Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Keywords = cavitation damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 15881 KiB  
Article
Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution
by Xin Zheng, Ke Zheng, Jie Gao, Yan Wang, Pengtao An, Yongqiang Ma, Hongjun Hei, Shuaiwu Qu and Shengwang Yu
Materials 2025, 18(15), 3659; https://doi.org/10.3390/ma18153659 - 4 Aug 2025
Viewed by 17
Abstract
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of [...] Read more.
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of chemomechanical abrasive polishing (CMAP) with a slurry containing high-concentration H2O2 and varying mass percentages of SiO2 powder and diamond particles on surface morphology, surface roughness, material removal rate (MRR), and microstrain of PCD disks. The contributions of mechanical action, chemical action, and bubble cavitation to the CMAP process are analyzed. Scanning electron microscopy (SEM) observations indicate that large grains present in PCD are effectively eliminated after CMAP, leading to a notable reduction in surface roughness. The optimal results are obtained with 60 wt% SiO2 powder and 40 wt% diamond particles, achieving a maximum MRR of 1039.78 μm/(MPa·h) (15.5% improvement compared to the mechanical method) and a minimum surface roughness (Sa) of 3.59 μm. Additionally, the microstrain on the PCD disk shows a slight reduction following the CMAP process. The material removal mechanism is primarily attributed to mechanical action (70.8%), with bubble cavitation and chemical action (27.5%) and action of SiO2 (1.7%) playing secondary roles. The incorporation of SiO2 leads to the formation of a lubricating layer, significantly reducing surface damage and decreasing the surface roughness Sa to 1.39 µm. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 185
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

12 pages, 13899 KiB  
Article
The Role of Pores in the Cavitation Erosion of Additively Manufactured Metal: An In Situ Study
by Yuan Song, Zhenhua Wang and Bingyang Ma
Metals 2025, 15(7), 787; https://doi.org/10.3390/met15070787 - 11 Jul 2025
Viewed by 277
Abstract
Additively manufactured (AM) parts have been applied in many areas with the risk of cavitation erosion (CE), and pores are common defects in AM metals. However, the role of pores in CE is still unclear, and a systematic investigation is needed. In this [...] Read more.
Additively manufactured (AM) parts have been applied in many areas with the risk of cavitation erosion (CE), and pores are common defects in AM metals. However, the role of pores in CE is still unclear, and a systematic investigation is needed. In this study, 316L stainless steel was selected as a model material and produced using laser powder bed fusion; the porosity was 6.4%. The morphological evolution of various pores during CE was investigated via electron backscatter diffraction and scanning electron microscopy. It was found that material removal easily occurred around large polygonal pores. The critical size for large polygonal pores was estimated to be between 13 and 20 μm. For narrow pores, concavity first appeared around the pores during CE, and then the narrow pores closed. Small spherical pores with sizes of 3–9 μm showed strong resistance to CE, and no damage occurred within the 60 min CE period. The main reason that different pores played different roles in CE was analyzed. Finally, factors for improving the CE resistance of AM metals were suggested. The research results are helpful for understanding the CE behaviors of AM metals and porous materials. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

14 pages, 2084 KiB  
Article
Optimized High-Pressure Ultrasonic-Microwave-Assisted Extraction of Gingerol from Ginger: Process Design and Performance Evaluation
by Yang Zhang, Siyi Yang, Wensi Li, Xiaoyan Li, Xiangqin Lai, Xiang Li, Wuwan Xiong and Bo Zhang
Processes 2025, 13(7), 2149; https://doi.org/10.3390/pr13072149 - 6 Jul 2025
Viewed by 425
Abstract
This study employed high-pressure ultrasonic-microwave-assisted extraction (HP-UMAE) to extract gingerols from ginger. The extraction yield and total polyphenol content of the extracts were determined. Their antioxidant activity was assessed by DPPH and ABTS radical scavenging assays, and compared with extracts obtained by leaching [...] Read more.
This study employed high-pressure ultrasonic-microwave-assisted extraction (HP-UMAE) to extract gingerols from ginger. The extraction yield and total polyphenol content of the extracts were determined. Their antioxidant activity was assessed by DPPH and ABTS radical scavenging assays, and compared with extracts obtained by leaching extraction, reflux extraction, ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and ultrasonic-microwave-assisted extraction (UMAE). The results demonstrated that HP-UMAE achieved the highest extraction yield and the strongest ABTS radical scavenging activity among the evaluated methods. Furthermore, HP-UMAE extracts exhibited the highest concentrations of key gingerol constituents: 6-gingerol (14.29 mg/L), 8-gingerol (0.38 mg/L), 10-gingerol (1.95 mg/L), and 6-shogaol (4.32 mg/L). This enhanced efficacy is attributed to the synergistic combination of ultrasonic cavitation and microwave-induced thermal effects under elevated pressure. This synergy creates conditions promoting cellular wall disruption, facilitating the release of intracellular components, while concurrently enhancing solvent penetration and gingerol solubility. Scanning electron microscopy (SEM) analysis confirmed the significant structural damage inflicted on ginger cell walls following HP-UMAE treatment. The process parameters for HP-UMAE were optimized using single-factor experiments. The optimal extraction conditions were determined as follows: microwave power 800 W, ultrasonic power 1000 W, liquid-to-solid ratio 55:1, and temperature 100 °C (corresponding pressure 2 MPa). Under these optimized parameters, the extraction yield and ABTS radical scavenging rate reached their peak performance, yielding values of 4.52% and 43.23%, respectively. Full article
Show Figures

