Multidrug-Resistant Escherichia coli from Raw Cow Milk in Namwala District, Zambia: Public Health Implications
Abstract
:1. Introduction
2. Results
2.1. Descriptors of E. coli Prevalence
2.2. Resistance Was Highest to Amoxicillin, Sulfonamides, and Tetracycline
2.3. Prevalence of Multi-Drug Resistance (MDR)
2.4. blaCTX-M and blaTEM ESBL Genes Were Detected in the Isolates
3. Discussion
4. Materials and Methods
4.1. Study Design and Site
4.2. Sample Size and Sampling
4.3. Isolation and Identification of E. coli Species
4.4. Antimicrobial Susceptibility Testing of E. coli Isolates
4.5. Minimum Inhibitory Concentration (MIC) of Cefotaxime (CTX)
4.6. DNA Extraction and PCR Identification of Beta-Lactamase-Encoding Genes
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Primers | Target Gene | Sequence 5′-3′ | Expected Amplicon Size | Ref. |
---|---|---|---|---|
CTX-MA1 CTX-MA2 | blaCTX-M | *SCSATGTGCAG≠YACCAGTAA CCGC¥RATATGRTTGGTGGTG | 544 | [42] |
TEM1F TEM1R | blaTEM | GTATCCGCTCATGAGACAATA AGAAGTGGTCCTGCAACTTT | 717 | [43] |
OXA1F OXA1R | blaOXA | GGCACCAGATTCAACTTTCAAG GACCCCAAGTTTCCTGTAAGTG | 564 | [44] |
References
- OECD/FAO. OECD-FAO Agriculture Outlook 2021–2030; OECD-FAO Agricultural Outlook: Paris, France, 2021. [Google Scholar]
- Mumba, C.; Pandey, G.; van der Jagt, C. Milk production potential, marketing and income opportunities in key traditional cattle keeping areas of Zambia. Livest Res. Rural Dev. 2013, 25, 73. [Google Scholar]
- Phiri, B.S.J.; Sakumona, M.; Hang’ombe, B.M.; Fetsch, A.; Schaarschmidt, S. The traditional dairy value chain in Zambia and potential risk factors to microbiological food safety. Food Control 2021, 124, 107885. [Google Scholar] [CrossRef]
- Straley, B.A.; Donaldson, S.C.; Hedge, N.V.; Sawant, A.A.; Srinivasan, V.; Oliver, S.P.; Jayarao, B.M. Public health significance of antimicrobial-resistant gram-negative bacteria in raw bulk tank milk. Foodborne Pathog. Dis. 2006, 3, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef]
- Tadesse, H.A.; Gidey, N.B.; Workelule, K.; Hailu, H.; Gidey, S.; Bsrat, A.; Taddele, H. Antimicrobial Resistance Profile of E. coli Isolated from Raw Cow Milk and Fresh Fruit Juice in Mekelle, Tigray, Ethiopia. Vet. Med. Int. 2018, 2018, 8903142. [Google Scholar] [CrossRef]
- Graham, J.P.; Eisenberg, J.N.S.; Trueba, G.; Zhang, L.; Johnson, T.J. Small-Scale Food Animal Production and Antimicrobial Resistance: Mountain, Molehill, or Something in-between? Environ. Health Perspect. 2017, 125, 104501. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022, 11, 2966. [Google Scholar] [CrossRef]
- Knight-Jones, T.J.; Hang’ombe, M.B.; Songe, M.M.; Sinkala, Y.; Grace, D. Microbial Contamination and Hygiene of Fresh Cow’s Milk Produced by Smallholders in Western Zambia. Int. J. Environ. Res. Public Health 2016, 13, 737. [Google Scholar] [CrossRef]
- Kunda, B.; Pandey, G.; Muma, J. Compositional and sanitary quality of raw milk produced by smallholder dairy farmers in Lusaka Province of Zambia. Livest. Res. Rural Dev. 2015, 27, 201. [Google Scholar]
