Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = catalytic oxidation desulfurization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4963 KB  
Article
Enhanced Catalytic Performance on UiO-67(Zr) Prepared with the Aid of Vapor by Acid Treatment for Oxidative Desulfurization of Fuel Oil
by Yuqing Kong, Xinchun Liu, Jiawei Fu, Ruyu Zhao, Yinyong Sun and Defeng Li
Catalysts 2026, 16(1), 70; https://doi.org/10.3390/catal16010070 - 7 Jan 2026
Viewed by 390
Abstract
UiO-67(Zr), as a member of Zr-based metal–organic frameworks (MOFs), has attracted much attention owing to its merits, involving large surface area, high pore volume, and good structural stability. However, it is generally inactive in many catalytic reactions due to a lack of active [...] Read more.
UiO-67(Zr), as a member of Zr-based metal–organic frameworks (MOFs), has attracted much attention owing to its merits, involving large surface area, high pore volume, and good structural stability. However, it is generally inactive in many catalytic reactions due to a lack of active sites. In this work, we report a new strategy, combining vapor-assisted synthesis with acid treatment to create abundant active sites in UiO-67(Zr), resulting from defects. The effects of some synthetic parameters were systematically investigated. As a result, an optimized material named UiO-67(Zr)-V-0.5FA-H, obtained by acid-treating UiO-67(Zr) and prepared with the addition of 0.5 mL formic acid via a vapor-assisted method, exhibited outstanding catalytic performance in the oxidation of dibenzothiophene (DBT), which can completely oxidize DBT in 9 min at 30 °C using H2O2 as the oxidant. The calculated turnover frequency reached 150.4 h−1, surpassing those of most reported Zr-MOFs catalysts. In addition, it is demonstrated that UiO-67(Zr)-V-0.5FA-H is a heterogeneous catalyst and can be reused without obvious activity loss. Full article
Show Figures

Graphical abstract

15 pages, 2483 KB  
Article
Scalable and Green Engineering of MoOx with Abundant Oxygen Vacancies for Efficient and Recyclable Aerobic Oxidative Desulfurization of Fuels
by Chao Wang, Mindan Ma, Ying Zhang, Yijin Zhang, Jiayi Chen, Junjian Li, Yao Lu, Xiaoyu Yao and Ming Zhang
Catalysts 2025, 15(12), 1146; https://doi.org/10.3390/catal15121146 - 5 Dec 2025
Viewed by 560
Abstract
Efficient oxidation of refractory sulfides, such as dibenzothiophene (DBT) and its derivatives, provides a promising strategy to produce fuel oils with ultra-low sulfur content, or even completely sulfur-free. In this study, a series of non-stoichiometric molybdenum oxides (MoOx) were synthesized via [...] Read more.
Efficient oxidation of refractory sulfides, such as dibenzothiophene (DBT) and its derivatives, provides a promising strategy to produce fuel oils with ultra-low sulfur content, or even completely sulfur-free. In this study, a series of non-stoichiometric molybdenum oxides (MoOx) were synthesized via a facile procedure and employed as efficient catalysts. These catalysts can effectively oxidize DBT and its derivatives into insoluble sulfones, which subsequently precipitate from the oil phase, achieving efficient sulfur removal. In this system, molecular oxygen from air can be activated by the MoOx catalysts with oxygen vacancies into superoxide radicals, which act as active oxygen species to efficiently oxidize refractory sulfides. Under atmospheric pressure at 120 °C, complete sulfur removal (100%) was achieved for both DBT and its derivatives, representing significantly milder conditions compared to conventional hydrodesulfurization. The aerobic oxidation system could be reused for up to 12 consecutive cycles without any significant decline in sulfur removal. And complete desulfurization (100%) was regained after a simple washing of the separated solid phase. Then, a possible reaction procedure was subsequently proposed to describe the desulfurization route. The remarkable catalytic performance, together with the facile synthesis strategy, indicates the potential of this approach for constructing other transition metal oxides used in various advanced aerobic oxidation reactions. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