Figure 1

18 pages, 4011 KiB  
Article
Effect of Marine Coolant Additives on Cavitation Erosion–Corrosion of Diesel Engine Cylinder Liner
by Woo-Seok Jeon and Il-Cho Park
Appl. Sci. 2025, 15(11), 6353; https://doi.org/10.3390/app15116353 - 5 Jun 2025
Viewed by 450
Abstract
In this study, cavitation erosion tests were conducted to investigate the effects of the presence of coolant additives and chlorides on the corrosion and cavitation erosion of cylinder liners in marine diesel engines. Electrochemical experiments were conducted to evaluate the corrosion characteristics of [...] Read more.
In this study, cavitation erosion tests were conducted to investigate the effects of the presence of coolant additives and chlorides on the corrosion and cavitation erosion of cylinder liners in marine diesel engines. Electrochemical experiments were conducted to evaluate the corrosion characteristics of ductile cast iron (DCI), and the corrosion potential and corrosion current density were measured. In addition, weight loss, surface roughness, and maximum surface damage depth were quantified as a function of cavitation exposure time. Furthermore, to investigate the erosion and erosion–corrosion characteristics induced by cavitation attack, the damaged surface morphology was closely examined using a scanning electron microscope (SEM) after the cavitation erosion tests. The results revealed that the coolant additive effectively protected the DCI from corrosion caused by aggressive chlorides. In particular, when an appropriate amount of additive was added to a coolant containing 100 ppm of chloride, the corrosion current density of DCI was reduced by approximately 31.7 times, significantly improving corrosion resistance. Therefore, different surface damage mechanisms corresponding to cavitation erosion and cavitation erosion–corrosion were identified depending on the presence or absence of the coolant additive during the cavitation erosion tests. Full article
Show Figures

Figure 1

20 pages, 5645 KiB  
Article
Experimental Study and Numerical Simulation of Sediment’s Promoting Effect on Cavitation Based on Flow Field Analysis
by Zeyuan Yang, Gang Yu and Qin Zhao
Processes 2025, 13(5), 1299; https://doi.org/10.3390/pr13051299 - 24 Apr 2025
Viewed by 415
Abstract
Sediment-laden water significantly exacerbates the cavitation damage in hydraulic machinery compared to clear water, underscoring the importance of investigating the effects of sediment on cavitation. This study examines cavitation in sediment-laden water using a Venturi flow channel and a high-speed camera system. Natural [...] Read more.
Sediment-laden water significantly exacerbates the cavitation damage in hydraulic machinery compared to clear water, underscoring the importance of investigating the effects of sediment on cavitation. This study examines cavitation in sediment-laden water using a Venturi flow channel and a high-speed camera system. Natural river sand samples with a median diameter of 0.05, 0.07, and 0.09 mm are selected, and sediment-laden water with a concentration of 10, 30, and 50 g/L is prepared. The results indicate that increasing the sediment concentration or reducing the sediment size intensifies cavitation, and the influence of the sediment concentration is significantly greater than that of the sediment size. Meanwhile, the numerical simulation is conducted based on a gas–liquid–solid phase mixing model. The findings indicate that a higher sediment concentration corresponds to a greater shearing effect near the wall, which raises the drag on the attached sheet-like cavitation clouds and enhances the re-entrant jet which can intensify the shedding of cavitation clouds. Furthermore, sediment particles contribute to more vortices. Therefore, for hydraulic machinery operating in sediment-laden water of high concentration, the relative velocity should be reduced to mitigate the shearing effect, thereby weakening the synergy of cavitation and sediment erosion at the turbine runner. Full article
(This article belongs to the Special Issue CFD Applications in Renewable Energy Systems)
Show Figures