- Mshana, S.E.; Matee, M.; Rweyemamu, M. Antimicrobial resistance in human and animal pathogens in Zambia, Democratic Republic of Congo, Mozambique and Tanzania: An urgent need of a sustainable surveillance system. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Ansharieta, R.; Ramandinianto, S.C.; Effendi, M.H.; Plumeriastuti, H. Molecular identification of blaCTX-M and blaTEM genes encoding extended-spectrum ß-lactamase (ESBL) producing Escherichia coli isolated from raw cow’s milk in East Java, Indonesia. Biodiversitas J. Biol. Divers. 2021, 22, 1600–1605. [Google Scholar] [CrossRef]
- Zheng, H.; Zeng, Z.; Chen, S.; Liu, Y.; Yao, Q.; Deng, Y.; Chen, X.; Lv, L.; Zhuo, C.; Chen, Z. Prevalence and characterisation of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China. Int. J. Antimicrob. Agents 2012, 39, 305–310. [Google Scholar] [CrossRef]
- Bentancor, A.; Blanco Crivelli, X.; Piccini, C.; Trueba, G. New Concepts on Domestic and Wild Reservoirs and Transmission of E. coli and Its Environment. In Trending Topics in Escherichia coli Research: The Latin American Perspective; Springer: Berlin/Heidelberg, Germany, 2023; pp. 55–77. [Google Scholar]
- Badi, S.; Abbassi, M.S.; Hassen, A.; Ibrahim, C.; Snoussi, M.; Castiglioni, B.; Bignoli, G.; Cremonesi, P.; Luini, M. Antibiotic resistance phenotypes and virulence-associated genes in Escherichia coli isolated from animals and animal food products in Tunisia. FEMS Microbiol. Lett. 2018, 365, fny088. [Google Scholar] [CrossRef] [PubMed]
- EFSA, P.o.b.h.B.; Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar]
- EFSA, P.o.b.h.B.; Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J. 2022, 20, e07586. [Google Scholar]
- Tóth, A.G.; Csabai, I.; Krikó, E.; Tőzsér, D.; Maróti, G.; Patai, Á.V.; Makrai, L.; Szita, G.; Solymosi, N. Antimicrobial resistance genes in raw milk for human consumption. Sci. Rep. 2020, 10, 7464. [Google Scholar] [CrossRef]
- von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Bumbangi, F.N.; Llarena, A.K. Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia. Microorganisms 2022, 10, 1684. [Google Scholar] [CrossRef]
- Shawa, M.; Furuta, Y.; Paudel, A.; Kabunda, O.B.; Mulenga, E.; Mubanga, M.; Kamboyi, H.; Zorigt, T.; Chambaro, H.; Simbotwe, M. Clonal relationship between multidrug-resistant Escherichia coli ST69 from poultry and humans in Lusaka, Zambia. FEMS Microbiol. Lett. 2021, 368, fnac004. [Google Scholar] [CrossRef]
- Muonga, E.M.; Mainda, G.; Mukuma, M.; Kwenda, G.; Hang’ombe, B.; Bumbangi, F.; Phiri, N.; Mwansa, M.; Munyeme, M.; Muma, J.B. Antimicrobial Resistance of Escherichia coli and Salmonella isolated from Raw Retail Broiler Chicken Carcasses in Zambia. Res. Sq. 2020, 6, 35. [Google Scholar] [CrossRef]
- Dowidar, H.A.; Khalifa, M.I. Molecular Isolation and Identification of Multidrug-resistant Escherichia coli from Milk, Meat, and Product Samples. J. Adv. Vet. Res. 2023, 13, 643–646. [Google Scholar]
- Ngaywa, C.; Aboge, G.O.; Obiero, G.; Omwenga, I.; Ngwili, N.; Wamwere, G.; Wainaina, M.; Bett, B. Antimicrobial resistant Escherichia coli isolates detected in raw milk of livestock in pastoral areas of northern Kenya. Food Control 2019, 102, 173–178. [Google Scholar] [CrossRef]
- Nji, E.; Kazibwe, J.; Hambridge, T.; Joko, C.A.; Larbi, A.A.; Damptey, L.A.O.; Nkansa-Gyamfi, N.A.; Stålsby Lundborg, C.; Lien, L.T.Q. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci. Rep. 2021, 11, 3372. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. Available online: http://apps.who.int/iris/bitstream/handle/10665/258970/9789241550130-eng.pdf (accessed on 9 May 2023).
