Haemophilus influenzae Invasive Infections in Children in Vaccine Era: Phenotypic and Genotypic Characterization Tunis, Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study and Bacterial Isolates
2.2. Identification and Serotyping
2.3. Antimicrobial Susceptibility Testing
2.4. Whole Genome Sequencing
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Clinico-Epidemiological Characteristics of Study Population
3.2. Identification, Serotyping and Molecular Typing
3.3. Antibiotic Susceptibility Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denis, F.; Ploy, M.-C.; Martin, C.; Bingen, E.; Quentin, R. Bactériologie Médicale, Techniques Usuelles; Elsevier Masson: Paris, France, 2016; pp. 358–364. [Google Scholar]
- Smaoui, H.; Tali-Maamar, H.; Zouhair, S.; Bouheraoua, S.; Mefteh, K.; Bouskraoui, M.; Amiche, A.; Khris, M.; Deghmane, A.-E.; Taha, M.-K. Implementation of a prospective study for enhancing surveillance of invasive bacterial infections in North Africa. Int. J. Infect. Dis. 2022, 115, 101–105. [Google Scholar] [CrossRef]
- Slack, M.P.E.; Cripps, A.W.; Grimwood, K.; Mackenzie, G.A.; Ulanova, M. Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use. Clin. Microbiol. Rev. 2021, 34, e0002821. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Haemophilus influenzae. In Annual Epidemiological Report for 2018; ECDC: Stockholm, Sweden, 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/haemophilus-influenzae-annual-epidemiological-report-2018 (accessed on 7 July 2024).
- Active Bacterial Core Surveillance (ABCs). Latest Final Data, Surveillance Reports, CDC. Available online: https://www.cdc.gov/abcs/index.html (accessed on 6 May 2024).
- Ulanova, M.; Tsang, R.S.W. Haemophilus influenzae serotype a as a cause of serious invasive infections. Lancet Infect. Dis. 2014, 14, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Topaz, N.; Tsang, R.; Deghmane, A.E.; Claus, H.; Lâm, T.T.; Litt, D.; Bajanca-Lavado, M.P.; Pérez-Vázquez, M.; Vestrheim, D.; Giufrè, M.; et al. Phylogenetic structure and comparative genomics of multi-national invasive Haemophilus influenzae serotype a isolates. Front. Microbiol. 2022, 13, 856884. [Google Scholar] [CrossRef]
- Wall, E.C.; Taha, M.K. Haemophilus influenzae is fighting back: Is serotype a an emerging threat? Lancet Infect. Dis. 2023, 23, 1106–1108. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.; Terrade, A.; Denizon, M.; Aouiti Trabelsi, M.; Falguières, M.; Taha, M.K.; Deghmane, A.-E. Haemophilus influenzae type b (Hib) seroprevalence in France: Impact of vaccination schedules. BMC Infect. Dis. 2021, 21, 715. [Google Scholar] [CrossRef] [PubMed]
- Steens, A.; Stanoeva, K.R.; Knol, M.J.; Mariman, R.; de Melker, H.E.; van Sorge, N.M. Increase in invasive disease caused by Haemophilus influenzae b, the Netherlands, 2020 to 2021. Euro Surveill. 2021, 26, 2100956. [Google Scholar] [CrossRef]
- Wen, S.; Feng, D.; Chen, D.; Yang, L.; Xu, Z. Molecular epidemiology and evolution of Haemophilus influenzae. Infect. Genet. Evol. 2020, 80, 104205. [Google Scholar] [CrossRef]
- Nürnberg, S.; Claus, H.; Krone, M.; Vogel, U.; Lâm, T.T. Cefotaxime resistance in invasive Haemophilus influenzae isolates in Germany 2016–19: Prevalence, epidemiology and relevance of PBP3 substitutions. J. Antimicrob. Chemother. 2021, 76, 920–929. [Google Scholar] [CrossRef]
- Tønnessen, R.; García, I.; Debech, N.; Lindstrøm, J.C.; Wester, A.L.; Skaare, D. Molecular epidemiology and antibiotic resistance profiles of invasive Haemophilus influenzae from Norway 2017–2021. Front. Microbiol. 2022, 13, 973257. [Google Scholar] [CrossRef]
- Institut Pasteur Paris: Centre National de Référence des Méningocoques et de Haemophilus influenzae. Bilan des Activités Scientifiques et Techniques 2017–2021. Available online: https://www.pasteur.fr/fr/file/53808/download.Institut pasteur (accessed on 1 April 2024).