Figure 1

16 pages, 3277 KiB  
Article
A Multi-Index Fusion Adaptive Cavitation Feature Extraction for Hydraulic Turbine Cavitation Detection
by Yi Wang, Feng Li, Mengge Lv, Tianzhen Wang and Xiaohang Wang
Entropy 2025, 27(4), 443; https://doi.org/10.3390/e27040443 - 19 Apr 2025
Cited by 1 | Viewed by 380
Abstract
Under cavitation conditions, hydraulic turbines can suffer from mechanical damage, which will shorten their useful life and reduce power generation efficiency. Timely detection of cavitation phenomena in hydraulic turbines is critical for ensuring operational reliability and maintaining energy conversion efficiency. However, extracting cavitation [...] Read more.
Under cavitation conditions, hydraulic turbines can suffer from mechanical damage, which will shorten their useful life and reduce power generation efficiency. Timely detection of cavitation phenomena in hydraulic turbines is critical for ensuring operational reliability and maintaining energy conversion efficiency. However, extracting cavitation features is challenging due to strong environmental noise interference and the inherent non-linearity and non-stationarity of a cavitation hydroacoustic signal. A multi-index fusion adaptive cavitation feature extraction and cavitation detection method is proposed to solve the above problems. The number of decomposition layers in the multi-index fusion variational mode decomposition (VMD) algorithm is adaptively determined by fusing multiple indicators related to cavitation characteristics, thus retaining more cavitation information and improving the quality of cavitation feature extraction. Then, the cavitation features are selected based on the frequency characteristics of different degrees of cavitation. In this way, the detection of incipient cavitation and the secondary detection of supercavitation are realized. Finally, the cavitation detection effect was verified using the hydro-acoustic signal collected from a mixed-flow hydro turbine model test stand. The detection accuracy rate and false alarm rate were used as evaluation indicators, and the comparison results showed that the proposed method has high detection accuracy and a low false alarm rate. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

25 pages, 6238 KiB  
Article
Effect of Ultrasound on Dissolution of Polymeric Blends and Phase Inversion in Flat Sheet and Hollow Fiber Membranes for Ultrafiltration Applications
by Gilberto Katmandú Méndez-Valdivia, María De Lourdes Ballinas-Casarrubias, Guillermo González-Sánchez, Hugo Valdés, Efigenia Montalvo-González, Martina Alejandra Chacón-López, Emmanuel Martínez-Montaño, Beatriz Torrestiana-Sánchez, Herenia Adilene Miramontes-Escobar and Rosa Isela Ortiz-Basurto
Membranes 2025, 15(4), 120; https://doi.org/10.3390/membranes15040120 - 10 Apr 2025
Viewed by 950
Abstract
In seeking alternatives for reducing environmental damage, fabricating filtration membranes using biopolymers derived from agro-industrial residues, such as cellulose acetate (CA), partially dissolved with green solvents, represents an economical and sustainable option. However, dissolving CA in green solvents through mechanical agitation can take [...] Read more.
In seeking alternatives for reducing environmental damage, fabricating filtration membranes using biopolymers derived from agro-industrial residues, such as cellulose acetate (CA), partially dissolved with green solvents, represents an economical and sustainable option. However, dissolving CA in green solvents through mechanical agitation can take up to 48 h. An ultrasonic probe was proposed to accelerate mass transfer and polymer dissolution via pulsed interval cavitation. Additionally, ultrasound-assisted phase inversion (UAPI) on the external coagulation bath was assessed to determine its influence on the properties of flat sheet and hollow fiber membranes during phase inversion. Results indicated that the ultrasonic pulses reduced dissolution time by up to 98% without affecting viscosity (3.24 ± 0.06 Pa·s), thermal stability, or the rheological behavior of the polymeric blend. UAPI increased water permeability in flat sheet membranes by 26% while maintaining whey protein rejection above 90%. For hollow fiber membranes, UAPI (wavelength amplitude of 0 to 20%) improved permeability by 15.7% and reduced protein retention from 90% to 70%, with MWCO between 68 and 240 kDa. This report demonstrates the effectiveness of ultrasonic probes for decreasing the dissolution time of dope solution with green cosolvents and its potential to change the structure of polymeric membranes by ultrasound-assisted phase inversion. Full article
(This article belongs to the Special Issue Membrane Processes for Water Recovery in Food Processing Industries)
Show Figures

