Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = catalytic gas upgrading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1504 KiB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 143
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

19 pages, 2630 KiB  
Article
Experimental and Kinetic Modelling Study of the Heterogeneous Catalytic Conversion of Bioethanol into n-Butanol Using MgO–Al2O3 Mixed Oxide Catalyst
by Amosi Makoye, Anna Vikár, András Bence Nacsa, Róbert Barthos, József Valyon, Ferenc Lónyi and Tibor Nagy
Catalysts 2025, 15(8), 709; https://doi.org/10.3390/catal15080709 - 25 Jul 2025
Viewed by 295
Abstract
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at [...] Read more.
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at 275–325 °C, 21 bar, and weight hourly space velocities of 0.25–2.5 gEtOH/(gcat·h), using helium as a carrier gas, with a 5:1 He/EtOH molar ratio. The catalyst was a MgO–Al2O3 mixed oxide (Mg/Al = 2:1), derived from a hydrotalcite precursor. A detailed kinetic model was developed, encompassing 15 species and 27 reversible steps (10 sorption and 17 reaction steps), within a 1+1D sorption–reaction–transport framework. Four C4-forming pathways were included: aldol condensation to form crotonaldehyde, semi-direct coupling to form butyraldehyde and crotyl alcohol, and direct coupling to form 1-butanol. To avoid overfitting, Arrhenius parameters were grouped by reaction type, resulting in sixty rate parameters and one active site-specific density parameter. The optimized model achieved high accuracy, with an average prediction error of 1.44 times the experimental standard deviation. The mechanistic analysis revealed aldol condensation as the dominant pathway below 335 °C, with semi-direct coupling to crotyl alcohol prevailing above 340 °C. The resulting model provides a robust framework for understanding and predicting complex reaction networks in ethanol upgrading systems. Full article
(This article belongs to the Special Issue Biomass Catalytic Conversion to Value-Added Chemicals)
Show Figures

Graphical abstract

7 pages, 482 KiB  
Proceeding Paper
Parameters Characterizing the Performance of Automotive Electronic Control Systems on Petrol Engine Emissions
by Hristo Konakchiev and Evgeni Dimitrov
Eng. Proc. 2025, 100(1), 41; https://doi.org/10.3390/engproc2025100041 - 15 Jul 2025
Viewed by 238
Abstract
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles [...] Read more.
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles to the highest possible level, primarily through software modifications of the parameters determining the performance of the internal combustion engine (ICE). The potential for advancement in this area is evidenced by the presence of systems that enhance environmental efficiency, even in Euro 2 vehicles. These include exhaust gas recirculation, catalytic converter, lambda sensor, electronic control fuel injection, and ignition timing. It is precisely these vehicles that are subject to optimization, a process which would allow the maximum service life of otherwise more reliable but older vehicles to be exploited. Full article
Show Figures

Figure 1

26 pages, 9003 KiB  
Article
A Pilot-Scale Gasifier Freeboard Equipped with Catalytic Filter Candles for Particulate Abatement and Tar Conversion: 3D-CFD Simulations and Experimental Tests
by Alessandra Tacconi, Pier Ugo Foscolo, Sergio Rapagnà, Andrea Di Carlo and Alessandro Antonio Papa
Processes 2025, 13(7), 2233; https://doi.org/10.3390/pr13072233 - 12 Jul 2025
Viewed by 447
Abstract
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a [...] Read more.
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a combination is considered a key point for the future exploitation of syngas produced by steam gasification of biogenic solid fuel. The design and construction of an integrated gasification and gas conditioning system were proposed approximately 20 years ago; however, they still require further in-depth study for practical applications. A 3D model of the freeboard of a pilot-scale, fluidized bed gasification plant equipped with catalytic ceramic candles was used to investigate the optimal operating conditions for in situ syngas upgrading. The global kinetic parameters for methane and tar reforming reactions were determined experimentally. A fluidized bed gasification reactor (~5 kWth) equipped with a 45 cm long segment of a fully commercial filter candle in its freeboard was used for a series of tests at different temperatures. Using a computational fluid dynamics (CFD) description, the relevant parameters for apparent kinetic equations were obtained in the frame of a first-order reaction model to describe the steam reforming of key tar species. As a further step, a CFD model of the freeboard of a 100 kWth gasification plant, equipped with six catalytic ceramic candles, was developed in ANSYS FLUENT®. The composition of the syngas input into the gasifier freeboard was obtained from experimental results based on the pilot-scale plant. Simulations showed tar catalytic conversions of 80% for toluene and 41% for naphthalene, still insufficient compared to the threshold limits required for operating solid oxide fuel cells (SOFCs). An overly low freeboard temperature level was identified as the bottleneck for enhancing gas catalytic conversions, so further simulations were performed by injecting an auxiliary stream of O2/steam (50/50 wt.%) through a series of nozzles at different heights. The best simulation results were obtained when the O2/steam stream was fed entirely at the bottom of the freeboard, achieving temperatures high enough to achieve a tar content below the safe operating conditions for SOFCs, with minimal loss of hydrogen content or LHV in the fuel gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