17 pages, 3083 KB  
Article
Synthesis of Zirconium Catalysts Supported on Activated Carbon for Catalytic Oxidative Desulfurization of Dibenzothiophene from N-Octane
by Caixia Yang, Lin Zhang, Shaocui Feng, Yan Chen, Jianmei Zou, Huijun He and Qing Zhang
Sustainability 2025, 17(21), 9483; https://doi.org/10.3390/su17219483 - 24 Oct 2025
Viewed by 512
Abstract
The growing emphasis on controlling sulfur-containing compounds in fuel oils has driven the development of numerous desulfurization technologies. Among these, catalytic oxidative desulfurization (CODS) has garnered considerable research interest due to its exceptional capability to efficiently remove refractory sulfur compounds, particularly dibenzothiophene (DBT), [...] Read more.
The growing emphasis on controlling sulfur-containing compounds in fuel oils has driven the development of numerous desulfurization technologies. Among these, catalytic oxidative desulfurization (CODS) has garnered considerable research interest due to its exceptional capability to efficiently remove refractory sulfur compounds, particularly dibenzothiophene (DBT), under relatively mild reaction conditions. However, the widespread application of CODS has been hindered by the high cost and complex preparation processes of the catalysts. To enhance the practical potential of CODS, in this study, a novel Zr@AC catalyst was developed by a facile “solution impregnation + high-temperature calcination” strategy, where zirconium species were effectively supported on activated carbon. Experimental results demonstrated that under optimized conditions of 0.1 g catalyst dosage, 2.0 O/S ratio, reaction temperature 100 °C and reaction time 50 min, the Zr@AC-mediated CODS system achieved a remarkable desulfurization efficiency of 97.24% for DBT removal. The removal efficiency of DBT increased by 9.0% compared with non-catalytic systems. The characterization techniques revealed that the Zr@AC catalyst possesses a hierarchically rough surface morphology, high specific surface area, abundant active sites, and distinctive Zr-O functional groups. Kinetic analysis indicated that the oxidation process follows second-order reaction kinetics. Furthermore, the catalyst maintained over 95% desulfurization efficiency after five consecutive regeneration cycles, confirming that the prepared catalyst has the exceptional recyclability and operational stability. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

26 pages, 6796 KB  
Article
The Green Preparation of ZrO2-Modified WO3-SiO2 Composite from Rice Husk and Its Excellent Oxidative Desulfurization Performance
by Hao Li, Xiaorong Xiang, Yinhai Zhang, Huiqing Cheng, Qian Chen, Xiang Li, Feng Wu and Xiaoxue Liu
Catalysts 2025, 15(10), 996; https://doi.org/10.3390/catal15100996 - 19 Oct 2025
Viewed by 940
Abstract
Recently, the resource utilization of agricultural biomass wastes for the preparation of a wide range of high-value-added chemicals and functional materials, especially heterogeneous catalysts, has received extensive attention from researchers. In this work, mesoporous WO3/ZrO2-SiO2 catalysts are prepared [...] Read more.
Recently, the resource utilization of agricultural biomass wastes for the preparation of a wide range of high-value-added chemicals and functional materials, especially heterogeneous catalysts, has received extensive attention from researchers. In this work, mesoporous WO3/ZrO2-SiO2 catalysts are prepared by a two-step incipient-wetness impregnation method using agricultural biomass waste rice husk (RH) as both the silicon source and mesoporous template. The effects of different WO3 and ZrO2 loadings on the oxidative desulfurization (ODS) performance of samples are investigated, and the suitable WO3 and ZrO2 loadings are 11 and 30%, respectively. The relevant characterization results indicate that, compared to 11%WO3/SiO2, the introduction of ZrO2 leads to the formation of stronger W-O-Zr bonds, which makes the tungsten species stabilized in the state of W6+. The strong preferential interaction between Zr and W facilitates the formation of stable and highly dispersed WOx clusters on the mesoporous ZrO2-SiO2 carrier. Furthermore, it also prevents the formation of WO3 crystallites, significantly reducing their content and thus inhibiting the loss of the WO3 component during cycling experiments. Therefore, the 11%WO3/30%ZrO2-SiO2 sample shows excellent catalytic activity and recycling performance (DBT conversion reaches 99.2% after 8 cycles, with a turnover frequency of 12.7 h–1; 4,6-DMDBT conversion reaches 99.0% after 7 cycles, with a turnover frequency of 6.3 h–1). The kinetics of the ODS reactions are further investigated. The mechanism of the ODS reaction is explored through experiments involving leaching, quenching, and the capture of the active intermediate. Finally, a possible reaction mechanism for the ODS process for the 11%WO3/30%ZrO2-SiO2 sample is proposed. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in China: New Horizons and Recent Advances)
Show Figures