Figure 1

29 pages, 12104 KiB  
Article
Numerical Investigations of the Influence of the Spool Structure on the Flow and Damage Characteristics of Control Valves
by Haozhe Jin, Haokun An, Chao Wang and Xiaofei Liu
Fluids 2025, 10(4), 99; https://doi.org/10.3390/fluids10040099 - 7 Apr 2025
Viewed by 420
Abstract
This study investigates the flow dynamics and damage characteristics of liquid level control valves in direct coal liquefaction processes. The primary failure mechanisms are identified as eccentric jet-induced unilateral wall damage, cavitation erosion, and solid particle erosive wear. A numerical simulation framework was [...] Read more.
This study investigates the flow dynamics and damage characteristics of liquid level control valves in direct coal liquefaction processes. The primary failure mechanisms are identified as eccentric jet-induced unilateral wall damage, cavitation erosion, and solid particle erosive wear. A numerical simulation framework was developed to analyze the effects of varying spool angles (72°, 90°, 98°, 105°, and 120°) on flow stability, cavitation dynamics, and erosion patterns. The key findings include the following: A spool angle of 90° achieves the most uniform pressure distribution and minimizes eccentric jet phenomena. Spool geometry modifications exhibit a negligible influence on cavitation characteristics. Reduced wear rates are observed at smaller spool angles (72° and 90°), with the lowest particle-induced erosion occurring at 90°. There is a certain correlation between the particle residence time and the wear of the valve core wall, which is illustrated in the shorter residence times that are correlated with accelerated material degradation. The optimal spool angle of 90° simultaneously mitigates eccentric jet effects, cavitation, and erosive wear. This research provides novel insights for predictive failure analysis and the structural optimization of control valves in high-pressure multi-phase flow systems. Full article
Show Figures

Figure 1

15 pages, 12811 KiB  
Article
Cold Spray Preparation of High-Performance Anti-Cavitation Copper Coatings on Steel Substrates
by Yunzhen Pei, Zhongwu Sun, Weijie Liu, Chunming Deng, Jiayan Ma, Haiming Lan, Xin Chu and Yingchun Xie
Coatings 2025, 15(4), 381; https://doi.org/10.3390/coatings15040381 - 25 Mar 2025
Viewed by 772
Abstract
Copper and its alloys are widely used in marine environments due to their excellent corrosion resistance and thermal conductivity. Cold spray technology can avoid the thermal damage to the underlying material and is suitable for the manufacturing and repair of parts. In this [...] Read more.
Copper and its alloys are widely used in marine environments due to their excellent corrosion resistance and thermal conductivity. Cold spray technology can avoid the thermal damage to the underlying material and is suitable for the manufacturing and repair of parts. In this study, Cu coatings were prepared on 304 stainless steel substrates by high-pressure cold spray technology, and the effects of cold spray parameters on the microstructure, mechanical properties, and cavitation resistance were investigated. The coatings (Cu-N21, Cu-N22, and Cu-He) were prepared using distinct cold spray parameters: Cu-N21 and Cu-N22 employed nitrogen gas at 5 MPa/800 °C with different nozzle geometries, while Cu-He utilized helium gas at 3 MPa/600 °C. The results show that the porosity of the Cu coating prepared by cold spray technology is less than 0.1%. The coating treated with helium gas exhibits a higher bonding strength (81.3 MPa), whereas the coating treated with nitrogen demonstrates greater strain hardening (130–136 HV0.1). XRD results show that no phase change or oxidation occurred for coatings under all cold spraying conditions. After the cavitation test, the mass loss of the Cu coating is significantly less than that of the as-cast copper. The Cu coating surface first develops holes, and with the increase in cavitation time, the hole area begins to increase. However, with prolonged cavitation exposure, the surface of as-cast copper has a large area of holes, and with the increase in cavitation time, the hole growth rate is faster. These observations indicate the cavitation resistance of the Cu coating prepared by cold spray is more than 10 times higher than that of the as-cast copper. This study highlights the potential application of cold spray technology in the preparation of high-performance anti-cavitation copper coatings. Full article
Show Figures

