Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (753)

Search Parameters:
Keywords = cation channels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 17758 KiB  
Article
Piezo1 Channel Activators Yoda1 and Yoda2 in the Context of Red Blood Cells
by Min Qiao, Reetta Penttinen, Ariel Coli, Nicoletta Murciano, Felix M. Maurer, Christian Wagner, Maria Giustina Rotordam and Lars Kaestner
Biomolecules 2025, 15(8), 1110; https://doi.org/10.3390/biom15081110 (registering DOI) - 1 Aug 2025
Abstract
Piezo1 is a mechanosensitive non-selective cation channel. Genetic alterations of the channel result in a hematologic phenotype named Hereditary Xerocytosis. With Yoda1 and, more recently, Yoda2, compounds to increase the activity of Piezo1 have become available. However, their concrete effect depends on the [...] Read more.
Piezo1 is a mechanosensitive non-selective cation channel. Genetic alterations of the channel result in a hematologic phenotype named Hereditary Xerocytosis. With Yoda1 and, more recently, Yoda2, compounds to increase the activity of Piezo1 have become available. However, their concrete effect depends on the nano environment of the channel and hence on the cell type. Here we compare the potency of Yoda1 and Yoda2 in red blood cells (RBCs). We investigate the effect of the compounds on direct channel activity using automated patch clamp, as well as the secondary effects of channel activation on signalling molecules and cellular response. In terms of signalling, we investigate the temporal response of the second messenger Ca2+, and in terms of cellular response, the activity of the Gárdos channel. The opening of the Gárdos channel leads to a hyperpolarisation of the RBCs, which is measured by the Macey–Bennekou–Egée (MBE) method. Although the interpretation of the data is not straightforward, we discuss the results in a physiological context and provide recommendations for the use of Yoda1 and Yoda2 to investigate RBCs. Full article
(This article belongs to the Special Issue Mechanosensitivity and Ion Channels)
Show Figures

Figure 1

14 pages, 3516 KiB  
Article
pH-Sensitive TRPC5 Is Differentially Expressed in Various Common Skin Tumors
by Lara Hopmann, Judith Heider, Dennis Niebel, Katja Evert, Florian Zeman, Christoph M. Hammers, Tobias Ettl, Christoph Brochhausen and Stephan Schreml
Biology 2025, 14(7), 823; https://doi.org/10.3390/biology14070823 - 7 Jul 2025
Viewed by 368
Abstract
Transient receptor potential classical or cation channels (TRPCs) are integral to tumor biology, particularly in maintaining Ca2+ homeostasis within cancer cells. TRPC5, a pH-sensitive member of this family, may act as a signaling molecule in the altered microenvironment of solid tumors, which [...] Read more.
Transient receptor potential classical or cation channels (TRPCs) are integral to tumor biology, particularly in maintaining Ca2+ homeostasis within cancer cells. TRPC5, a pH-sensitive member of this family, may act as a signaling molecule in the altered microenvironment of solid tumors, which are characterized by an inverted pH-gradient—with decreased extracellular and increased intracellular pH—that promotes tumor progression. This study addresses a gap in the field, as there is currently limited research on TRPC5, particularly regarding its potential role as a tumor marker. While TRPCs are known to be involved in cancer biology, the specific role of TRPC5 in solid tumors, including its potential role as a diagnostic marker, remains largely unexplored. This study is the first to examine TRPC5 expression profiles in common skin cancers, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), malignant melanoma (MM), and nevus cell nevi (NCN). Our findings reveal that the frequency of TRPC5 expression in BCC is significantly lower compared to SCC and epidermal portions of NCN and MM. These results suggest that TRPC5 could serve as an immunohistochemical marker to distinguish SCC from BCC. Additionally, this study lays the groundwork for future research into the role of TRPC5 in tumor progression and metastasis, especially since BCCs, which rarely metastasize, are predominantly negative for TRPC5. Full article
(This article belongs to the Special Issue Ion Channels in Cancer Progression)
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 284
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

