Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = cefotaxime/clavulanic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 384 KiB  
Article
Outbreak Caused by VIM-1- and VIM-4-Positive Proteus mirabilis in a Hospital in Zagreb
by Branka Bedenić, Gernot Zarfel, Josefa Luxner, Andrea Grisold, Marina Nađ, Maja Anušić, Vladimira Tičić, Verena Dobretzberger, Ivan Barišić and Jasmina Vraneš
Pathogens 2025, 14(8), 737; https://doi.org/10.3390/pathogens14080737 - 26 Jul 2025
Viewed by 290
Abstract
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of [...] Read more.
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of P. mirabilis emerged due to the production of carbapenemases, mostly belonging to Ambler classes B and D. Here, we report an outbreak of infections due to carbapenem-resistant P. mirabilis that were observed in a psychiatric hospital in Zagreb, Croatia. The characteristics of ESBL and carbapenemase-producing P. mirabilis isolates, associated with an outbreak, were analyzed. Materials and methods: The antibiotic susceptibility testing was performed by the disk-diffusion and broth dilution methods. The double-disk synergy test (DDST) and inhibitor-based test with clavulanic and phenylboronic acid were applied to screen for ESBLs and p-AmpCs, respectively. Carbapenemases were screened by the modified Hodge test (MHT), while carbapenem hydrolysis was investigated by the carbapenem inactivation method (CIM) and EDTA-carbapenem-inactivation method (eCIM). The nature of the ESBLs, carbapenemases, and fluoroquinolone-resistance determinants was investigated by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). Selected isolates were subjected to molecular characterization of the resistome by an Inter-Array Genotyping Kit CarbaResisit and whole-genome sequencing (WGS). Results: In total, 20 isolates were collected and analyzed. All isolates exhibited resistance to amoxicillin alone and when combined with clavulanic acid, cefuroxime, cefotaxime, ceftriaxone, cefepime, imipenem, ceftazidime–avibactam, ceftolozane–tazobactam, gentamicin, amikacin, and ciprofloxacin. There was uniform susceptibility to ertapenem, meropenem, and cefiderocol. The DDST and combined disk test with clavulanic acid were positive, indicating the production of an ESBL. The MHT was negative in all except one isolate, while the CIM showed moderate sensitivity, but only with imipenem as the indicator disk. Furthermore, eCIM tested positive in all of the CIM-positive isolates, consistent with a metallo-β-lactamase (MBL). PCR and sequencing of the selected amplicons identified VIM-1 and VIM-4. The Inter-Array Genotyping Kit CarbaResist and WGS identified β-lactam resistance genes blaVIM, blaCTX-M-15, and blaTEM genes; aminoglycoside resistance genes aac(3)-IId, aph(6)-Id, aph(3″)-Ib, aadA1, armA, and aac(6′)-IIc; as well as resistance genes for sulphonamides sul1 and sul2, trimethoprim dfr1, chloramphenicol cat, and tetracycline tet(J). Conclusions: This study revealed an epidemic spread of carbapenemase-producing P. mirabilis in two wards in a psychiatric hospital. Due to the extensively resistant phenotype (XDR), therapeutic options were limited. This is the first report of carbapenemase-producing P. mirabilis in Croatia. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

14 pages, 1347 KiB  
Article
Genomic Characterization of Carbapenem-Resistant Acinetobacter baumannii (OXA-23) and Klebsiella pneumoniae (KPC-2) Causing Hospital-Acquired Infections in Dogs
by Isabela Pádua Zanon, João Victor Ferreira Campos, Yasmin Gonçalves de Castro, Isadora Maria Soares de Melo, Flávia Figueira Aburjaile, Bertram Brenig, Vasco Azevedo and Rodrigo Otávio Silveira Silva
Antibiotics 2025, 14(6), 584; https://doi.org/10.3390/antibiotics14060584 - 6 Jun 2025
Viewed by 904
Abstract
Background/Objectives: Antimicrobial resistance is a major global health threat. Among the most problematic pathogens are carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae, which are significant causes of mortality in humans, particularly in the context of nosocomial infections. In companion animals, these bacteria have [...] Read more.
Background/Objectives: Antimicrobial resistance is a major global health threat. Among the most problematic pathogens are carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae, which are significant causes of mortality in humans, particularly in the context of nosocomial infections. In companion animals, these bacteria have been reported mainly as colonizers of healthy animals or, less frequently, in community-acquired infections. However, no confirmed cases of healthcare-associated infections caused by these species have been documented in this population. This study reports the first confirmed fatal cases of infection with carbapenem-resistant A. baumannii and KPC-producing K. pneumoniae in dogs. Methods: Three hospitalized dogs developed infections associated with distinct anatomical devices, including a venous catheter, an endotracheal tube, and a Penrose drain. Bacterial isolation followed by antimicrobial susceptibility testing identified carbapenem-resistant A. baumannii and K. pneumoniae. The isolates were subsequently subjected to additional antimicrobial resistance tests and whole-genome sequencing (WGS). Results: WGS confirmed the presence of the OXA-23 carbapenemase gene in both A. baumannii isolates and the KPC-2 carbapenemase gene was detected in the K. pneumoniae strain. All three strains exhibited resistance to multiple antimicrobial classes, including β-lactams (amoxicillin-clavulanic acid, ampicillin, cephalotin, piperacillin-tazobactam, cefoxitin, ceftiofur, cefotaxime, ertapenem, imipenem and meropenem), aminoglycosides (gentamicin, neomycin), tetracyclines (doxycycline, tetracycline and oxytetracycline), fluoroquinolones (ciprofloxacin, enrofloxacin), and folate pathway antagonists (trimethoprim-sulfamethoxazole). Multilocus sequence typing identified two high-risk clones: K. pneumoniae ST340 (CC258) and A. baumannii ST15 (CC15). Single nucleotide polymorphism analysis confirmed a high degree of genetic similarity between these isolates and strains previously associated with human infections in Brazil. Conclusions: These findings provide the first evidence of fatal, healthcare-associated infections caused by these multidrug-resistant pathogens in dogs and underscore the need to strengthen surveillance and infection control practices in veterinary hospitals. Furthermore, the results raise concerns about the potential of companion animals to act as reservoirs for multidrug-resistant organisms of public health relevance. Full article
Show Figures