- Smaoui, H.; Kechrid, A. Étude des souches de Haemophilus influenzae isolées à l’hôpital d’enfants de Tunis en période prévaccinale (1999–2002). Médecine Mal. Infect. 2006, 36, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.S.; Bchir, A.; Amri, F.; Gueddiche, N.; Sfar, T.; Sahloul, S.; Garbouj, M. Epidemiology of Haemophilus influenzae meningitis in Tunisia. East. Mediterr. Health J. 2005, 11, 14–27. [Google Scholar] [PubMed]
- Dhraief, S.; Meftah, K.; Mhimdi, S.; Khiari, H.; Aloui, F.; Borgi, A.; Haddad-Boubaker, S.; Brik, A.; Menif, K.; Kechrid, A.; et al. Epidemiological and bacterial profile of childhood meningitis in Tunisia. Acta Microbiol. Immunol. Hung. 2024, 71, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Deghmane, A.E.; Hong, E.; Chehboub, S.; Terrade, A.; Falguières, M.; Sort, M.; Harrison, O.; Jolley, K.A.; Taha, M.-K. High diversity of invasive Haemophilus influenzae isolates in France and the emergence of resistance to third generation cephalosporins by alteration of ftsI gene. J. Infect. 2019, 79, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Dashti, A.A.; Jadaon, M.M.; Abdulsamad, A.M.; Dashti, H.M. Heat treatment of bacteria: A simple method of DNA extraction for molecular techniques. Kuwait Med. J. 2009, 41, 117–122. [Google Scholar]
- World Health Organisation. Laboratory Methods for the Diagnosis of Meningitis Caused by Neisseria Meningitidis, Streptococcus Pneumoniae, and Haemophilus influenzae: WHO Manual. Available online: https://www.who.int/publications/i/item/laboratory-methods-for-the-diagnosis-of-meningitis-caused-by-neisseria-meningitidis-streptococcus-pneumoniae-and-haemophilus-influenzae (accessed on 8 January 2024).
- Michel, J.; Stoica, M.A.; Aouiti-Trabelsi, M.; Oliveira, F.D.; Hong, E.; Joly, L.M.; Deghmane, A.-E.; Plantier, J.-C.; Taha, M.-K. Prevalence of respiratory pathogens in COVID patients. J. Biotechnol. Biomed. 2023, 6, 450–459. [Google Scholar]
- Vallejo, J.G.; McNeil, J.C.; Hultén, K.G.; Sommer, L.M.; Dunn, J.J.; Kaplan, S.L. Invasive Haemophilus influenzae disease at Texas children’s hospital, 2011 to 2018. Pediatr. Infect. Dis. J. 2019, 38, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Suga, S.; Ishiwada, N.; Sasaki, Y.; Akeda, H.; Nishi, J.; Okada, K.; Fujieda, M.; Oda, M.; Asada, K.; Nakano, T.; et al. A nationwide population-based surveillance of invasive Haemophilus influenzae diseases in children after the introduction of the Haemophilus influenzae type b vaccine in Japan. Vaccine 2018, 36, 5678–5684. [Google Scholar] [CrossRef]
