method that allows for higher confinement beyond traditional limitations by modifying the Hoek triaxial cell to accommodate low-strength materials. This study then investigates the coupled influence of confining pressure and curing time (hydration) on CPB characteristics, specifically examining the impacts of different curing times and confining pressures on the mechanical and rheological properties of CPB. A total of 75 triaxial tests were conducted using 42 mm cylinder shape samples at five various curing times from 7 to 96 days, and applied at low and high confinement condition levels (0.5 to 30 MPa). The results reveal that hydration and confinement positively impact the CPB strength. The modified structured Cam-Clay model was selected to predict the behavior, and its yield surface was updated using the experimental results. The proposed yield model can be utilized to describe CPB material subjected to various curing and pressure conditions underground. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

20 pages, 25375 KB  
Article
Design, Analysis, and Testing of a Type V Composite Pressure Vessel for Hydrogen Storage
by Maria Mikroni, Grigorios Koutsoukis, Dimitrios Vlachos, Vassilis Kostopoulos, Antonios Vavouliotis, George Trakakis, Dimitrios Athinaios, Chrysavgi Nikolakea and Dimitrios Zacharakis
Polymers 2024, 16(24), 3576; https://doi.org/10.3390/polym16243576 - 21 Dec 2024
Cited by 13 | Viewed by 5655
Abstract
Hydrogen, as a zero-emission fuel, produces only water when used in fuel cells, making it a vital contributor to reducing greenhouse gas emissions across industries like transportation, energy, and manufacturing. Efficient hydrogen storage requires lightweight, high-strength vessels capable of withstanding high pressures to [...] Read more.
Hydrogen, as a zero-emission fuel, produces only water when used in fuel cells, making it a vital contributor to reducing greenhouse gas emissions across industries like transportation, energy, and manufacturing. Efficient hydrogen storage requires lightweight, high-strength vessels capable of withstanding high pressures to ensure the safe and reliable delivery of clean energy for various applications. Type V composite pressure vessels (CPVs) have emerged as a preferred solution due to their superior properties, thus this study aims to predict the performance of a Type V CPV by developing its numerical model and calculating numerical burst pressure (NBP). For the validation of the numerical model, a Hydraulic Burst Pressure test is conducted to determine the experimental burst pressure (EBP). The comparative study between NBP and EBP shows that the numerical model provides an accurate prediction of the vessel’s performance under pressure, including the identification of failure locations. These findings highlight the potential of the numerical model to streamline the development process, reduce costs, and accelerate the production of CPVs that are manufactured by prepreg hand layup process (PHLP), using carbon fiber/epoxy resin prepreg material. Full article
Show Figures

Figure 1

24 pages, 9054 KB  
Article
Investigation of a Modular High-Pressure Heat Exchanger with Metal Foam Packing for a Pneumatic–Hydraulic Drive
by Roman Dyga and Sebastian Brol
Materials 2024, 17(22), 5557; https://doi.org/10.3390/ma17225557 - 14 Nov 2024
Cited by 2 | Viewed by 1298
Abstract
The results of the first stage of work aimed at improving a hybrid drive system in which the combustion engine is supported by a pneumatic–hydraulic motor are presented. The purpose of the described work was to show that a heat exchanger with a [...] Read more.
The results of the first stage of work aimed at improving a hybrid drive system in which the combustion engine is supported by a pneumatic–hydraulic motor are presented. The purpose of the described work was to show that a heat exchanger with a design adapted to the operating conditions of a pneumatic–hydraulic motor would allow sufficient air heating at the expense of waste heat from the combustion engine, thus increasing the efficiency of the drive system. It was assumed that the key component of the heat exchanger would be copper foam in order to increase the heat exchange surface. A prototype modular heat exchanger was designed and tested. An open-cell copper foam with a porosity of 0.9 and a pore density of 40PPI was placed in the heat exchanger. Experimental and numerical air heating studies were carried out under various heat exchanger operating conditions. The tests were conducted at initial air temperatures of −123 °C, −71 °C, and 22 °C and air pressures of 2.5 × 106 and 7.0 × 106 Pa. The air mass flux was in the range of 3.6–1644 kg/(m2s). It was found that the tested heat exchanger allows a reduction in air consumption in the drive system of 11% to 58% and increases the efficiency of the air expansion system by 16% to 30%. The maximum efficiency of the heat exchanger is 96%. The results of the work carried out will help to improve the pneumatic–hydraulic drive systems of work machines and vehicles. Full article
Show Figures