Figure 1

16 pages, 881 KiB  
Article
The Importance of Gram-Negative Rods in Chronic Rhinosinusitis
by Magdalena Ratajczak, Tatiana Fijalkowska-Ratajczak, Dorota Kaminska, Małgorzata Leszczyńska and Jolanta Dlugaszewska
Appl. Sci. 2025, 15(11), 6108; https://doi.org/10.3390/app15116108 - 29 May 2025
Viewed by 412
Abstract
Background: Chronic rhinosinusitis (CRS) affects 5.5–28% of the population and is primarily an inflammatory disease, with microbiota potentially playing a key role. Understanding microbial pathogens and resistance patterns is crucial for effective management. This study aimed to evaluate the incidence of Gram-negative rods [...] Read more.
Background: Chronic rhinosinusitis (CRS) affects 5.5–28% of the population and is primarily an inflammatory disease, with microbiota potentially playing a key role. Understanding microbial pathogens and resistance patterns is crucial for effective management. This study aimed to evaluate the incidence of Gram-negative rods in CRS in adults as a part of a prospective microbiological study. Methods: Over one year, paranasal sinus mucosa samples from CRS patients and nasal concha samples from controls were analyzed. Cultivable bacterial flora was assessed using culture-based methods. Biofilm formation was evaluated via a microtiter-plate assay, and antibiotic susceptibility was tested using the disk diffusion method. Results: Tissue samples from 74 CRS patients and 47 controls yielded 198 bacterial strains. Gram-positive cocci dominated, while Gram-negative rods accounted for 17.6%, with Escherichia coli, Klebsiella oxytoca, and Citrobacter spp. being most common. All Gram-negative rods formed biofilms in vitro. They were susceptible to cefotaxime, aztreonam, ciprofloxacin, and meropenem but showed varying sensitivity to ampicillin (20–67%), tigecycline (40–57%), and amoxicillin/clavulanic acid (73–83%). Conclusions: The result of this study underlines that treatment of CRS should be based on the result of drug susceptibility testing of the isolated microorganism. Full article
(This article belongs to the Special Issue Advances in Microbiota in Human Health and Diseases)
Show Figures

Figure 1

10 pages, 483 KiB  
Article
Antibiotic-Resistant Salmonella Circulation in the Human Population in Campania Region (2010–2023)
by Maria Francesca Peruzy, Nicoletta Murru, Maria Rosaria Carullo, Immacolata La Tela, Antonio Rippa, Anna Balestrieri and Yolande Thérèse Rose Proroga
Antibiotics 2025, 14(2), 189; https://doi.org/10.3390/antibiotics14020189 - 12 Feb 2025
Cited by 2 | Viewed by 1025
Abstract
Background/Objectives: A retrospective study was conducted to evaluate antibiotic resistance among Salmonella strains isolated during human infection using data from the computer database (SIGLA) of the Salmonella Typing Center (Ce.Ti.Sa) of the Istituto Zooprofilattico del Mezzogiorno (IZSM). Methods: From 2010 to [...] Read more.
Background/Objectives: A retrospective study was conducted to evaluate antibiotic resistance among Salmonella strains isolated during human infection using data from the computer database (SIGLA) of the Salmonella Typing Center (Ce.Ti.Sa) of the Istituto Zooprofilattico del Mezzogiorno (IZSM). Methods: From 2010 to 2023, the Ce.Ti.Sa laboratory tested 680 Salmonella strains against the following: amoxicillin/clavulanic acid, ampicillin, azithromycin, cefixime, cefoxitin, cefotaxime, ceftazidime, chloramphenicol, ciprofloxacin, colistin, erythromycin, gentamicin, kanamycin, meropenem, nalidixic acid, pefloxacin, streptomycin, sulfisoxazole, sulfonamides, tetracyclines, tigecycline, and trimethoprim. Results: The most common serovars were S. monophasic Typhimurium (23.2%), S. Enteritidis (16.8%), and S. Typhimurium (16.0%). Nearly all strains were resistant to azithromycin (99.4%) and showed high resistance to sulphonamides, tetracycline, streptomycin, and ampicillin. The study found that 45.8% of strains exhibited multidrug resistance. Resistance to ciprofloxacin increased over time. Serovar-specific resistance varied: S. monophasic Typhimurium was resistant to azithromycin (100.0%), tetracycline (93.0%), and ampicillin (92.4%); S. Enteritidis showed 100.0% resistance to azithromycin; S. Typhimurium had high resistance to azithromycin, streptomycin, and ampicillin; and S. Infantis was resistant to erythromycin, sulfonamides, and azithromycin. Conclusions: The study highlights a troubling prevalence of Salmonella-resistant strains, emphasizing the need for infection prevention, proper antibiotic use in humans and animals, and the development of new antibiotics. Full article
Show Figures