- Soeters, H.M.; Blain, A.; Pondo, T.; Doman, B.; Farley, M.M.; Harrison, L.H.; Lynfield, R.; Miller, L.; Petit, S.; Reingold, A.; et al. Current epidemiology and trends in invasive Haemophilus influenzae disease—United States, 2009–2015. Clin. Infect. Dis. 2018, 67, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Diallo, K.; Feteh, V.F.; Ibe, L.; Antonio, M.; Caugant, D.A.; du Plessis, M.; Deghmane, A.-E.; Feavers, I.M.; Fernandez, K.; Fox, L.M.; et al. Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine 2021, 65, 103274. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, P.H.; Takala, A.K.; Peltola, H.; Eskola, J. Epidemiology of invasive Haemophilus influenzae type b disease. J. Infect. Dis. 1992, 165 (Suppl. S1), S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Slack, M.P.E. The evidence for non-typeable Haemophilus influenzae as a causative agent of childhood pneumonia. Pneumonia 2017, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Cerquetti, M.; Giufrè, M. Why we need a vaccine for non-typeable Haemophilus influenzae. Hum. Vaccines Immunother. 2016, 12, 2357–2361. [Google Scholar] [CrossRef] [PubMed]
- Gkentzi, D.; Slack, M.P.E.; Ladhani, S.N. The burden of nonencapsulated Haemophilus influenzae in children and potential for prevention. Curr. Opin. Infect. Dis. 2012, 25, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Andreas, S.; Testa, M.; Boyer, L.; Brusselle, G.; Janssens, W.; Kerwin, E.; Papi, A.; Pek, B.; Puente-Maestu, L.; Saralaya, D.; et al. Non-typeable Haemophilus influenzae-Moraxella catarrhalis vaccine for the prevention of exacerbations in chronic obstructive pulmonary disease: A multicentre, randomised, placebo-controlled, observer-blinded, proof-of-concept, phase 2b trial. Lancet Respir. Med. 2022, 10, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Heath, P.T.; Booy, R.; Azzopardi, H.J.; Slack, M.P.E.; Bowen-Morris, J.; Griffiths, H.; Ramsay, M.E.; Deeks, J.J.; Moxon, E.R. Antibody concentration and clinical protection after Hib Conjugate vaccination in the United Kingdom. JAMA 2000, 284, 2334–2340. [Google Scholar] [CrossRef]
- Charania, N.A.; Moghadas, S.M. Modelling the effects of booster dose vaccination schedules and recommendations for public health immunization programs: The case of Haemophilus influenzae serotype b. BMC Public Health 2017, 17, 705. [Google Scholar] [CrossRef] [PubMed]
- Heath, P.T.; Booy, R.; Griffiths, H.; Clutterbuck, E.; Azzopardi, H.J.; Slack, M.P.E.; Fogarty, J.; Moloney, A.C.; Moxon, E.R. Clinical and immunological risk factors associated with Haemophilus influenzae type b conjugate vaccine failure in childhood. Clin. Infect. Dis. 2000, 31, 973–980. [Google Scholar] [CrossRef]
- Ulanova, M. Invasive Haemophilus influenzae serotype a disease in the H. influenzae serotype b conjugate vaccine era: Where are we going? Clin. Infect. Dis. 2021, 73, e380–e382. [Google Scholar] [CrossRef] [PubMed]
- Tsang, R.S.W.; Bruce, M.G.; Lem, M.; Barreto, L.; Ulanova, M. A review of invasive Haemophilus influenzae disease in the indigenous populations of North America. Epidemiol. Infect. 2014, 142, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Su, L.; Huang, S.; Liu, L.; Ali, K.; Chen, Z. Epidemic trends and biofilm formation mechanisms of Haemophilus influenzae: Insights into clinical implications and prevention strategies. Infect. Drug Resist. 2023, 16, 5359–5373. [Google Scholar] [CrossRef]