- WOAH. Oie List of Antimicrobial Agents of Veterinary Importance. Available online: https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf (accessed on 8 May 2023).
- Rahn, K.; Renwick, S.A.; Johnson, R.P.; Wilson, J.B.; Clarke, R.C.; Alves, D.; McEwen, S.; Lior, H.; Spika, J. Persistence of Escherichia coli O157[ratio ]H7 in dairy cattle and the dairy farm environment. Epidemiol. Infect. 1997, 119, 251–259. [Google Scholar] [CrossRef]
- Mainda, G.; Bessell, P.R.; Muma, J.B.; McAteer, S.P.; Chase-Topping, M.E.; Gibbons, J.; Stevens, M.P.; Gally, D.L.; Bronsvoort, B.M.D. Prevalence and patterns of antimicrobial resistance among Escherichia coli isolated from Zambian dairy cattle across different production systems. Sci. Rep. 2015, 5, 12439. [Google Scholar] [CrossRef]
- MFL. AMU Data Collection and Report to the OIE, Zambia. In Proceedings of the Database on Antimicrobial Agents Intended for Use in Animals in Eastern and Southern Africa Mombasa, Mombasa, Kenya, 29–31 October 2019. [Google Scholar]
- Yamba, K.; Lukwesa-Musyani, C.; Samutela, M.T.; Kapesa, C.; Hang’ombe, M.B.; Mpabalwani, E.; Hachaambwa, L.; Fwoloshi, S.; Chanda, R.; Mpundu, M. Phenotypic and genotypic antibiotic susceptibility profiles of Gram-negative bacteria isolated from bloodstream infections at a referral hospital, Lusaka, Zambia. PLoS Glob. Public Health 2023, 3, e0001414. [Google Scholar] [CrossRef]
- Kaluba, C.K.; Samutela, M.T.; Kapesa, C.; Muma, J.B.; Hang’ombe, B.M.; Hachaambwa, L.; Mukomena, P.; Yamba, K. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter species at a large tertiary referral hospital in Lusaka, Zambia. Sci. Afr. 2021, 13, e00908. [Google Scholar] [CrossRef]
- Demirci, M.; YIĞIN, A.; Altun, S.K.; Ekici, S. A Molecular Investigation of Extended Spectrum Beta-Lactamase genes in Escherichia coli and Klebsiella spp. in raw cow Milk. Turk. J. Vet. Res. 2023, 7, 1–5. [Google Scholar] [CrossRef]
- Widodo, A.; Effendi, M.H.; Khairullah, A.R. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from livestock. Sys. Rev. Pharm. 2020, 11, 382–392. [Google Scholar]
- Arumugham, V.B.; Gujarathi, R.; Cascella, M. Third Generation Cephalosporins. Available online: http://www.ncbi.nlm.nih.gov/books/NBK549881/ (accessed on 24 April 2023).