17 pages, 4438 KiB  
Article
Y5F3[AsO3]4 and Y5Cl3[AsO3]4: Two Non-Isostructural Yttrium Halide Oxoarsenates(III) and Their Potential as Hosts for Luminescent Eu3+- and Tb3+-Doping
by Ralf J. C. Locke, Martina Mikuta, Florian Ledderboge, Frank C. Zimmer, Henning A. Höppe and Thomas Schleid
Crystals 2025, 15(7), 611; https://doi.org/10.3390/cryst15070611 - 30 Jun 2025
Viewed by 264
Abstract
Y5F3[AsO3]4 crystallizes needle-shaped in the tetragonal space group P4/ncc with the lattice parameters a = 1143.80(8) pm, c = 1078.41(7) pm and c/a = 0.9428 for Z = 4. The yttrium-fluoride substructure [...] Read more.
Y5F3[AsO3]4 crystallizes needle-shaped in the tetragonal space group P4/ncc with the lattice parameters a = 1143.80(8) pm, c = 1078.41(7) pm and c/a = 0.9428 for Z = 4. The yttrium-fluoride substructure linked via secondary contacts forms a three-dimensional network 3{[Y5F3]12+} and the remaining part consists of ψ1-tetrahedral [AsO3]3− units, which leave lone-pair channels along [001]. In contrast, platelet-shaped Y5Cl3[AsO3]4 crystals adopt the monoclinic space group C2/c with the lattice parameters a = 1860.56(9) pm, b = 536.27(3) pm, c = 1639.04(8) pm and β = 105.739(3)° for Z = 4. Condensation of [(Y1,2)O8]13− polyhedra via four common edges each leads to fluorite-like 2 {[(Y1,2)O e8/2 ]5−} layers spreading out parallel to the (100) plane. Their three-dimensional linkage occurs via the (Y3)3+ cations with their Cl ligands on the one hand and the As3+ cations with their lone-pairs of electrons on the other, which also form within [AsO3]3− anions lone-pair channels along [010]. Both colorless compounds can be obtained by solid-state reactions from corresponding mixtures of the binaries (Y2O3, As2O3 and YX3 with X = F and Cl) at elevated temperatures of 825 °C, most advantageously under halide-flux assistance (CsBr for Y5F3[AsO3]4 and ZnCl2 for Y5Cl3[AsO3]4). By replacing a few percent of YX3 with EuX3 or TbX3, Eu3+- or Tb3+-doped samples are accessible, which show red or green luminescence upon excitation with ultraviolet radiation. Full article
(This article belongs to the Special Issue Synthesis and Crystal Structure of Rare-Earth Metal Compounds)
Show Figures

Figure 1

13 pages, 2581 KiB  
Article
Triazine Calixarene as a Dual-Channel Chemosensor for the Reversible Detection of Cu2+ and I Ions via Water Content Modulation
by Fuyong Wu, Long Chen, Mei Yu, Liang Zhao, Lu Jiang, Tianzhu Shi, Ju Guo, Huayan Zheng, Ruixiao Wang and Mingrui Liao
Molecules 2025, 30(13), 2815; https://doi.org/10.3390/molecules30132815 - 30 Jun 2025
Viewed by 327
Abstract
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is [...] Read more.
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is able to recognize Cu2+ and I ions simultaneously in aqueous systems. The fluorescent sensor s4 was synthesized by displacement reaction of acridine with 1, 3-bis (dichloro-mono-triazinoxy) benzene in acetonitrile. Mass spectrometry (MS), UV-vis, and fluorescence spectra were acquired to characterize the fluorescence response of s4 to different cations and anions, while infrared (IR) spectroscopy and isothermal titration calorimetry (ITC) were employed to study the underlying selectivity mechanism of s4 to Cu2+ and I. In detail, s4 displayed extremely high sensitivity to Cu2+ with over 80% fluorescence decrement caused by the paramagnetic nature of Cu2+ in the aqueous media. The reversible fluorescence response to Cu2+ and the responses to Cu2+ in the solution of other potential interferent cations, such as Li+, Na+, K+, Ca2+, Cd2+, Zn2+, Sr2+, Ni2+, Co2+ were also investigated. Probe s4 also exhibited very good fluorescence selectivity to iodide ions under various anion (F, Cl, Br, NO3, HSO4, ClO4, PF6, AcO, H2PO4) interferences. In addition to the fluorescent response to I, s4 showed a highly selective naked-eye-detectable color change from colorless to yellow with the other tested anions. Full article
Show Figures