- Bertran, M.; D’Aeth, J.C.; Hani, E.; Amin-Chowdhury, Z.; Fry, N.K.; Ramsay, M.E.; Litt, D.J.; Ladhani, S.N. Trends in invasive Haemophilus influenzae serotype a disease in England from 2008–09 to 2021–22: A prospective national surveillance study. Lancet Infect Dis. 2023, 23, 1197–1206. [Google Scholar] [CrossRef]
- Carrera-Salinas, A.; González-Díaz, A.; Calatayud, L.; Mercado-Maza, J.; Puig, C.; Berbel, D.; Càmara, J.; Tubau, F.; Grau, I.; Domínguez, M.; et al. Epidemiology and population structure of Haemophilus influenzae causing invasive disease. Microb. Genom. 2021, 7, 000723. [Google Scholar] [CrossRef] [PubMed]
- Su, P.Y.; Huang, A.H.; Lai, C.H.; Lin, H.F.; Lin, T.M.; Ho, C.H. Extensively drug-resistant Haemophilus influenzae—Emergence, epidemiology, risk factors, and regimen. BMC Microbiol. 2020, 20, 102. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.J.; Morrissey, I.; Bakker, S.; Buckridge, S.; Felmingham, D. Global distribution of TEM-1 and ROB-1 beta-lactamases in Haemophilus influenzae. J. Antimicrob. Chemother. 2005, 56, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Nagata, K.; Ishihama, A. Promoter selectivity of Escherichia coli RNA polymerase: Effect of base substitutions in the promoter -35 region on promoter strength. Nucleic Acids Res. 1990, 18, 7367–7372. [Google Scholar] [CrossRef]
- Luo, C.; Xia, Y.; Liu, Q.; Chu, L.; Fu, X.; Jing, C.; Chen, D.; Liu, L.; Shi, Y. Antibiotic resistance and molecular epidemiology of the beta-lactamase-producing Haemophilus influenzae isolated in Chongqing, China. APMIS 2012, 120, 926–934. [Google Scholar] [CrossRef]
- Taha, A.; Adeline, F.; Taha, M.K.; Deghmane, A.E. Haemophilus influenzae drug resistance in France from 2017 to 2021: Consideration for treatment of otitis media. J. Glob. Antimicrob. Resist. 2022, 31, 222–227. [Google Scholar] [CrossRef]
- Cherkaoui, A.; Gaïa, N.; Baud, D.; Leo, S.; Fischer, A.; Ruppe, E.; François, P.; Schrenzel, J. Molecular characterization of fluoroquinolones, macrolides, and imipenem resistance in Haemophilus influenzae: Analysis of the mutations in QRDRs and assessment of the extent of the AcrAB-TolC-mediated resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 2201–2210. [Google Scholar] [CrossRef]
- Parzen-Johnson, S.; Sun, S.; Scardina, T.; Patel, S.J. Fluoroquinolone use among hospitalized children: Diagnosis-based stratification to identify stewardship targets. Open Forum Infect. Dis. 2023, 10, ofad297. [Google Scholar] [CrossRef]
Serotype | NTHi | Hib | Hia | Total | |
---|---|---|---|---|---|
Sample site | CSF | 6 (46%) | 5 (39%) | 2 (15%) | 13 |
BC | 29 (94%) | 2 (6%) | - | 31 | |
Other | 3 (75%) | 1 (25%) | - | 4 | |
Age | <6 M | 21 (78%) | 4 (15%) | 2 (7%) | 27 |
[6 M–5 Y] | 11 (85%) | 2 (15%) | - | 13 | |
>5 Y | 3 (60%) | 2 (40%) | - | 5 | |
Clinical characteristics | Meningitis | 6 (46%) | 5 (39%) | 2 (15%) | 13 |