Figure 1

13 pages, 4804 KiB  
Article
Cavitation Erosion of Protective Coating Based on Cordierite Filler and Epoxy Matrix
by Marko Pavlović, Marina Dojčinović, Jasmina Nikolić, Stanko Aleksić, Nedeljko Tucović, Zoran Čeganjac and Saša Drmanić
Materials 2025, 18(5), 1034; https://doi.org/10.3390/ma18051034 - 26 Feb 2025
Cited by 1 | Viewed by 601
Abstract
The goal of this study is to investigate the surface morphology changes induced by the cavitation erosion of a coating based on cordierite with an epoxy matrix for an aluminum substrate. The literature review shows a certain lack of knowledge regarding the coating’s [...] Read more.
The goal of this study is to investigate the surface morphology changes induced by the cavitation erosion of a coating based on cordierite with an epoxy matrix for an aluminum substrate. The literature review shows a certain lack of knowledge regarding the coating’s resistance to wearing induced by water flow, which is a highly important property of the material immersed in or in contact with water streams. The main idea behind the investigation is that such a protective coating will also improve the cavitation erosion resistance of metal substrates. The protective coatings were based on cordierite filler (88 wt.%) and epoxy resin (7 wt.%). The filler, made of a mixture of kaolin, alumina, and talc, is obtained by a sintering procedure that took place at 1350 °C. X-ray diffraction analysis and scanning electron microscopy were employed in the characterization of the produced filler. The adherence of the obtained epoxy-based protective coating and resistance to water flow were tested by the ultrasonic vibration method (i.e., cavitation erosion testing). Scanning electron microscopy was used for analysis of the coating’s morphology upon cavitation erosion. Based on the value of the cavitation erosion rate and the analyzed final surface damage, it was assessed that the investigated protective coating is resistant to cavitation erosion. Full article
Show Figures

Figure 1

15 pages, 5849 KiB  
Article
Damage on a Solid–Liquid Interface Induced by the Dynamical Behavior of Injected Gas Bubbles in Flowing Mercury
by Hiroyuki Kogawa, Takashi Wakui and Masatoshi Futakawa
Fluids 2025, 10(1), 3; https://doi.org/10.3390/fluids10010003 - 26 Dec 2024
Cited by 1 | Viewed by 753
Abstract
Microbubbles have been applied in various fields. In the mercury targets of spallation neutron sources, where cavitation damage is a crucial issue for life estimation, microbubbles are injected into the mercury to absorb the thermal expansion of the mercury caused by the pulsed [...] Read more.
Microbubbles have been applied in various fields. In the mercury targets of spallation neutron sources, where cavitation damage is a crucial issue for life estimation, microbubbles are injected into the mercury to absorb the thermal expansion of the mercury caused by the pulsed proton beam injection and reduce the macroscopic pressure waves, which results in reducing the damage. Recently, when the proton beam power was increased and the number of injected gas bubbles was increased, unique damage morphologies were observed on the solid–liquid interface. Detailed observation and numerical analyses revealed that the microscopic pressure emitted from the gas bubbles contracting is sufficient to form pit damage, i.e., the directions of streak-like defects which are formed by connecting the pit damage coincides with the direction of the gas bubble trajectories, and the distances between the pits was understandable when taking the natural period of gas bubble vibration into account. This indicates that gas microbubbles, used to reduce macroscopic pressure waves, have the potential to be inceptions of cavitation damage due to the microscopic pressure emitted from these gas bubbles. To completely mitigate the damage, we have to consider the two effects of injecting gas bubbles: reducing macroscopic pressure waves and reducing the microscopic pressure due to bubble dynamics. Full article
(This article belongs to the Special Issue Cavitation and Bubble Dynamics)
Show Figures

Figure 1

29 pages, 11983 KiB  
Review
Computational and Experimental Studies on the Behavior of Sprays with Different Orifice Characteristics and Fuel Properties of Biodiesel Crude Palm Oil (CPO) on a Premix Injector—A Comprehensive Review
by Djamal Hissein Didane, Ronny Yii Shi Chin and Amir Khalid
Processes 2024, 12(12), 2907; https://doi.org/10.3390/pr12122907 - 19 Dec 2024
Viewed by 1297
Abstract
Large-scale industrial burners are essential components in various industries including power generation and chemical processing. Enhancing their energy efficiency and reducing emissions, particularly nitrogen oxides (NOx), requires a combination of experimental research and computational fluid dynamics (CFD) simulations. While there exist numerous emission [...] Read more.
Large-scale industrial burners are essential components in various industries including power generation and chemical processing. Enhancing their energy efficiency and reducing emissions, particularly nitrogen oxides (NOx), requires a combination of experimental research and computational fluid dynamics (CFD) simulations. While there exist numerous emission control techniques, the main focus of the present review study was the passive control technique. The result of this review indicates that biodiesel fuel crude palm oil (CPO) was found to reduce emission components, particularly carbon components and particulate matter (PM). Moreover, it also mitigates cavitation within the injector’s orifice, reducing wear and tear. Although cavitation enhances spray atomization and creates finer droplets for improved combustion, it can damage injector orifices. Optimizing the orifice design, such as by adopting conical orifices over cylindrical ones, can significantly reduce cavitation and its adverse effects. Furthermore, innovations such as swirling fuel–air premixing within injectors enhance combustion efficiency and lower emissions by improving fuel–air mixing. However, spray characteristics, particularly the Sauter mean diameter (SMD), remain critical for predicting combustion performance. Further investigations into spray fineness and its impact on combustion dynamics are essential for advancing emission control and performance optimization. Full article
Show Figures