Figure 1

12 pages, 3509 KiB  
Article
Binding and Activating of Analgesic Crotalphine with Human TRPA1
by Mingmin Kang, Yanming Zhang, Xiufang Ding, Jianfu Xu and Xiaoyun Pang
Membranes 2025, 15(6), 187; https://doi.org/10.3390/membranes15060187 - 19 Jun 2025
Viewed by 639
Abstract
TRPA1 (Transient Receptor Potential Ankyrin 1), a cation channel predominantly expressed in sensory neurons, plays a critical role in detecting noxious stimuli and mediating pain signal transmission. As a key player in nociceptive signaling pathways, TRPA1 has emerged as a promising therapeutic target [...] Read more.
TRPA1 (Transient Receptor Potential Ankyrin 1), a cation channel predominantly expressed in sensory neurons, plays a critical role in detecting noxious stimuli and mediating pain signal transmission. As a key player in nociceptive signaling pathways, TRPA1 has emerged as a promising therapeutic target for the development of novel analgesics. Crotalphine (CRP), a 14-amino acid peptide, has been demonstrated to specifically activate TRPA1 and elicit potent analgesic effects. Previous cryo-EM (cryo-electron microscopy) studies have elucidated the structural mechanisms of TRPA1 activation by small-molecule agonists, such as iodoacetamide (IA), through covalent modification of N-terminal cysteine residues. However, the molecular interactions between TRPA1 and peptide ligands, including crotalphine, remain unclear. Here, we present the cryo-EM structure of ligand-free human TRPA1 consistent with the literature, as well as TRPA1 complexed with crotalphine, with resolutions of 3.1 Å and 3.8 Å, respectively. Through a combination of single-particle cryo-EM studies, patch-clamp electrophysiology, and microscale thermophoresis (MST), we have identified the cysteine residue at position 621 (Cys621) within the TRPA1 ion channel as the primary binding site for crotalphine. Upon binding to the reactive pocket containing C621, crotalphine induces rotational and translational movements of the transmembrane domain. This allosteric modulation coordinately dilates both the upper and lower gates, facilitating ion permeation. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

24 pages, 6135 KiB  
Article
Development of Compounded Surfactant Foam and Its Application in Emergency Control of Piping in Dikes
by Jiakun Gong, Zuopeng Pang, Yuan Wang, Jie Ren, Tian Qi and Adam Bezuijen
Molecules 2025, 30(12), 2583; https://doi.org/10.3390/molecules30122583 - 13 Jun 2025
Viewed by 520
Abstract
Piping is a severe threat to dikes, which can lead to dike failure, and cause significant economic and human casualties. However, conventional measures necessitate substantial labor and material resources. A novel foam-based method for the rapid mitigation of piping was proposed to enhance [...] Read more.
Piping is a severe threat to dikes, which can lead to dike failure, and cause significant economic and human casualties. However, conventional measures necessitate substantial labor and material resources. A novel foam-based method for the rapid mitigation of piping was proposed to enhance piping emergency control efficiency, which demonstrates significant application potential. This study aims to develop a novel foam formulation and evaluate its performance in controlling piping in dikes. Through a combination of foam static-property characterization experiment and foam plugging capacity assessment experiment, a compounded anionic–cationic surfactant composed of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) is optimized. The formulation, at a 9:1 mass ratio and 1.5% total concentration, exhibits superior foam stability and plugging performance. An experiment on the ability of the foam to restrain piping demonstrated that, compared to single-component SDS foam, the compounded SDS-CTAB foam increased the critical hydraulic gradient for piping from 2.35 to 2.70, a 15% improvement. It also reduces the extent of piping channel development under equivalent hydraulic conditions. The foam storage area exhibits enhanced scour resistance and better preservation under prolonged water flow. Mechanistically, the SDS-CTAB foam benefits from synergistic hydrophobic interactions, electrostatic attraction, and hydrogen bonding between surfactant molecules, which enhance foam stability. Full article
Show Figures