Figure 1

25 pages, 2475 KiB  
Article
Green Tea Extract (Theaceae; Camellia sinensis L.): A Promising Antimicrobial, Anti-Quorum Sensing and Antibiofilm Candidate Against Multidrug-Resistant Campylobacter Species
by Mona S. Emara, Ahmed M. Ammar, Ashraf M.O. Abdelwahab, Attia A. Elgdawy, Adel Abdelkhalek, Elena Pet, Gabi Dumitrescu, Mirela Ahmadi and Norhan K. Abd El-Aziz
Antibiotics 2025, 14(1), 61; https://doi.org/10.3390/antibiotics14010061 - 9 Jan 2025
Cited by 2 | Viewed by 1669
Abstract
Background: Thermophilic Campylobacter species are among the main culprits behind bacterial gastroenteritis globally and have grown progressively resistant to clinically important antimicrobials. Many studies have been carried out to explore innovative and alternative strategies to control antibiotic-resistant campylobacters in animal reservoirs and human [...] Read more.
Background: Thermophilic Campylobacter species are among the main culprits behind bacterial gastroenteritis globally and have grown progressively resistant to clinically important antimicrobials. Many studies have been carried out to explore innovative and alternative strategies to control antibiotic-resistant campylobacters in animal reservoirs and human hosts; however, limited studies have been performed to develop efficient control schemes against Campylobacter biofilms. Methods: This study investigated the antimicrobial and antibiofilm activities of some herbal extracts against multidrug-resistant (MDR) Campylobacter species recovered from different sources using phenotypic and molecular techniques. Results: The overall Campylobacter species prevalence was 21.5%, representing 15.25% and 6.25% for C. jejuni and C. coli, respectively. Regarding C. jejuni, the highest resistance rate was observed for amoxicillin–clavulanic acid and colistin (85.25% each), followed by cefotaxime (83.61%) and tetracycline (81.97%), whereas C. coli isolates showed absolute resistance to cefotaxime followed by erythromycin (92%) and colistin (88%). Remarkably, all Campylobacter isolates were MDR with elevated multiple antimicrobial resistance (MAR) indices (0.54–1). The antimicrobial potentials of green tea (Camellia sinensis), rosemary (Rosmarinus officinalis) and ginger (Zingiber officinale) extracts against MDR Campylobacter isolates were assessed by the disk diffusion assay and broth microdilution technique. Green tea extract showed a marked inhibitory effect against tested isolates, exhibiting growth inhibition zone diameters of 8 to 38 mm and a minimum inhibitory concentration (MIC) range of 1.56–3.12 mg/mL, unlike the rosemary and ginger extracts. Our findings reveal a respectable antibiofilm activity (>50% biofilm formation inhibition) of green tea against the preformed biofilms of Campylobacter isolates. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) results showed a significant decrease (p < 0.05) in the expression levels of biofilm biosynthesis gene and its regulator (FlaA and LuxS, respectively) in Campylobacter isolates treated with the green tea extract in comparison with untreated ones. Conclusion: This is the first in vitro approach that has documented the inhibitory activity of green tea extract against MDR-biofilm-producing Campylobacter species isolated from different sources. Further in vivo studies in animals’ models should be performed to provide evidence of concept for the implementation of this alternative candidate for the mitigation of MDR Campylobacter infections in the future. Full article
(This article belongs to the Special Issue Antimicrobial and Antibiofilm Activity by Natural Compounds)
Show Figures