Figure 1

24 pages, 4103 KB  
Article
Eco-Friendly Oxidative–Adsorptive Desulfurization for Real Diesel Fuel Using Green MnO2 Biowaste-Extracted Calcite in Digital Basket Reactor
by Jasim I. Humadi, Khaleel I. Hamad, Hiba A. Abdulkareem, Maha Nazar Ismael, Aysar T. Jarullah, Mustafa A. Ahmed, Shymaa A. Hameed, Amer T. Nawaf and Iqbal M. Mujtaba
Processes 2025, 13(10), 3084; https://doi.org/10.3390/pr13103084 - 26 Sep 2025
Cited by 4 | Viewed by 1946
Abstract
Achieving ultra-low-sulfur diesel is a crucial objective in modern fuel refining, driven by increasingly stringent environmental regulations. This study presents the development of a highly efficient oxidative–adsorptive desulfurization process utilizing a nanocatalyst synthesized from biowaste eggshell-extracted calcite. The oxidation reaction was conducted in [...] Read more.
Achieving ultra-low-sulfur diesel is a crucial objective in modern fuel refining, driven by increasingly stringent environmental regulations. This study presents the development of a highly efficient oxidative–adsorptive desulfurization process utilizing a nanocatalyst synthesized from biowaste eggshell-extracted calcite. The oxidation reaction was conducted in a digital basket reactor (DBR), an advanced reactor system designed to enhance mass transfer and catalytic efficiency. To further augment the catalyst’s performance, the calcite was modified with eco-friendly MnO2, while activated carbon was employed as an adsorbent to effectively capture oxidized sulfur compounds, ensuring compliance with ultra-low-sulfur fuel standards. The synthesized nanocatalyst underwent comprehensive physicochemical characterization using SEM, EDX, BET, and FTIR, confirming its high surface area, structural integrity, and superior catalytic activity. The MnO2/P–calcite catalyst achieved a sulfur removal efficiency of 96.5% at 90 °C, 80 min, and 600 rpm, demonstrating excellent oxidative–adsorptive performance for real diesel fuel. The integration of this innovative nanocatalyst with the DBR system presents a sustainable, cost-effective, and industrially viable approach for deep desulfurization, offering significant advancements in clean fuel production and environmental sustainability. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

23 pages, 3019 KB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Cited by 1 | Viewed by 1598
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

21 pages, 3300 KB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 941
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

16 pages, 6879 KB  
Article
Heteropolyacid-Based Poly(Ionic Liquid) Catalyst for Ultra-Deep and Recyclable Oxidative Desulfurization of Fuels
by Mengyue Chen, Tianqi Huang, Shuang Tong, Chao Wang and Ming Zhang
Catalysts 2025, 15(7), 622; https://doi.org/10.3390/catal15070622 - 24 Jun 2025
Cited by 2 | Viewed by 984
Abstract
To address the challenge of ultra-deep desulfurization in fuels, a series of heteropolyacid-based poly(ionic liquid) catalysts (C4-PIL@PW, C8-PIL@PW, and C16-PIL@PW) were synthesized via radical polymerization and anion exchange methods. The prepared catalysts were characterized via FT-IR, XRD pattern, and Raman spectroscopy. Optimal reaction [...] Read more.
To address the challenge of ultra-deep desulfurization in fuels, a series of heteropolyacid-based poly(ionic liquid) catalysts (C4-PIL@PW, C8-PIL@PW, and C16-PIL@PW) were synthesized via radical polymerization and anion exchange methods. The prepared catalysts were characterized via FT-IR, XRD pattern, and Raman spectroscopy. Optimal reaction parameters (e.g., temperature, catalyst dosage, and O/S molar ratio) were systematically investigated, as well as the catalytic mechanism. The typical sample C8-PIL@PW exhibited exceptional oxidative desulfurization (ODS) performance, achieving a sulfur removal of 99.2% for dibenzothiophene (DBT) without any organic solvent as extractant. Remarkably, the sulfur removal could still retain 89% after recycling five times without regeneration. This study provides a sustainable and high-efficiency catalyst for ODS, offering insights into fuel purification strategies. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Figure 1