Figure 1

20 pages, 7314 KiB  
Article
Zoharite, (Ba,K)6 (Fe,Cu,Ni)25S27, and Gmalimite, K6□Fe2+24S27—New Djerfisherite Group Minerals from Gehlenite-Wollastonite Paralava, Hatrurim Complex, Israel
by Irina O. Galuskina, Biljana Krüger, Evgeny V. Galuskin, Hannes Krüger, Yevgeny Vapnik, Mikhail Murashko, Kamila Banasik and Atali A. Agakhanov
Minerals 2025, 15(6), 564; https://doi.org/10.3390/min15060564 - 26 May 2025
Viewed by 415
Abstract
Zoharite (IMA 2017-049), (Ba,K)6 (Fe,Cu,Ni)25S27, and gmalimite (IMA 2019-007), ideally K6□Fe2+24S27, are two new sulfides of the djerfisherite group. They were discovered in an unusual gehlenite–wollastonite paralava with pyrrhotite nodules located [...] Read more.
Zoharite (IMA 2017-049), (Ba,K)6 (Fe,Cu,Ni)25S27, and gmalimite (IMA 2019-007), ideally K6□Fe2+24S27, are two new sulfides of the djerfisherite group. They were discovered in an unusual gehlenite–wollastonite paralava with pyrrhotite nodules located in the Hatrurim pyrometamorphic complex, Negev Desert, Israel. Zoharite and gmalimite build grained aggregates confined to the peripheric parts of pyrrhotite nodules, where they associate with pentlandite, chalcopyrite, chalcocite, digenite, covellite, millerite, heazlewoodite, pyrite and rudashevskyite. The occurrence and associated minerals indicate that zoharite and gmalimite were formed at temperatures below 800 °C, when sulfides formed on external zones of the nodules have been reacting with residual silicate melt (paralava) locally enriched in Ba and K. Macroscopically, both minerals are bronze in color and have a dark-gray streak and metallic luster. They are brittle and have a conchoidal fracture. In reflected light, both minerals are optically isotropic and exhibit gray color with an olive tinge. The reflectance values for zoharite and gmalimite, respectively, at the standard COM wavelengths are: 22.2% and 21.5% at 470 nm, 25.1% and 24.6% at 546 nm, 26.3% and 25.9% at 589 nm, as well as 27.7% and 26.3% at 650 nm. The average hardness for zoharite and for gmalimite is approximately 3.5 of the Mohs hardness. Both minerals are isostructural with owensite, (Ba,Pb)6(Cu,Fe,Ni)25S27. They crystallize in cubic space group Pm3¯m with the unit-cell parameters a = 10.3137(1) Å for zoharite and a = 10.3486(1) Å for gmalimite. The calculated densities are 4.49 g·cm−3 for the zoharite and 3.79 g·cm−3 for the gmalimite. The primary structural units of these minerals are M8S14 clusters, composed of MS4 tetrahedra surrounding a central MS6 octahedron. The M site is occupied by transition metals such as Fe, Cu, and Ni. These clusters are further connected via the edges of the MS4 tetrahedra, forming a close-packed cubic framework. The channels within this framework are filled by anion-centered polyhedra: SBa9 in zoharite and SK9 in gmalimite, respectively. In the M8S14 clusters, the M atoms are positioned so closely that their d orbitals can overlap, allowing the formation of metal–metal bonds. As a result, the transition metals in these clusters often adopt electron configurations that reflect additional electron density from their local bonding environment, similar to what is observed in pentlandite. Due to the presence of shared electrons in these metal–metal bonds, assigning fixed oxidation states—such as Fe2+/Fe3+ or Cu+/Cu2+—becomes challenging. Moreover, modeling the distribution of mixed-valence cations (Fe2+/3+, Cu+/2+, and Ni2+) across the two distinct M sites—one located in the MS6 octahedron and the other in the MS4 tetrahedra—often results in ambiguous outcomes. Consequently, it is difficult to define an idealized end-member formula for these minerals. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Graphical abstract