Figure 1

14 pages, 1014 KiB  
Article
Haemophilus influenzae Invasive Infections in Children in Vaccine Era: Phenotypic and Genotypic Characterization Tunis, Tunisia
by Yasmine Chelbi, Khaoula Meftah, Ala-Eddine Deghmane, Samar Mhimdi, Firas Aloui, Aida Bouafsoun, Eva Hong, Khaled Menif, Khadija Boussetta, Monia Khemiri, Samir Boukthir, Mehdi Trifa, Said Jlidi, Riadh Jouini, Zohra Fitouri, Mohamed-Nabil Nessib, Muhamed-Kheir Taha and Hanen Smaoui
Microorganisms 2024, 12(12), 2666; https://doi.org/10.3390/microorganisms12122666 - 23 Dec 2024
Viewed by 1355
Abstract
The changing epidemiological profile of invasive Haemophilus influenzae infections (IIHi) is noted in the post-vaccination era. The aim of this study was to characterize phenotypically and genotypically invasive Haemophilus influenzae (Hi) isolates detected in Tunisian pediatric patients. A retrospective study was conducted in [...] Read more.
The changing epidemiological profile of invasive Haemophilus influenzae infections (IIHi) is noted in the post-vaccination era. The aim of this study was to characterize phenotypically and genotypically invasive Haemophilus influenzae (Hi) isolates detected in Tunisian pediatric patients. A retrospective study was conducted in the microbiology laboratory of the Children’s Hospital of Tunis over ten years (2013–2023). All IIHi cases were included. Molecular identification and serotyping were conducted through qPCR. Molecular typing and analysis of resistance genes were extracted from whole genome sequencing data. Fifty-three IIHi cases were collected. Children under five years old were the most affected (81%). Non-typable isolates (NTHi) were predominant (79%) followed by serotype b (17%) and serotype a (4%). Genetic diversity was observed, essentially among NTHi isolates. Resistance of Hi isolates to ampicillin, amoxicillin–clavulanic acid and cefotaxime (CTX) were 42%, 20% and 4%, respectively. Thirteen isolates (29%) produced a beta-lactamase and 14 carried the blaTEM-1 gene (kappa = 0.95). For non-enzymatic resistance, group 3 (n = 12) showed resistance to ampicillin. Groupe 4 (n = 9, NTHi) showed discordances with resistance to CTX. The emergence of resistance to CTX is concerning. Continuous surveillance through molecular tools in conjunction with phenotypic and clinical data is necessary to ensure better management of these infections. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

20 pages, 4176 KiB  
Article
Antimicrobial Susceptibility Profiles of Salmonella spp. Isolates from Clinical Cases of Waterfowl in Hungary Between 2022 and 2023
by Ádám Kerek, Ábel Szabó and Ákos Jerzsele
Microorganisms 2024, 12(12), 2462; https://doi.org/10.3390/microorganisms12122462 - 29 Nov 2024
Viewed by 1529
Abstract
The global spread of antimicrobial resistance is one of the most significant challenges of the 21st century. The waterfowl sector is an economically decisive part of the poultry industry, yet it remains under-researched, and its antibiotic usage is less monitored. Our study aimed [...] Read more.
The global spread of antimicrobial resistance is one of the most significant challenges of the 21st century. The waterfowl sector is an economically decisive part of the poultry industry, yet it remains under-researched, and its antibiotic usage is less monitored. Our study aimed to determine the antimicrobial susceptibility of avian pathogenic Salmonella strains, which are still prevalent in ducks and geese, against antibiotics critical for both animal and human health, and to compare these findings with human resistance data. We analyzed 71 Salmonella strains, collected by the National Reference Laboratory from samples originating from 29 settlements across Hungary between 2022 and 2023, using the minimum inhibitory concentration (MIC) method. Notably, the duck strains (n = 52) exhibited 57.7% resistance to potentiated sulfonamides, 28.8% resistance to doxycycline, and 25% resistance to cefotaxime. Among the geese strains (n = 19), 52.6% showed resistance to potentiated sulfonamides, followed by 26.3% resistance to doxycycline and amoxicillin–clavulanic acid, and 15.8% resistance to cefotaxime, ceftiofur, and ceftriaxone. When compared to human resistance data, we found significantly lower resistance levels for amoxicillin in ducks (20.0%) and geese (8.3%) in the Dél-Alföld region, compared to ampicillin resistance in human samples (45.4%), in which amoxicillin analog is an antibiotic in human medicine. Resistance to ciprofloxacin was only observed in ducks (2.0%), whereas pefloxacin resistance in human medicine was notably higher (22.3%). Overall, the results for the waterfowl sector in the Dél-Alföld region of Hungary align with the international literature in several aspects. Further investigation using next-generation sequencing to identify the genetic basis of multi-resistant strains is warranted. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