19 pages, 7410 KB  
Article
Novel Catalysts Based on Synthetic Mesoporous Silicates of the MCM-41 Type and Hydroxyapatite for Desulfurization of Model Fuel
by Nadezhda O. Donskaya, Margarita A. Goldberg, Alexander S. Fomin, Anna O. Koptelova, Polina D. Domashkina, Ekaterina A. Eseva, Olga S. Antonova, Anatoliy A. Konovalov, Alexander V. Leonov, Egor A. Kudryavtsev, Fadis F. Murzakhanov, Marat R. Gafurov, Argam V. Akopyan, Sergey M. Barinov and Vladimir S. Komlev
Ceramics 2025, 8(2), 61; https://doi.org/10.3390/ceramics8020061 - 21 May 2025
Viewed by 2206
Abstract
Nanopowders of hydroxyapatite (HA) and Fe-substituted hydroxyapatite (HAFe) were synthesized by wet precipitation on either MCM-41 (a synthetic, mesoporous aluminosilicate material) or an aluminum-containing MCM-41 (AlMCM) support. According to X-ray diffraction data, all of the synthesized materials are composite powders consisting of amorphous [...] Read more.
Nanopowders of hydroxyapatite (HA) and Fe-substituted hydroxyapatite (HAFe) were synthesized by wet precipitation on either MCM-41 (a synthetic, mesoporous aluminosilicate material) or an aluminum-containing MCM-41 (AlMCM) support. According to X-ray diffraction data, all of the synthesized materials are composite powders consisting of amorphous silicate and an HA phase with low crystallinity. The presence of aluminum and iron in the structure of the powders resulted in further amorphization. The obtained samples showed high specific surface areas (SSAs), ranging from 162.3 to 186.6 m2/g for MCM-41-HA and from 112.6 to 127.2 m2/g for AlMCM-HA. The hysteresis loops were found to be of type H3, indicating the formation of slit-like pores in the intercrystalline space, as confirmed by transmission electron microscopy, which revealed the presence of lamellar and flake-like particles. Catalytic activity tests showed that the conversion of dibenzothiophene depended on the iron concentration in the material and the acidity of the support. To further improve the catalytic activity of the materials, they were impregnated with molybdenum compounds. Active molybdenum peroxo complexes formed under these conditions enabled 100% conversion of dibenzothiophene. To our knowledge, this is the first study on the influence of MCM-41-HA- or AlMCM-HA-based materials on dibenzothiophene conversion via oxidative desulfurization using hydrogen peroxide as an oxidant. Full article
Show Figures

Graphical abstract

18 pages, 21884 KB  
Article
Ti-Supported Oxide Coatings Based on MWO4 (M = Fe, Co, Ni): Plasma Electrolytic Synthesis, Characterization and Catalytic Properties in S, N-Heterocycles Peroxide Oxidation
by Irina G. Tarkhanova, Vladimir M. Zelikman, Irina V. Lukiyanchuk, Marina S. Vasilyeva, Vladimir V. Tkachev, Vladimir V. Korochentsev and Daria H. Shlyk
Molecules 2025, 30(9), 1998; https://doi.org/10.3390/molecules30091998 - 30 Apr 2025
Viewed by 834
Abstract
In this study, catalytically active coatings on titanium were synthesized by plasma electrolytic oxidation (PEO) in aqueous electrolytes based on sodium tungstate with the addition of sodium phosphate or sodium borate and chelate complexes of iron, cobalt or nickel. Taking into account the [...] Read more.
In this study, catalytically active coatings on titanium were synthesized by plasma electrolytic oxidation (PEO) in aqueous electrolytes based on sodium tungstate with the addition of sodium phosphate or sodium borate and chelate complexes of iron, cobalt or nickel. Taking into account the EDX, XPS and XRD data, the oxide–phosphate coatings (PWFe, PWCo, PWNi) contained crystalline titanium oxide and amorphous tungstates and/or phosphates of iron triad metals. Amorphization was facilitated by high phosphorus concentrations (up to 6 at.%). Replacing phosphate with borate in the electrolyte with Ni(II)-EDTA complexes led to the crystallization of WO3 and NiWO4 in the PEO coatings (BWNi). All formed PEO coatings were active in reactions of the oxidative desulfurization (ODS) of thiophene and dibenzothiophene and oxidative denitrogenation (ODN) of pyridine, as well as in the simultaneous removal of S- and N-containing substrates from their mixture. The stability of samples with MWO4 increased in the following series: PWNi < PWCo < PW < PWFe < BWNi. Replacing phosphate with borate in the electrolyte resulted in the preparation of catalysts with enhanced stability and activity. In contrast to PWM catalysts, the BWNi catalyst had selectivity toward the oxidation of pyridine in its mixture with thiophene. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