26 pages, 8704 KiB  
Article
Genome-Wide Identification, Phylogeny, and Abiotic Stress Response Analysis of OSCA Family Genes in the Alpine Medicinal Herb Notopterygium franchetii
by Qi-Yue Zhang, Xiao-Jing He, Yan-Ze Xie, Li-Ping Zhou, Xin Meng, Jia Kang, Cai-Yun Luo, Yi-Nuo Wang, Zhong-Hu Li and Tian-Xia Guan
Int. J. Mol. Sci. 2025, 26(11), 5043; https://doi.org/10.3390/ijms26115043 - 23 May 2025
Viewed by 396
Abstract
Hyperosmolality-gated calcium-permeable cation channel protein denoted as OSCA, which are mechanosensitive pore-forming ion channels, play a pivotal role in plants’ responses to abiotic stressors. Notopterygium franchetii, an endemic perennial plant species distributed in the Qinghai–Tibetan Plateau and its adjacent high-altitude regions, is [...] Read more.
Hyperosmolality-gated calcium-permeable cation channel protein denoted as OSCA, which are mechanosensitive pore-forming ion channels, play a pivotal role in plants’ responses to abiotic stressors. Notopterygium franchetii, an endemic perennial plant species distributed in the Qinghai–Tibetan Plateau and its adjacent high-altitude regions, is likely to have undergone adaptive evolution in response to extreme abiotic stress conditions. The current study was conducted to characterize the genome-wide characteristics and phylogenetic evolution of the OSCA gene family in N. franchetii and identify its response patterns to drought and high-temperature stresses. We examined the gene family’s structural features, phylogenetic relationships, and response to abiotic stresses. The N. franchetii genome had 29 OSCA gene family members on 11 chromosomes. Subcellular localization showed they were mainly in the cell membrane, and a promoter cis-acting element study found that the OSCA gene family contained methyl jasmonate, abscisic acid, and various adversity and hormone response components. Under drought stress, most of the NofOSCAs genes showed a tendency to increase over time in the roots of N. franchetii, while in the aboveground parts, most of the NofOSCAs genes showed a tendency to increase and then decrease. The expression of different NofOSCAs genes in N. franchetii also showed alternating changes under high-temperature stress. Nine members of NofOSCAs were found to be linked to the PPI network, and these members were involved in membrane structure, transmembrane transport, and ion channel function. Our analysis of differential expression revealed that the expression of OSCA genes differed among the different N. franchetii tissues, with the roots exhibiting the highest average expression level, and many genes displayed tissue-specific high expression patterns. These results provided novel insights into the phylogenetic evolution and abiotic stress response mechanisms in the high-altitude medicinal herb N. franchetii. Full article
(This article belongs to the Special Issue Plant Genome Evolution and Environmental Adaptation)
Show Figures

Figure 1

12 pages, 5179 KiB  
Article
TRPC6 in Human Peripheral Nerves—An Investigation Using Immunohistochemistry
by Cedric Raming, Carola Meier and Thomas Tschernig
NeuroSci 2025, 6(2), 44; https://doi.org/10.3390/neurosci6020044 - 19 May 2025
Viewed by 882
Abstract
Since its discovery, TRPC6 has been associated with a variety of physiological and pathophysiological processes in different tissues. It functions as a non-selective cation channel and belongs to the group of TRP channels. Its importance in the development of pain hypersensitivity is becoming [...] Read more.
Since its discovery, TRPC6 has been associated with a variety of physiological and pathophysiological processes in different tissues. It functions as a non-selective cation channel and belongs to the group of TRP channels. Its importance in the development of pain hypersensitivity is becoming increasingly apparent. This condition has already been associated with increased expression of TRPC6 in dorsal root ganglia. Apart from the fact that most of the evidence has been obtained from samples of animal origin, it remains unclear whether the channel is also expressed in peripheral nerves outside the dorsal root ganglia. The aim of this work was therefore to examine peripheral nerves from human samples for TRPC6. For this purpose, samples of both the sciatic and ulnar nerves were taken from a total of eight body donors and analyzed by immunohistochemistry. Both longitudinal and transverse sections were obtained from the samples and stained. In total, 43 of 48 histological sections showed a positive immunosignal. There were no major differences between the sciatic and ulnar nerves with regard to staining. There was a slight difference in the staining intensity of transverse and longitudinal sections. The longitudinal sections of both nerves were consistently colored slightly more intensely. However, the inter-individual differences between the donors were more pronounced. Interestingly, the samples of a donor who suffered from chronic pain syndrome during his lifetime were particularly strongly stained. This is consistent with the knowledge gained to date, largely from animal experiments, that the channel shows increased expression in pain conditions in dorsal root ganglia. In the future, TRPC6 could therefore be a target in pain therapy. Full article
Show Figures