11 pages, 380 KiB  
Article
Escherichia coli Occurrence and Antimicrobial Resistance in a Swine Slaughtering Process
by Aryele Nunes da Cruz Encide Sampaio, Evelyn Fernanda Flores Caron, Camila Koutsodontis Cerqueira-Cézar, Lára Cristina Bastos Juliano, Leonardo Ereno Tadielo, Patrícia Regina Lopes Melo, Janaína Prieto de Oliveira, José Carlos de Figueiredo Pantoja, Otávio Augusto Martins, Luís Augusto Nero, Fábio Sossai Possebon and Juliano Gonçalves Pereira
Pathogens 2024, 13(10), 912; https://doi.org/10.3390/pathogens13100912 - 19 Oct 2024
Viewed by 1438
Abstract
The swine production chain can be a reservoir of antimicrobial-resistant Escherichia coli, which transfers resistance genes to other bacteria, serving as an important biomarker in the One Health approach. This study aimed to identify the frequency and antimicrobial resistance profile of E. [...] Read more.
The swine production chain can be a reservoir of antimicrobial-resistant Escherichia coli, which transfers resistance genes to other bacteria, serving as an important biomarker in the One Health approach. This study aimed to identify the frequency and antimicrobial resistance profile of E. coli in the swine production chain, assess the presence of extended-spectrum beta-lactamases (ESBL), and compare resistance profiles across different sample types. A total of 622 samples of swine carcasses from various points of the slaughter process (n = 400), swine feces (n = 100), commercial cuts (n = 45), environment (n = 67), and feces from employees (n = 10) of a pig slaughterhouse certified by the Federal Inspection Service, located in São Paulo state, Brazil, were collected. A total of 1260 E. coli isolates were obtained from the samples, with 73.6% of the samples testing positive. The agar disk diffusion test was performed with 10 different classes of antimicrobials. To confirm the production of ESBLs, the isolates were submitted to a double-disk synergism test using cefotaxime, ceftazidime, and amoxicillin with clavulanic acid. Of the total isolates, 80.71% were multidrug resistant. All ESBL-producing isolates were multidrug resistant and resistant to amoxicillin, tetracycline, and chloramphenicol. Isolates from human feces samples had less chance of being multidrug resistant than samples from other sources. The diversity of resistance profiles was verified in the samples, not clustering according to the sources, except for human feces isolates that clustered, evidencing lower antimicrobial resistance variability of these samples. Antimicrobial resistance is significantly present in the pork production chain, necessitating a comprehensive multidisciplinary approach to effectively mitigate risks within the One Health framework. Full article
(This article belongs to the Special Issue Foodborne Pathogens: The Antimicrobial Resistance from Farm to Fork)
Show Figures

Figure 1

18 pages, 7178 KiB  
Article
Multidrug-Resistance of Vibrio Species in Bivalve Mollusks from Southern Thailand: Isolation, Identification, Pathogenicity, and Their Sensitivity toward Chitooligosaccharide-Epigallocatechin-3-Gallate Conjugate
by Mruganxi Harshad Sharma, Suriya Palamae, Mingkwan Yingkajorn, Soottawat Benjakul, Avtar Singh and Jirayu Buatong
Foods 2024, 13(15), 2375; https://doi.org/10.3390/foods13152375 - 27 Jul 2024
Cited by 8 | Viewed by 2195
Abstract
Vibrio spp. is a Gram-negative bacteria known for its ability to cause foodborne infection in association with eating raw or undercooked seafood. The majority of these foodborne illnesses are caused by mollusks, especially bivalves. Thus, the prevalence of Vibrio spp. in blood clams [...] Read more.
Vibrio spp. is a Gram-negative bacteria known for its ability to cause foodborne infection in association with eating raw or undercooked seafood. The majority of these foodborne illnesses are caused by mollusks, especially bivalves. Thus, the prevalence of Vibrio spp. in blood clams (Tegillarca granosa), baby clams (Paphia undulata), and Asian green mussels (Perna viridis) from South Thailand was determined. A total of 649 Vibrio spp. isolates were subjected to pathogenicity analysis on blood agar plates, among which 21 isolates from blood clams (15 isolates), baby clams (2 isolates), and green mussels (4 isolates) showed positive β–hemolysis. Based on the biofilm formation index (BFI) of β–hemolysis-positive Vibrio strains, nine isolates exhibited a strong biofilm formation capacity, with a BFI in the range of 1.37 to 10.13. Among the 21 isolates, 6 isolates (BL18, BL82, BL84, BL85, BL90, and BL92) were tlh-positive, while trh and tdh genes were not detected in all strains. Out of 21 strains, 5 strains showed multidrug resistance (MDR) against amoxicillin/clavulanic acid, ampicillin/sulbactam, cefotaxime, cefuroxime, meropenem, and trimethoprim/sulfamethoxazole. A phylogenetic analysis of MDR Vibrio was performed based on 16s rDNA sequences using the neighbor-joining method. The five MDR isolates were identified to be Vibrio neocaledonicus (one isolate), Vibrio fluvialis (one isolate) and, Vibrio cidicii (three isolates). In addition, the antimicrobial activity of chitooligosaccharide–epigallocatechin gallate (COS-EGCG) conjugate against MDR Vibrio strains was determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-EGCG conjugate were in the range of 64–128 µg/mL. The antimicrobial activity of the conjugate was advocated by the cell lysis of MDR Vibrio strains, as elucidated by scanning electron microscopic images. Vibrio spp. isolated from blood clams, baby clams, and Asian green mussels were highly pathogenic, exhibiting the ability to produce biofilm and being resistant to antibiotics. However, the COS-EGCG conjugate could be used as a potential antimicrobial agent for controlling Vibrio in mollusks. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 6185 KiB  
Article
The Molecular Identification and Comprehensive Analysis of Klebsiella pneumoniae Isolated from Industrial Wastewater
by Kai Yan, Changfu Li, Weiyu Wang, Juan Guo and Haifeng Wang
Separations 2024, 11(4), 121; https://doi.org/10.3390/separations11040121 - 17 Apr 2024
Viewed by 2891
Abstract
Industrial wastewater typically contains many organic and inorganic pollutants and is also contaminated by various microorganisms. Microbial species in industrial wastewater have not been extensively investigated. In this experiment, a Klebsiella pneumoniae strain was isolated for the first time from industrial wastewater containing [...] Read more.
Industrial wastewater typically contains many organic and inorganic pollutants and is also contaminated by various microorganisms. Microbial species in industrial wastewater have not been extensively investigated. In this experiment, a Klebsiella pneumoniae strain was isolated for the first time from industrial wastewater containing a high concentration of sulfate and phosphate. Mass spectrometry, genetic analysis, and biochemical identification were conducted to understand the genetic and biochemical characteristics of this Klebsiella pneumoniae strain recovered from industrial wastewater. Growth experiments revealed that it exhibited an excellent growth rate in nutrient broth. Further analyses showed that the strain was sensitive to most antibiotics but resistant to chloramphenicol and nitrofurantoin. It also exhibited significant resistance to piperacillin/tazobactam and cefotaxime/clavulanic acid. Resistance gene experiments indicated the presence of gyrA, OqxB, and ParC genes associated with antibiotic resistance in the isolated Klebsiella pneumoniae strain. Proteomics uncovered the following three proteins related to drug resistance: the multi-drug resistant outer membrane protein MdtQ, the multi-drug resistant secretion protein, and the modulator of drug activity B, which are coexistent in Klebsiella pneumoniae. Proteomics and bioinformatics analyses further analyzed the protein composition and functional enrichment of Klebsiella pneumoniae. The isolation of Klebsiella pneumoniae from a high concentration in sulfate and phosphate industrial wastewater provides a new direction for further research on the characteristics and drug resistance traits of industrial wastewater microorganisms and the potential risks they may pose when released into the environment. Full article
(This article belongs to the Topic Sustainable Technologies for Water Purification)
Show Figures