13 pages, 2801 KiB  
Article
Unraveling the Kinetics and Mechanism of Ethane Chlorination in the Gas Phase
by Zihan Zhu, Yuting Li, Xia Wu, Jinming Xu, Xiaohui Sun and Qinggang Liu
Molecules 2025, 30(8), 1756; https://doi.org/10.3390/molecules30081756 - 14 Apr 2025
Viewed by 667
Abstract
The selective chlorination of ethane to 1,2-dichloroethane offers a promising route for upgrading ethane, yet its efficiency remains constrained by limited mechanistic insights into gas-phase chlorine-radical-mediated pathways, which govern target product selectivity and competing dehydrochlorination side reactions. This work systematically decouples the kinetics [...] Read more.
The selective chlorination of ethane to 1,2-dichloroethane offers a promising route for upgrading ethane, yet its efficiency remains constrained by limited mechanistic insights into gas-phase chlorine-radical-mediated pathways, which govern target product selectivity and competing dehydrochlorination side reactions. This work systematically decouples the kinetics of ethane chlorination and chloroethane functionalization under varying Cl2 concentrations, revealing that chlorine radicals govern product distribution through thermodynamically favored pathways. This results in an interesting phenomenon whereby the product ratio between 1,1-C2H4Cl2 and 1,2-C2H4Cl2 maintains a constant 2:1 stoichiometry regardless of Cl2 concentration variation. A critical observation is that the rate of all chlorination steps remains independent of alkane concentrations, highlighting the dominant role of chlorine radicals in rate-determining steps. Furthermore, ethylene byproducts are demonstrated to originate from the dechlorination of chlorine-radical-induced 2-chloroethyl radicals derived from chloroethane, rather than the direct dehydrochlorination of chloroethane itself. These insights into the dual role of chlorine radicals—mediating both the chlorination and dehydrochlorination pathways—establish a foundational framework for integrating gas-phase radical chemistry with catalytic engineering strategies to suppress undesired side reactions and enable scalable, selective ethane chlorination. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

18 pages, 3748 KiB  
Article
An Investigation of the Catalytic Activity of Inconel and Stainless Steel Powders in Reforming Primary Syngas
by Claudia Bezerra Silva, Michael Lugo-Pimentel, Carlos M. Ceballos and Jean-Michel Lavoie
Sustainability 2025, 17(3), 980; https://doi.org/10.3390/su17030980 - 25 Jan 2025
Viewed by 1250
Abstract
Biomass is perhaps the only renewable resource on the planet capable of delivering molecules similar to those derived from petroleum, and one of the most developed technologies to achieve this is gasification. When it comes to biomass conversion into fuels and commodities, supercritical [...] Read more.
Biomass is perhaps the only renewable resource on the planet capable of delivering molecules similar to those derived from petroleum, and one of the most developed technologies to achieve this is gasification. When it comes to biomass conversion into fuels and commodities, supercritical water gasification (SCWG) could offer promising solution for producing hydrogen-rich syngas. However, the presence of methane (CH4) and carbon dioxide (CO2) in the syngas could negatively impact downstream processes, particularly when carbon monoxide is also required. Hence, improving the quality of the syngas produced from biomass gasification is essential for promoting the sustainability of several industrial processes. In this context, understanding the principles of the dry reforming of methane (DRM) becomes essential for upgrading syngas with high CH4 and CO2 content, especially when the carbon monoxide content is low. In addition to the experimental conditions used in such process, it has been reported that the material composition of the reactor can impact on reforming performance. Hence, this work aims at comparing the catalytic efficacy of Inconel and stainless steel for reforming syngas derived from SCWG under standard DRM conditions. In this specific work, the metals were directly used as catalyst and results showed that when using Inconel powder, CH4 conversion increased from 3.03% to 37.67% while CO2 conversion went from 23.16% to 51.48% when compared to stainless steel. Elemental and structural analyses revealed that the Inconel’s superior performance might be due to its high nickel content and the formation of active oxide compounds, such as FeNiO, FeCrO3, Fe3O4, Cr2O3, and Cr2NiO4, during the reaction. In contrast, Fe3O4 was the only oxide found in stainless steel post-reaction. Additionally, increasing the total gas feed flow rate was shown to reduce CH4 and CO2 conversions, supporting the known impact of residency time on catalytic efficiency. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