Pneumonia | 22 (92%) | 2 (8%) | - | 24 | |
Other | 4 (80%) | 1 (20%) | - | 5 | |
Complications | 5 a (63%) | 1 b (13%) | 2 c (24%) | 8 | |
Deaths | 1 (100%) | - | - | 1 | |
Vaccination status | Complete | 6 (75%) | 2 (25%) | - | 8 |
Incomplete | 3 (38%) | 3 (38%) | 2 (24%) | 8 | |
Not vaccinated | 15 (94%) | 1 (6%) | - | 16 | |
Antimicrobial susceptibility testing | BLNAS | 21 (81%) | 3 (11%) | 2 (8%) | 26 |
BLPAR | 11 (85%) | 2 (15%) | - | 13 | |
BLNAR | 6 (100%) | - | - | 6 |
MIC50 a | MIC90 a | Min a | Max a | S b | R b | ftsI Group | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 + 2 | 3 | 4 | ||||||||
All (n = 45) | AMP | 1 | 256 | 0.19 | 256 | 26 | 19 | 24 | 12 | 9 |
AMC | 1.5 | 128 | 0.38 | 256 | 36 | 9 | ||||
CTX | 0.023 | 0.125 | 0.008 | 32 | 43 | 2 | ||||
BLNAS (n = 26) | AMP | 0.38 | 1 | 0.19 | 1 | 26 | 0 | 15 | 7 | 4 |
AMC | 0.75 | 1.5 | 0.38 | 1.5 | 26 | 0 | ||||
CTX | 0.016 | 0.094 | 0.008 | 0.125 | 26 | 0 | ||||
AMP-R (n = 19) | AMP | 64 | 256 | 1.5 | 256 | 0 | 19 | 9 | 5 | 5 |
AMC | 2 | 256 | 0.75 | 256 | 10 | 9 | ||||
CTX | 0.032 | 1.5 | 0.008 | 32 | 17 | 2 | ||||
BLPAR (n = 13) | AMP | 192 | 256 | 1.5 | 256 | 0 | 13 | 9 | 1 | 3 |
AMC | 1.5 | 256 | 0.75 | 256 | 10 | 3 | ||||
CTX | 0.023 | 24 | 0.008 | 32 | 11 | 2 | ||||
BLNAR (n = 6) | AMP | 1.5 | 2 | 1.5 | 2 | 0 | 6 | 0 | 4 | 2 |
AMC | 8 | 256 | 3 | 256 | 0 | 6 | ||||
CTX | 0.055 | 0.125 | 0.047 | 0.125 | 6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chelbi, Y.; Meftah, K.; Deghmane, A.-E.; Mhimdi, S.; Aloui, F.; Bouafsoun, A.; Hong, E.; Menif, K.; Boussetta, K.; Khemiri, M.; et al. Haemophilus influenzae Invasive Infections in Children in Vaccine Era: Phenotypic and Genotypic Characterization Tunis, Tunisia. Microorganisms 2024, 12, 2666. https://doi.org/10.3390/microorganisms12122666
Chelbi Y, Meftah K, Deghmane A-E, Mhimdi S, Aloui F, Bouafsoun A, Hong E, Menif K, Boussetta K, Khemiri M, et al. Haemophilus influenzae Invasive Infections in Children in Vaccine Era: Phenotypic and Genotypic Characterization Tunis, Tunisia. Microorganisms. 2024; 12(12):2666. https://doi.org/10.3390/microorganisms12122666
Chicago/Turabian StyleChelbi, Yasmine, Khaoula Meftah, Ala-Eddine Deghmane, Samar Mhimdi, Firas Aloui, Aida Bouafsoun, Eva Hong, Khaled Menif, Khadija Boussetta, Monia Khemiri, and et al. 2024. "Haemophilus influenzae Invasive Infections in Children in Vaccine Era: Phenotypic and Genotypic Characterization Tunis, Tunisia" Microorganisms 12, no. 12: 2666. https://doi.org/10.3390/microorganisms12122666
APA StyleChelbi, Y., Meftah, K., Deghmane, A.-E., Mhimdi, S., Aloui, F., Bouafsoun, A., Hong, E., Menif, K., Boussetta, K., Khemiri, M., Boukthir, S., Trifa, M., Jlidi, S., Jouini, R., Fitouri, Z., Nessib, M.-N., Taha, M.-K., & Smaoui, H. (2024). Haemophilus influenzae Invasive Infections in Children in Vaccine Era: Phenotypic and Genotypic Characterization Tunis, Tunisia. Microorganisms, 12(12), 2666. https://doi.org/10.3390/microorganisms12122666