Figure 1

14 pages, 930 KiB  
Communication
Characterization of Virulence Factors and Antimicrobial Susceptibility of Streptococcus agalactiae Associated with Bovine Mastitis Cases in Thailand
by Sirirat Wataradee, Thanasak Boonserm, Sukuma Samngamnim and Kittisak Ajariyakhajorn
Animals 2024, 14(3), 447; https://doi.org/10.3390/ani14030447 - 30 Jan 2024
Cited by 5 | Viewed by 3624
Abstract
Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis. The ability of S. agalactiae to cause widespread mastitis relies on bacterial virulence factors. In this study, we detected 10 virulence determinants associated with mastitis pathogenicity using conventional PCR. The antimicrobial susceptibility of [...] Read more.
Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis. The ability of S. agalactiae to cause widespread mastitis relies on bacterial virulence factors. In this study, we detected 10 virulence determinants associated with mastitis pathogenicity using conventional PCR. The antimicrobial susceptibility of 100 S. agalactiae isolates from 13 Thai dairy herds was assessed using the Kirby–Bauer disk diffusion susceptibility test. All strains had at least three virulence factors responsible for invasion, adhesion, and infection (fbsB, bibA, and cfb, respectively). The predominant virulent profile of S. agalactiae strains revealed the presence of fbsA, fbsB, bibA, cfb, and cyl (n = 96). Most strains were sensitive to penicillin, ampicillin, amoxicillin-clavulanic acid, cefotaxime, ceftiofur, erythromycin, sulfamethoxazole-trimethoprim, and vancomycin. However, all strains were resistant to aminoglycosides, including kanamycin and gentamicin attributed to the unnecessary antimicrobial use. Furthermore, we identified seven multidrug resistant (MDR) S. agalactiae strains among four dairy herds, of which, two were vancomycin resistant. Our study provides profiles for virulence factors and antimicrobial susceptibility, which are beneficial for the clinical monitoring, prevention, and control of bovine mastitis in dairy cattle in Thailand. Moreover, we emphasize the need for awareness regarding the judicious use of antimicrobials on dairy farms. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