Figure 1

25 pages, 13199 KiB  
Article
Taurine Prevents Impairments in Skin Barrier Function and Dermal Collagen Synthesis Triggered by Sleep Deprivation-Induced Estrogen Circadian Rhythm Disruption
by Qi Shao, Zhaoyang Wang, Yifang Li, Xun Tang, Ziyi Li, Huan Xia, Qihong Wu, Ruxue Chang, Chunna Wu, Tao Meng, Yufei Fan, Yadong Huang and Yan Yang
Cells 2025, 14(10), 727; https://doi.org/10.3390/cells14100727 - 16 May 2025
Viewed by 1645
Abstract
Sleep deprivation is a prevalent issue that disrupts the circadian rhythm of estrogen, particularly estradiol, thereby significantly affecting women’s skin health and appearance. These disruptions can impair skin barrier functionality and decrease dermal collagen synthesis. In this study, our results demonstrate that topical [...] Read more.
Sleep deprivation is a prevalent issue that disrupts the circadian rhythm of estrogen, particularly estradiol, thereby significantly affecting women’s skin health and appearance. These disruptions can impair skin barrier functionality and decrease dermal collagen synthesis. In this study, our results demonstrate that topical taurine supplementation promotes the expression of tight junction (TJ)-related proteins and enhances collagen production, effectively restoring skin homeostasis in sleep-deprived female mice. Mechanistically, taurine upregulates the expression of TMEM38B, a gene encoding the TRIC-B trimeric cation channel, resulting in increased intracellular calcium ion levels. This, in turn, promotes the upregulation of TJ-related proteins, such as ZO-1, occludin, and claudin-11 in epidermal cells, while also enhancing the expression of type III collagen in fibroblasts, thus restoring skin homeostasis. These findings suggest that taurine may serve as an alternative to estradiol, effectively improving skin homeostasis disrupted by sleep deprivation while mitigating the potential risks associated with exogenous estrogen supplementation. Collectively, these results provide preliminary insights into the protective mechanisms of taurine against sleep deprivation-induced skin impairments and establish a foundation for its potential application in treating skin conditions related to estrogen imbalances, such as skin aging in menopausal women. Full article
Show Figures

Graphical abstract

26 pages, 5996 KiB  
Article
N-N-Substituted Piperazine, Cmp2, Improves Cognitive and Motor Functions in 5xFAD Mice
by Nikita Zernov, Daria Melenteva, Viktor Ghamaryan, Ani Makichyan, Lernik Hunanyan and Elena Popugaeva
Int. J. Mol. Sci. 2025, 26(10), 4591; https://doi.org/10.3390/ijms26104591 - 10 May 2025
Cited by 1 | Viewed by 558
Abstract
The piperazine derivative N-(2,6-difluorophenyl)-2-(4-phenylpiperazin-1-yl)propanamide (cmp2) has emerged as a potential transient receptor potential cation channel, subfamily C, member 6 (TRPC6) modulator, offering a promising pathway for Alzheimer’s disease (AD) therapy. Our recent findings identify cmp2 as a novel compound with synaptoprotective effects in [...] Read more.
The piperazine derivative N-(2,6-difluorophenyl)-2-(4-phenylpiperazin-1-yl)propanamide (cmp2) has emerged as a potential transient receptor potential cation channel, subfamily C, member 6 (TRPC6) modulator, offering a promising pathway for Alzheimer’s disease (AD) therapy. Our recent findings identify cmp2 as a novel compound with synaptoprotective effects in primary hippocampal cultures and effective blood–brain barrier (BBB) penetration. In vivo studies demonstrate that cmp2 (10 mg/kg, intraperitoneally) restores synaptic plasticity deficits in 5xFAD mice. This study further shows cmp2’s selectivity towards tetrameric TRPC6 channel in silico. Acute administration of cmp2 is non-toxic, with no indications of chronic toxicity, and Ames testing confirms its lack of mutagenicity. Behavioral assays reveal that cmp2 improves cognitive functions in 5xFAD mice, including increased novel object recognition, better passing of the Morris water maze, and improved fear memory, as well as upregulation of motor function in beam walking tests. These findings suggest that cmp2 holds promise as a candidate for AD treatment. Full article
(This article belongs to the Special Issue Drug Design and Development for Neurological Diseases)
Show Figures