14 pages, 2410 KB  
Article
The Effect of the NbVOx Synthesis Protocol on the Extractive Catalytic Oxidative Desulfurization of Dibenzothiophene
by Katarzyna Stawicka, Julia Gajewska, Maria Ziolek and Maciej Trejda
Molecules 2025, 30(3), 551; https://doi.org/10.3390/molecules30030551 - 25 Jan 2025
Cited by 1 | Viewed by 1354
Abstract
NbVOx mixed oxides were synthesized, characterized, and evaluated as catalysts for the extractive catalytic oxidative desulfurization (ECODS) of dibenzothiophene (DBT) using acetonitrile as a solvent. The mixed oxides were prepared using two different vanadium precursors: ammonium metavanadate and vanadium(IV)-oxy acetylacetonate. These precursors [...] Read more.
NbVOx mixed oxides were synthesized, characterized, and evaluated as catalysts for the extractive catalytic oxidative desulfurization (ECODS) of dibenzothiophene (DBT) using acetonitrile as a solvent. The mixed oxides were prepared using two different vanadium precursors: ammonium metavanadate and vanadium(IV)-oxy acetylacetonate. These precursors influenced the acidic/basic properties and the concentration of oxygen vacancies in the resulting catalysts. The texture and surface properties of the synthesized materials were analyzed using nitrogen adsorption/desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible spectroscopy (UV-vis). Their catalytic activity was evaluated through the dehydration and dehydrogenation of 2-propanol and the ECODS of DBT. The mixed oxides synthesized with an excess of ammonium metavanadate (Nb:V = 1:2) demonstrated superior catalytic activity in removing DBT from the oil phase, achieving approximately 90% removal within 90 min at 60 °C. This enhanced activity is attributed to its higher acidity, greater concentration of oxygen vacancies, and the presence of vanadium peroxo ligands on its surface. Full article
Show Figures

Graphical abstract

19 pages, 4748 KB  
Article
Hierarchically Porous Titanosilicate Hollow Spheres Containing TS-1 Zeolite Precursors for Oxidative Desulfurization
by Yao Wang, Hongda Yu, Huan Wang and Tiehong Chen
Inorganics 2025, 13(2), 37; https://doi.org/10.3390/inorganics13020037 - 25 Jan 2025
Viewed by 1258
Abstract
The environmental and health impacts of sulfur compounds in fuel oil have prompted considerable research interest in oxidative desulfurization (ODS) technology. Tetrahedrally coordinated titanium has been demonstrated to exhibit excellent activity in the context of oxidative desulfurization processes. However, further improving the catalytic [...] Read more.
The environmental and health impacts of sulfur compounds in fuel oil have prompted considerable research interest in oxidative desulfurization (ODS) technology. Tetrahedrally coordinated titanium has been demonstrated to exhibit excellent activity in the context of oxidative desulfurization processes. However, further improving the catalytic property of the tetrahedrally coordinated titanium remains a challenging endeavor. In the context of ODS processes conducted at near room temperatures, the improvement of conversion remains a subject of considerable challenge. In this study, hierarchically porous titanosilicate hollow spheres were synthesized by using TS-1 zeolite precursors as Ti and Si sources to obtain the catalyst with only tetrahedrally coordinated titanium. The synthesized materials were characterized through transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet–visible diffuse reflectance spectroscopy (UV-Vis), and nitrogen adsorption analysis. These techniques confirmed the formation of hollow spherical hierarchically porous structures with Ti species uniformly incorporated in tetrahedral coordination and the presence of five-member rings of TS-1 zeolite. As a result, the hierarchically porous titanosilicate hollow spheres demonstrated excellent catalytic performance in ODS, achieving complete dibenzothiophene (DBT) removal within 15 min and a high turnover frequency (TOF) of up to 123 h−1 at 30 °C. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2024)
Show Figures