17 pages, 9881 KiB  
Article
Genome Analysis of Klebsiella pneumoniae Reveals International High-Risk Pandemic MDR Clones Emerging in Tertiary Healthcare Settings in Uganda
by Denis K. Byarugaba, Bernard Erima, Godfrey Wokorach, Stephen Alafi, Hannah Kibuuka, Edison Mworozi, Florence Najjuka, James Kiyengo, Ambrose K. Musinguzi and Fred Wabwire-Mangen
Pathogens 2023, 12(11), 1334; https://doi.org/10.3390/pathogens12111334 - 9 Nov 2023
Cited by 6 | Viewed by 2852
Abstract
Klebsiella pneumoniae is a threat to public health due to its continued evolution. In this study, we investigated the evolution, convergence, and transmission of hypervirulent and multi-drug resistant (MDR) clones of K. pneumoniae within healthcare facilities in Uganda. There was high resistance to [...] Read more.
Klebsiella pneumoniae is a threat to public health due to its continued evolution. In this study, we investigated the evolution, convergence, and transmission of hypervirulent and multi-drug resistant (MDR) clones of K. pneumoniae within healthcare facilities in Uganda. There was high resistance to piperacillin (90.91%), cefuroxime (86.96%), ceftazidime (84.62%), cefotaxime (84.00%), amoxicillin/clavulanate (75%), nalidixic acid (73.68%), and nitrofurantoin (71.43%) antibiotics among K. pneumoniae isolates. The isolates were genetically diverse, consisting of 20 different sequence types (STs) and 34 K-serotype groups. Chromosomal fosA (for fosfomycin) and oqxAB efflux pump genes were detected in all isolates. Two carbapenem resistance genes, blaNDM-5 and blaOXA-181 plus extended-spectrum beta-lactamase (blaCTX-M-15) gene (68.12%), quinolone-resistant genes qnrS1 (28.99%), qnrB1 (13.04%), and qnrB6 (13.04%) and others were found. All, except three of the isolates, harbored plasmids. While the isolates carried a repertoire of virulence genes, only two isolates carried hypervirulent genes demonstrating a low prevalence (2.90%) of hypervirulent strains. Our study demonstrated genetically diverse populations of K. pneumoniae, low levels of carbapenem resistance among the isolates, and no convergence of MDR and hypervirulence. Emerging high-risk international pandemic clones (ST11, ST14, ST147, ST 86 and ST307) were detected in these healthcare settings which are difficult to treat. Full article
(This article belongs to the Special Issue Infectious Diseases and Antimicrobial Resistance)
Show Figures

Figure 1

13 pages, 570 KiB  
Article
Pathotypes and Phenotypic Resistance to Antimicrobials of Escherichia coli Isolates from One-Day-Old Chickens
by Katerina Nedbalcova, Jaroslav Bzdil, Aneta Papouskova, Monika Zouharova, Katarina Matiaskova, Kamil Stastny, Vladimir Sladecek, David Senk, Matej Petr and Petr Stolar
Pathogens 2023, 12(11), 1330; https://doi.org/10.3390/pathogens12111330 - 8 Nov 2023
Cited by 2 | Viewed by 1731
Abstract
The aim of this work was to describe the pathotypes of Escherichia coli strains isolated from one-day-old chickens, as well as the occurrence of resistance and multidrug resistance (MDR) in these strains. A total of 429 mixed swabs from 4290 one-day-old chicks were [...] Read more.
The aim of this work was to describe the pathotypes of Escherichia coli strains isolated from one-day-old chickens, as well as the occurrence of resistance and multidrug resistance (MDR) in these strains. A total of 429 mixed swabs from 4290 one-day-old chicks were examined between August 2021 and July 2023 (24 months) during routine point-of-destination inspections at 12 poultry farms in the Czech Republic. All samples were processed via cultivation methods using meat-peptone blood agar and Mc Conkey agar under aerobic conditions at 37 ± 1 °C for 18–24 h. The identification of the strains was performed using MALDI-TOF mass spectrometry. All confirmed strains of E. coli were screened via single or multiplex PCRs for the presence of genes encoding the virulence-associated factors iroN, cvaC, iss, felA, iutA, frz and tsh. Antimicrobial susceptibility tests were performed using the minimal inhibitory concentration (MIC) method, focusing on ampicillin, cefotaxime, tetracycline, doxycycline, enrofloxacin, florfenicol, amoxicillin with clavulanic acid and trimethoprim with sulfamethoxazole. A total of 321 E. coli strains (prevalence of 74.8%) were isolated, and 300 isolates were defined as avian pathogenic strains of E. coli (APEC) via multiplex PCR. Based on the defined virulence genes, the isolates were classified into 31 pathotypes. A total of 15.9% of the tested isolates were susceptible to all the tested antimicrobials. On the other hand, 20.5% of the isolates were identified as multidrug-resistant (8.7% of isolates were resistant to three antimicrobials, 7.3% to four antimicrobials, 3.6% to five antimicrobials and 0.9% to six antimicrobials). Monitoring pathogenic strains of E. coli in different animals and in the environment makes it possible to understand their spread in animal and human populations and, at the same time, reveal the sources of virulence and resistance genes. Full article
(This article belongs to the Topic Advances in Vaccines and Antimicrobial Therapy)
Show Figures