Figure 1

14 pages, 2453 KiB  
Article
Simplified Approach to Evaluate Cavitation Intensity Based on Time Information on Imposed Pressure in Liquid
by Hiroyuki Kawashima, Hiroyuki Kogawa, Masatoshi Futakawa and Nobuatsu Tanaka
Fluids 2024, 9(12), 289; https://doi.org/10.3390/fluids9120289 - 6 Dec 2024
Viewed by 967
Abstract
Cavitation damage is an important research topic in fluid–structure interactions, such as those being studied using the mercury target for the pulsed neutron source at the Materials Life Science Experimental Facility/Japan Proton Accelerator Complex. Hence, the estimation of cavitation damage (cavitation intensity) is [...] Read more.
Cavitation damage is an important research topic in fluid–structure interactions, such as those being studied using the mercury target for the pulsed neutron source at the Materials Life Science Experimental Facility/Japan Proton Accelerator Complex. Hence, the estimation of cavitation damage (cavitation intensity) is required from the perspective of structural integrity. The results of previous studies suggest that the maximum radii of cavitation bubbles immediately prior to collapse are related to cavitation intensity. Therefore, we propose a method for estimating the maximum radius from the time information by measuring the vibrations of structure walls that are induced by collapsing cavitation bubbles in a confined liquid. In this study, we used a magnetic impact testing machine to experimentally investigate the cavitation bubble dynamics, directly observe the bubble collapsing behavior, and measure the induced vibration. We experimentally confirmed that the time information is useful in the estimation of the maximum radii of bubbles. Moreover, we theoretically derived a simple evaluation formula to estimate the maximum radius from the time responses of the imposed pressure in a confined liquid in a structure. Full article
(This article belongs to the Special Issue Cavitation and Bubble Dynamics)
Show Figures

Figure 1

25 pages, 7644 KiB  
Article
Assessment of Cavitation Erosion Using Combined Numerical and Experimental Approach
by Milan Sedlář, Alois Koutný, Tomáš Krátký, Martin Komárek and Martin Fulín
Fluids 2024, 9(11), 259; https://doi.org/10.3390/fluids9110259 - 7 Nov 2024
Viewed by 1265
Abstract
This paper aims to numerically assess the cavitation damage of hydrodynamic machines and hydraulic components and its development in time, based on cavitation erosion tests with samples of used materials. The theoretical part of this paper is devoted to the numerical simulation of [...] Read more.
This paper aims to numerically assess the cavitation damage of hydrodynamic machines and hydraulic components and its development in time, based on cavitation erosion tests with samples of used materials. The theoretical part of this paper is devoted to the numerical simulation of unsteady multiphase flow by means of computational fluid dynamics (CFD) and to the prediction of the erosive effects of the collapses of cavitation bubbles in the vicinity of solid surfaces. Compressible unsteady Reynolds-averaged Navier–Stokes equations (URANS) are solved together with the Zwart cavitation model. To describe the destructive collapses of vapor bubbles, the modeling of cavitation bubble dynamics along selected streamlines or trajectories is applied. The hybrid Euler–Lagrange approach with one-way coupling and the full Rayleigh–Plesset equation (R–P) are therefore utilized. This paper also describes the experimental apparatus with a rotating disc used to reach genuine hydrodynamic cavitation and conditions similar to those of hydrodynamic machines. The simulations are compared with the obtained experimental data, with good agreement. The proposed methodology enables the application of the results of erosion tests to the real geometry of hydraulic machines and to reliably predict the locations and magnitude of cavitation erosion, so as to select appropriate materials or material treatments for endangered parts. Full article
(This article belongs to the Special Issue Multiphase Flow for Industry Applications)
Show Figures

Figure 1

Back to TopTop