Graphical abstract

19 pages, 9334 KB  
Article
Responses of Physiological Traits and Soil Properties in Pinus thunbergia and Euonymus japonicus Saplings under Drought and Cadmium (Cd) Stress
by Shan Li, Jing Wang, Sen Lu, Huan Li and Junkang Guo
Forests 2024, 15(7), 1141; https://doi.org/10.3390/f15071141 - 29 Jun 2024
Viewed by 1345
Abstract
Pinus thunbergii and Euonymus japonicus are two species commonly found in arid and semi-arid areas; however, their responses in terms of physiological traits and soil properties under drought and cadmium (Cd) stress are not clear. In this study, we carried out single and [...] Read more.
Pinus thunbergii and Euonymus japonicus are two species commonly found in arid and semi-arid areas; however, their responses in terms of physiological traits and soil properties under drought and cadmium (Cd) stress are not clear. In this study, we carried out single and combined stress treatments consisting of drought and Cd on saplings of P. thunbergii and E. japonicus and investigated the responses in terms of the physiological traits and soil properties of both species. For both species, under single Cd stress, Cd was observed in both the xylem and phloem, while the root Cd2+ flow rate fluctuated at different levels of Cd stress. Under both single and combined stress, as the stress level increased, the abscisic acid (ABA) content of the leaves and roots increased significantly, while the indole-3-acetic acid (IAA) content of the leaves and roots decreased significantly. Moreover, the non-structural carbohydrate (NSC) content of the leaves, stems, and roots, as well as the leaf chlorophyll content, decreased significantly. Under drought stress, the xylem water potential and hydraulic conductivity significantly decreased, which was exacerbated by Cd stress; this led to a more significant decrease in water potential and hydraulic conductivity under the combined stresses. Meanwhile, no significant changes in the conduit lumen diameter and double-wall thickness were observed, except for the double cell wall thickness of the P. thunbergii tracheid, which increased. In addition, both the single stresses and the combined stress of drought and Cd induced significant changes in the soil properties of the two species, i.e., the ammonium nitrogen, nitrate nitrogen, and effective phosphorus of the soil increased significantly, and the increase in content was more significant under combined stress. The diversity of the soil microbial community of P. thunbergii saplings significantly increased, while no change was found in its microbial community abundance under the single stresses and combined stress; however, the diversity and abundance of the soil microbial community in E. japonicus saplings showed the opposite pattern, which indicates that the effect of Cd on soil microorganisms is more significant than the effect of drought. The activity of sucrase and catalase in P. thunbergii soil fluctuated under the single stress and combined stress when compared, and the activity of sucrase in the soil of the E. japonicus species decreased. However, its catalase activity increased significantly under the single drought and Cd stress and combined stress when compared. We found that the combined stresses exacerbated the effects of the single stress in both species. Our study provides more detailed information on the responses in terms of the physiological traits and soil properties of the two species under single and combined stress consisting of drought and Cd. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

15 pages, 9379 KB  
Article
Microbial Precipitation of Calcium Carbonate for Crack Healing and Stabilization of Sandy Soils
by Yumi Kim and Yul Roh
Appl. Sci. 2024, 14(4), 1568; https://doi.org/10.3390/app14041568 - 16 Feb 2024
Cited by 8 | Viewed by 3725
Abstract
Microbially induced calcium carbonate (CaCO3) precipitation (MICP) can improve the shear strength of soil via biocementation while reducing its porosity and hydraulic conductivity. The purpose of this study was to evaluate the effect of the addition of bacterial metabolites and montmorillonite [...] Read more.
Microbially induced calcium carbonate (CaCO3) precipitation (MICP) can improve the shear strength of soil via biocementation while reducing its porosity and hydraulic conductivity. The purpose of this study was to evaluate the effect of the addition of bacterial metabolites and montmorillonite on the crack healing and biocementation of sandy soil during the MICP process. Cracks were generated by drying wet soil samples in Petri dishes, after which they were sprayed with one of four treatments: deionized water, a cementation solution, bacteria mixed with the cementation solution, and bacterial metabolites mixed with the cementation solution. After five cycles of this spray treatment, the surface crack ratio was observed to decrease by about 71% when living cells were used and by about 80% when microbial metabolites were added. However, the crack reduction ratio was relatively low when treated with water (28%) and the cementation solution alone (48%). To investigate the effect of adding a phyllosilicate to improve the strength of sandy soil, MICP was induced in sand mixed with 0–30% montmorillonite (MMT). As a result, the soil strength increased with higher levels of MMT, indicating that MMT contributed to soil stabilization as a colloid for CaCO3 precipitation and via adhesion between sand grains. Therefore, for the crack healing and stabilization of sandy soil, the addition of bacterial metabolites and montmorillonite may enhance the effectiveness of the MICP process. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

Back to TopTop