Figure 1

10 pages, 1140 KiB  
Article
Multidrug-Resistant Escherichia coli from Raw Cow Milk in Namwala District, Zambia: Public Health Implications
by Wizaso Mwasinga, Misheck Shawa, Patrick Katemangwe, Herman Chambaro, Prudence Mpundu, Ethel M’kandawire, Chisoni Mumba and Musso Munyeme
Antibiotics 2023, 12(9), 1421; https://doi.org/10.3390/antibiotics12091421 - 8 Sep 2023
Cited by 7 | Viewed by 2682
Abstract
Escherichia coli (E. coli), a major foodborne disease-causing pathogen found in raw cow milk, has even far more reaching public health ramifications as it encodes for antimicrobial resistance (AMR). This study aimed to identify multidrug-resistant (MDR) E. coli from raw cow’s [...] Read more.
Escherichia coli (E. coli), a major foodborne disease-causing pathogen found in raw cow milk, has even far more reaching public health ramifications as it encodes for antimicrobial resistance (AMR). This study aimed to identify multidrug-resistant (MDR) E. coli from raw cow’s milk and evaluate their antimicrobial-resistant profiles. In total, 418 pooled raw cow milk samples were collected from milk collection centers and analysed using standard culture methods to isolate E. coli. Antimicrobial Susceptibility Testing (AST) was conducted using the Kirby Bauer disk diffusion method and PCR was used to identify cefotaxime (CTX) resistant genes. Overall isolation of E. coli was 51.2% (214/418) with MDR observed in 21% (45/214) of isolates across different antibiotic combinations. Resistance was observed towards ampicillin (107/214, 50%), tetracycline (86/214, 40.1%), trimethoprim/sulfamethoxazole (61/214, 28.5%), and amoxicillin/clavulanic acid (CTX) (50/214, 23.4%). Notably, 15% (32/214) resistance to CTX was observed, while 12.6% (27/214) exhibited resistance to imipenem. The blaCTX-M and blaTEM genes were detected in CTX-resistant isolates. The findings of MDR E. coli that harbour blaCTX-M and blaTEM genes in raw cow’s milk indicate serious public health risks for consumers. Full article
(This article belongs to the Special Issue Antimicrobial Resistance of Foodborne Bacteria and Food Safety)
Show Figures

Figure 1

16 pages, 1341 KiB  
Article
Antibacterial and Anti-Biofilm Activities of Cinnamon Oil against Multidrug-Resistant Klebsiella pneumoniae Isolated from Pneumonic Sheep and Goats
by Sara H. Mahrous, Farouk A. El-Balkemy, Naser Z. Abo-Zeid, Mamdouh F. El-Mekkawy, Hend M. El Damaty and Ibrahim Elsohaby
Pathogens 2023, 12(9), 1138; https://doi.org/10.3390/pathogens12091138 - 6 Sep 2023
Cited by 11 | Viewed by 2919
Abstract
The primary objectives were to isolate and identify Klebsiella pneumoniae (K. pneumoniae), and determine the antimicrobial resistance patterns and biofilm formation abilities of the isolates. Additionally, the study aimed to investigate the antimicrobial and anti-biofilm effects of cinnamon oil against K. [...] Read more.
The primary objectives were to isolate and identify Klebsiella pneumoniae (K. pneumoniae), and determine the antimicrobial resistance patterns and biofilm formation abilities of the isolates. Additionally, the study aimed to investigate the antimicrobial and anti-biofilm effects of cinnamon oil against K. pneumoniae isolates. A cross-sectional study was conducted from March 2022 to April 2023 to collect 200 samples (including 156 nasal swabs and 44 lung specimens) from pneumonic sheep and goats admitted to the Veterinary Teaching Hospital of Zagazig University, Egypt. K. pneumoniae was isolated from a total of 72 (36%) samples, with 53 (73.6%) isolates recovered from nasal swabs and 19 (26.4%) from lung samples. Among the samples, 52 (36.9%) were from sheep and 20 (33.9%) were from goats. Antimicrobial susceptibility testing of the 72 K. pneumoniae isolates to 18 antimicrobials revealed that all isolates were resistant to ampicillin, amoxicillin/clavulanic acid, cefotaxime, ceftriaxone, tetracycline, colistin, fosfomycin, and trimethoprim/sulphamethoxazole. None of the isolates were resistant to amikacin, imipenem, and norfloxacin. Multidrug resistance (MDR) was observed in all K. pneumoniae isolates recovered from sheep and goats. The average MAR index was 0.71, ranging from 0.50 to 0.83. Regarding biofilm formation, among the K. pneumoniae isolates with a high MAR index (n = 30), 10% exhibited strong formation, 40% showed moderate formation, 43.3% displayed weak formation, and 6.7% did not form biofilms. Additionally, the biofilm-forming genes treC and fimA were present in all 28 biofilm-forming K. pneumoniae isolates, while the mrkA gene was detected in 15 (53.6%) of the 28 isolates. MDR K. pneumoniae isolates with strong biofilm formation abilities were treated with cinnamon oil at varying concentrations (100%, 75%, 50%, and 25%). This treatment resulted in inhibition zone diameters ranging from 35 to 45 mm. Cinnamon oil exhibited lower minimum inhibitory concentration and minimum bactericidal concentration values compared to norfloxacin for all isolates. Additionally, cinnamon oil significantly reduced the expression of biofilm-associated genes (treC, fimA, and mrkA) when compared to isolates treated with norfloxacin or untreated. In conclusion, this study identified a high level of MDR K. pneumoniae with strong and moderate biofilm formation abilities in pneumonic sheep and goats in Sharika Governorate, Egypt. Although cinnamon oil demonstrated potential antibacterial and anti-biofilm properties against K. pneumoniae, further research is required to investigate its effectiveness in treating K. pneumoniae infections in pneumonic sheep and goats. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

Back to TopTop