Figure 1

21 pages, 14030 KiB  
Article
Impact of Type 1 Diabetes on Testicular Microtubule Dynamics, Sperm Physiology, and Male Reproductive Health in Rat
by Alessandra Biasi, Maria Rosaria Ambruosi, Maria Zelinda Romano, Serena Boccella, Sara Falvo, Francesca Guida, Francesco Aniello, Sabatino Maione, Massimo Venditti and Sergio Minucci
Int. J. Mol. Sci. 2025, 26(10), 4579; https://doi.org/10.3390/ijms26104579 - 10 May 2025
Viewed by 724
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease defined by sustained hyperglycemia, leading to oxidative stress (OS) and systemic complications, including male subfertility. This study investigates the potential impact of T1D-induced OS on microtubule (MTs) dynamics and microtubule-associated proteins (MAPs) in the [...] Read more.
Type 1 diabetes (T1D) is a chronic metabolic disease defined by sustained hyperglycemia, leading to oxidative stress (OS) and systemic complications, including male subfertility. This study investigates the potential impact of T1D-induced OS on microtubule (MTs) dynamics and microtubule-associated proteins (MAPs) in the testis and spermatozoa (SPZ). Using a streptozotocin-induced T1D rat model, we examined the expression and localization of key MAPs, including Microtubule Affinity-Regulating Kinase 4 (MARK4), Microtubule-Associated Protein 1A (MAP1A), Dynein Light Chain LC8-Type 1 (DYNLL1), Prolyl Endopeptidase (PREP), and Radial Spoke Head 6 Homolog A (RSPH6A), alongside sperm functional parameters. Our findings showed that T1D significantly impaired the expression and distribution of these proteins, which may affect MTs organization and be associated with cytoskeletal disorganization, and impaired germ cell differentiation. Moreover, T1D rats exhibited reduced sperm count, viability, and motility, accompanied by increased DNA fragmentation and chromatin defects. Elevated levels of 4-hydroxy-2-nonenal (4-HNE), a marker of OS, were detected in SPZ, particularly in the acrosome and flagellum, correlating with mitochondrial dysfunction and ATP depletion. Additionally, decreased intracellular Ca2+ levels, downregulation of Cation Channel of Sperm (CATSPER) and Voltage-Dependent Anion Channel 3 (VDAC3), and altered tubulin acetylation, possibly due to imbalanced Alpha-Tubulin N-Acetyltransferase 1 (ATAT1) and Histone Deacetylase 6 (HDAC6) expression, were also associated with impaired sperm motility. The combined data suggest that T1D-induced OS is linked to disrupted MTs dynamics, which may contribute to testicular dysfunction and reduced sperm quality, potentially affecting male fertility. A better understanding of these associations may support the development of therapeutic strategies to mitigate the reproductive consequences of T1D and improve male fertility outcomes. Full article
Show Figures