Figure 1

19 pages, 5351 KB  
Article
Deactivation and Regeneration Studies of Molybdenum-Based Catalysts in the Oxidative Desulfurization of Marine Fuel Oil
by Teddy Roy, Joy Alakari, Christine Lancelot, Pascal Blanchard, Line Poinel and Carole Lamonier
Catalysts 2024, 14(11), 823; https://doi.org/10.3390/catal14110823 - 15 Nov 2024
Cited by 4 | Viewed by 2231
Abstract
The oxidative desulfurization (ODS) of heavy fuel oil (HFO) offers a promising solution for desulfurizing marine fuels under mild conditions, in line with current environmental regulations. While most studies focus on model or light fuels, explaining deactivation through leaching or sulfone adsorption, the [...] Read more.
The oxidative desulfurization (ODS) of heavy fuel oil (HFO) offers a promising solution for desulfurizing marine fuels under mild conditions, in line with current environmental regulations. While most studies focus on model or light fuels, explaining deactivation through leaching or sulfone adsorption, the deactivation mechanisms of catalysts in HFO remain poorly understood. In this work, Mo-based catalysts supported on alumina were extensively characterized before and after catalytic reactions, and regeneration through air calcination was considered. Techniques such as XRD, Raman spectroscopy, XRF, and TGA, alongside catalytic testing with H2O2 as an oxidant, revealed that Mo surface speciation significantly impacted both activity and deactivation. Contrary to well-dispersed polymolybdates, crystalline MoO3 induced low activity and hindered regeneration. No leaching of the active phase was demonstrated during the reaction. Sulfone adsorption had minimal impact on deactivation, while non-sulphur compounds appeared to be the key contributors. Regeneration outcomes were found to be molybdenum content-dependent: 10Mo/Al recovered its activity, while 20Mo/Al formed inactive phases, like Al2(MoO4)3. Using an organic oxidant (tBHP) during ODS influenced the regeneration, as it prevented Al2(MoO4)3 formation and redispersed crystalline MoO3, enhancing performance. These findings advance understanding of catalyst deactivation and suggest strategies to extend catalyst life in the ODS of HFO. Full article
Show Figures

Graphical abstract

15 pages, 13967 KB  
Article
A Novel Ternary Catalyst PW4@MOF-808@SBA-15 for Deep Extraction Oxidation Desulfurization of Model Diesel
by Yan Gao, Shuai Huang, Nina Han and Jianshe Zhao
Molecules 2024, 29(17), 4230; https://doi.org/10.3390/molecules29174230 - 6 Sep 2024
Cited by 2 | Viewed by 1409
Abstract
In this work, a novel heterogeneous catalyst consisting of peroxophosphotungstate, microporous MOF-808, and mesoporous SBA-15 was synthesized, characterized, and used to remove sulfides from model fuel. The prepared material, PW4@MOF-808@SBA-15, exhibits excellent catalytic activity with a desulfurization efficiency of 99.8% in [...] Read more.
In this work, a novel heterogeneous catalyst consisting of peroxophosphotungstate, microporous MOF-808, and mesoporous SBA-15 was synthesized, characterized, and used to remove sulfides from model fuel. The prepared material, PW4@MOF-808@SBA-15, exhibits excellent catalytic activity with a desulfurization efficiency of 99.8% in 60 min for multicomponent simulated fuel, and the desulfurization rate can reach more than 90% after ten consecutive cycles. The excellent catalytic activity and reusability are attributed to the hierarchically porous hybrid material MOF-808@SBA-15, which can effectively encapsulate PW4 and provide a site for the oxidation of sulfides. Full article
Show Figures

Figure 1

13 pages, 18231 KB  
Article
Synthesis of Nitronyl Nitroxide Radical-Modified Multi-Walled Carbon Nanotubes and Oxidative Desulfurization in Fuel
by Min Tian, Haokang Huang, Gai Zhang and Haibo Wang
Molecules 2024, 29(16), 3896; https://doi.org/10.3390/molecules29163896 - 17 Aug 2024
Cited by 2 | Viewed by 2311
Abstract
Novel and highly stable nitronyl nitroxide radical (NIT) derivatives were synthesized and coated on the surface of multi-walled carbon nanotubes (MWCNTs) to improve their desulfurization performance. They were characterized by FTIR, UV-vis, SEM, XRD, Raman spectroscopy and ESR. Thiophene in fuel was desulfurized [...] Read more.
Novel and highly stable nitronyl nitroxide radical (NIT) derivatives were synthesized and coated on the surface of multi-walled carbon nanotubes (MWCNTs) to improve their desulfurization performance. They were characterized by FTIR, UV-vis, SEM, XRD, Raman spectroscopy and ESR. Thiophene in fuel was desulfurized by molecular O2, and the oxidation activity of these compounds was evaluated. At a normal temperature and pressure, the degradation rates of thiophene by four compounds in 4 h can reach 92.66%, 96.38%, 93.25% and 89.49%, respectively. The MWCNTs/NIT-F have a high special activity for the degradation of thiophene, and their desulfurization activity can be recycled for five times without a significant reduction. The mechanistic studies of MWCNTs/NIT composites show that the ammonium oxide ion is the key active intermediate in catalytic oxidative desulfurization, which provides a new choice for fuel oxidative desulfurization. The results show that NIT significantly improves the photocatalytic performance of MWCNTs. Full article
Show Figures

Figure 1

Back to TopTop