- Asokan, G.V.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO global priority pathogens list: A bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med. J. 2019, 34, 184. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef] [PubMed]
- CSO. Preliminary Livestock and Aquaculture Census Results; Central Statistics Office: Lusaka, Zambia, 2017. [Google Scholar]
- CLSI. M100, Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, R.H.; Thapa, B.; Kafle, R.; Shah, P.K.; Tribuddharat, C. Co-existence of beta-lactamases in clinical isolates of Escherichia coli from Kathmandu, Nepal. BMC Res. Notes 2014, 7, 694. [Google Scholar] [CrossRef]
- Cai, W.; Fu, Y.; Zhang, W.; Chen, X.; Zhao, J.; Song, W.; Li, Y.; Huang, Y.; Wu, Z.; Sun, R.; et al. Synergistic effects of baicalein with cefotaxime against Klebsiella pneumoniae through inhibiting CTX-M-1 gene expression. BMC Microbiol. 2016, 16, 181. [Google Scholar] [CrossRef]
- Ogutu, J.O.; Zhang, Q.; Huang, Y.; Yan, H.; Su, L.; Gao, B.; Zhang, W.; Zhao, J.; Cai, W.; Li, W.; et al. Development of a multiplex PCR system and its application in detection of blaSHV, blaTEM, blaCTX-M-1, blaCTX-M-9 and blaOXA-1 group genes in clinical Klebsiella pneumoniae and Escherichia coli strains. J. Antibiot. 2015, 68, 725–733. [Google Scholar] [CrossRef]
Contamination | MCC (%) n = 418 | ||||
---|---|---|---|---|---|
MCC 1 | MCC 2 | MCC 3 | MCC 4 | 95% C.I. | |
Non–E. coli | 100 (54) | 48 (64) | 38 (39) | 18 (30) | 44.02–53.61 |
E. coli | 86 (46) | 27 (36) | 59 (61) | 42 (70) | 46.39–55.98 |
Sample ID | Source | CTX MIC | blaCTX-M | blaTEM | blaOXA |
---|---|---|---|---|---|
158 | MCC 1 | 4 | + | − | − |
09 | MCC 3 | 8 | + | − | − |
04 | MCC 3 | 64 | − | + | − |
14 | MCC 1 | 2 | + | − | − |
133 | MCC 1 | 32 | + | − | − |
32 | MCC 1 | 16 | − | + | − |
41 | MCC 3 | 64 | + | + | − |
01 | MCC 1 | 4 | − | − | − |
144 | MCC 1 | 2 | − | − | − |
11 | MCC 4 | 64 | − | − | − |
62 | MCC 2 | 4 | − | + | − |
16 | MCC 4 | 4 | − | + | − |
122 | MCC 1 | 4 | − | + | − |
22 | MCC 3 | 16 | − | − | − |
Antibiotic | Concentration (µg) | Zone Diameter Breakpoints (≤S–≥R) |
---|---|---|
Amoxicillin-Clavulanic Acid AMC | 20 | 14–17 |
Ampicillin AMP | 10 | 14–16 |
Cefotaxime CTX | 30 | 23–25 |
Chloramphenicol CHL | 30 | 13–17 |
Ciprofloxacin CIP | 5 | 22–25 |
Gentamicin GEN | 10 | 13–14 |
Imipenem IMP | 10 | 20–22 |
Nalidixic Acid NAL | 30 | 14–18 |
Tetracycline TCY | 30 | 12–14 |
Trimethoprim-Sulfamethoxazole SXT | 25 | 11–15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwasinga, W.; Shawa, M.; Katemangwe, P.; Chambaro, H.; Mpundu, P.; M’kandawire, E.; Mumba, C.; Munyeme, M. Multidrug-Resistant Escherichia coli from Raw Cow Milk in Namwala District, Zambia: Public Health Implications. Antibiotics 2023, 12, 1421. https://doi.org/10.3390/antibiotics12091421
Mwasinga W, Shawa M, Katemangwe P, Chambaro H, Mpundu P, M’kandawire E, Mumba C, Munyeme M. Multidrug-Resistant Escherichia coli from Raw Cow Milk in Namwala District, Zambia: Public Health Implications. Antibiotics. 2023; 12(9):1421. https://doi.org/10.3390/antibiotics12091421
Chicago/Turabian StyleMwasinga, Wizaso, Misheck Shawa, Patrick Katemangwe, Herman Chambaro, Prudence Mpundu, Ethel M’kandawire, Chisoni Mumba, and Musso Munyeme. 2023. "Multidrug-Resistant Escherichia coli from Raw Cow Milk in Namwala District, Zambia: Public Health Implications" Antibiotics 12, no. 9: 1421. https://doi.org/10.3390/antibiotics12091421
APA StyleMwasinga, W., Shawa, M., Katemangwe, P., Chambaro, H., Mpundu, P., M’kandawire, E., Mumba, C., & Munyeme, M. (2023). Multidrug-Resistant Escherichia coli from Raw Cow Milk in Namwala District, Zambia: Public Health Implications. Antibiotics, 12(9), 1421. https://doi.org/10.3390/antibiotics12091421