Graphical abstract

21 pages, 3966 KiB  
Article
Implications of Isomorphism in the Family of Apatite Compounds
by Agnieszka Lasota, Mieczysław Gorzelak, Emanuela Bis, Przemysław Biliński, Krzysztof Gieburowski, Wojciech Kłapeć, Barbara Tymczyna-Borowicz, Michał Łobacz, Jarosław Pawlicz, Maciej Jarzębski, Marek Wieruszewski, Karolina Turżańska, Mirosław Jabłoński and Andrzej Kuczumow
Int. J. Mol. Sci. 2025, 26(9), 4397; https://doi.org/10.3390/ijms26094397 - 6 May 2025
Viewed by 306
Abstract
Apatites are very important compounds of mineralogical and biological meaning. Apatites originated from the calcium hydroxy compound 3Ca3(PO4)2·Ca(OH)2 and potentially might form three series of isomorphic salts, derived from cationic substitutions in the positions of Ca(I) [...] Read more.
Apatites are very important compounds of mineralogical and biological meaning. Apatites originated from the calcium hydroxy compound 3Ca3(PO4)2·Ca(OH)2 and potentially might form three series of isomorphic salts, derived from cationic substitutions in the positions of Ca(I) and Ca(II) ions in the core compound; anionic substitutions of phosphates; and substitutions of anions and very simple chemical entities instead of the hydroxyl group in channel locations. The energies coupled with the ion exchanges inside those three locations were studied using our original method resulting from the transformation of Braggs’ law. The energy changes resulting from the ion exchanges were studied in connection with either the ionic radii for the cations or ionic volumes for the anions. The same series were observed when the variabilities of energy were confronted with the variabilities in the sinus of diffraction angle Θ showing changes in momentum transfer. In particular, the relationships between the energy changes and the coupled changes in the universal crystallographic parameter d showed the surprising uniformity of all ion exchanges in the apatites. The incremental change in the Braggs’ d-parameter always demands the same change in the energy, with good approximation, independently of the location of the ion exchange. So, the isomorphism of the apatites is not triple but a uniform one at the energy level. Such an approach enables the estimation of the volume of the ion-□ (□-vacancies) agglomerates. The introduction of ions with greater volumes exerts the phenomenon of swelling of apatite cells, which can be quantitatively estimated. The dependence of diffraction spectra on the temperature allows for the determination of minimal values of crystallographic cell volumes and d parameters at the temperature of 0 K. In sum, the study of energies connected with the change of Bragg dimension d is a new and valuable method of insight into the behaviour of apatite crystals. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 6115 KiB  
Article
Root Response to K+-Deprivation in Wheat (Triticum aestivum L.): Coordinated Roles of HAK Transporters, AKT2 and SKOR K+-Channels, and Phytohormone Regulation
by Yuan Huang, Naiyue Hu, Xiwen Yang, Sumei Zhou, Miao Song, Jiemei Zhang, Xu Chen, Xihe Du and Dexian He
Agriculture 2025, 15(9), 993; https://doi.org/10.3390/agriculture15090993 - 3 May 2025
Viewed by 409
Abstract
Potassium cation (K+) is essential for wheat (Triticum aestivum L.) growth, but the regulatory mechanisms of root response to K+ deficiency are not well understood. This study examines how varying durations of K+-deprivation affect root K+ [...] Read more.
Potassium cation (K+) is essential for wheat (Triticum aestivum L.) growth, but the regulatory mechanisms of root response to K+ deficiency are not well understood. This study examines how varying durations of K+-deprivation affect root K+ transport and homeostasis in two wheat varieties, XN979 and YM68. Field pot experiments over three growing seasons showed that XN979 has significantly higher K uptake and productive efficiency than YM68 at a K fertilizer application rate of 60 kg hm−2. Hydroponic experiments revealed that XN979 has a lower Km (K+ concentrations at which 1/2 of Vmax) and a higher Vmax (maximum rate of K+ uptake) in K+ uptake kinetics, indicating better adaptation to K+-deficient environments. RNA-seq analysis after different durations of K+ deficiency (0, 6, 12, 24, 48 h) showed that genes encoding the Arabidopsis K+ Transporter 1 (AKT1) K+-channel in both varieties were not significantly upregulated. Instead, K+ transport in root primarily depended on high-affinity K+ (HAK) transporters. Genes encoding the Arabidopsis K+ Transporter 2 (AKT2) K+-channel in phloem cells were significantly upregulated under K+-deprivation. KOR1 and KOR2, encoding the Stelar K+ Outward Rectifier (SKOR) K+-channel in xylem cells, were significantly downregulated after 6 h and 12 h of K+-deprivation, respectively. Significant changes in the expression levels of the Calcineurin B-Like protein–CBL-Interacting Protein Kinase (CBL-CIPK) signaling system and phytohormones synthesis-related genes suggest their involvement in the root response to K+-deprivation. These findings clarify the regulation of wheat root responses to K deficiency. Full article
Show Figures

Figure 1

Back to TopTop