31 pages, 5843 KiB  
Review
Recent Advances in Characterization and Valorization of Lignin and Its Value-Added Products: Challenges and Future Perspectives
by Shehbaz Ali, Abida Rani, Mudasir A. Dar, Muther Mansoor Qaisrani, Muhammad Noman, Kamaraj Yoganathan, Muhammad Asad, Ashenafi Berhanu, Mukul Barwant and Daochen Zhu
Biomass 2024, 4(3), 947-977; https://doi.org/10.3390/biomass4030053 - 2 Sep 2024
Cited by 17 | Viewed by 7922
Abstract
Lignin, the earth’s second-most abundant biopolymer after cellulose, has long been relegated to low-value byproducts in the pulp and paper industry. However, recent advancements in valorization are transforming lignin into a sustainable and versatile feedstock for producing high-value biofuels, bioplastics, and specialty chemicals. [...] Read more.
Lignin, the earth’s second-most abundant biopolymer after cellulose, has long been relegated to low-value byproducts in the pulp and paper industry. However, recent advancements in valorization are transforming lignin into a sustainable and versatile feedstock for producing high-value biofuels, bioplastics, and specialty chemicals. This review explores the conversion of lignin’s complex structure, composed of syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H) units, into value-added products. We critically assess various biochemical and analytical techniques employed for comprehensive lignin characterization. Additionally, we explore strategies for lignin upgrading and functionalization to enhance its suitability for advanced biomaterials. The review emphasizes key areas of lignin valorization, including catalytic depolymerization methods, along with the associated challenges and advancements. We discuss its potential as a feedstock for diverse products such as biofuels, bioplastics, carbon fibers, adhesives, and phenolic compounds. Furthermore, the review briefly explores lignin’s inherent properties as a UV protectant and antioxidant, alongside its potential for incorporation into polymer blends and composites. By presenting recent advancements and case studies from the literature, this review highlights the significant economic and environmental benefits of lignin valorization, including waste reduction, lower greenhouse gas emissions, and decreased reliance on non-renewable resources. Finally, we address future perspectives and challenges associated with achieving large-scale, techno-economically feasible, and environmentally sustainable lignin valorization. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

14 pages, 908 KiB  
Perspective
Sustainable Aviation Fuel Production through Catalytic Processing of Lignocellulosic Biomass Residues: A Perspective
by Lucília Sousa Ribeiro and Manuel Fernando Ribeiro Pereira
Sustainability 2024, 16(7), 3038; https://doi.org/10.3390/su16073038 - 5 Apr 2024
Cited by 7 | Viewed by 4999
Abstract
Currently, the transportation sector represents about one third of the total energy consumed in the world, most of this energy being obtained almost exclusively from oil. However, the world is changing, as well as the aviation industry. Since lignocellulosic biomass is a low-cost [...] Read more.
Currently, the transportation sector represents about one third of the total energy consumed in the world, most of this energy being obtained almost exclusively from oil. However, the world is changing, as well as the aviation industry. Since lignocellulosic biomass is a low-cost feedstock that does not compete with food, it has drawn great attention as one of the most attractive alternatives to replace fossil feedstocks for the production of fuels. Renewable jet fuels could have a significant impact on lowering greenhouse gas emissions and providing a long-term sustainable alternative to petroleum-derived fuels. However, the catalytic upgrading of lignocellulosic residues in industry still remains a big challenge and the development of highly integrated systems that allow the direct conversion of lignocellulosic wastes is essential to achieve that goal. The importance of renewable jet fuels and the potential of lignocellulosic biomass have already been extensively reviewed. However, this work presents a new perspective on the main catalytic routes and challenges for the sustainable production of aviation fuels from biomass wastes. Full article
(This article belongs to the Special Issue Advances in Waste Biomass and Environmental Sustainability)
Show Figures

Figure 1

14 pages, 3506 KiB  
Article
Catalytic Pyrolysis of Naomaohu Coal Using Combined CaO and Ni/Olivine Catalysts for Simultaneously Improving the Tar and Gas Quality
by Yalkunjan Tursun, Ke Wang, Runxiao Yi, Hairat Abduhani, Zhenghua Dai, Mei Zhong, Lijun Jin, Jian Li and Yang Liu
Energies 2024, 17(7), 1613; https://doi.org/10.3390/en17071613 - 28 Mar 2024
Cited by 3 | Viewed by 1305
Abstract
Catalytic pyrolysis of low-rank coal is currently an effective method for producing high-quality tar and gas. In this study, catalytic upgrading of volatiles from Naomaohu (NMH) coal pyrolysis has been conducted in a two-stage fixed-bed reactor using combined CaO and Ni/olivine (Ni-loaded olivine) [...] Read more.
Catalytic pyrolysis of low-rank coal is currently an effective method for producing high-quality tar and gas. In this study, catalytic upgrading of volatiles from Naomaohu (NMH) coal pyrolysis has been conducted in a two-stage fixed-bed reactor using combined CaO and Ni/olivine (Ni-loaded olivine) catalysts. The effect of catalyst distribution modes and catalytic temperature on the tar and gas quality has been investigated. Simulated distillation and GC-MS analysis have been used to investigate the distribution of tar components. The results indicated that the light oil fraction in tar dramatically increased due to the combination of CaO and Ni/olivine. The CaO-Ni/olivine mode is especially better compared to the layouts of the Ni/olivine-CaO mode and the mixed mode. The CaO-Ni/olivine mode ensures a higher light fraction in tar at 69.3% and a light oil fraction at 29.8% at a catalytic temperature of 450 °C, while the heavy tar fraction decreased to 30.7%. Meanwhile, the contents of benzene (heteroatomic substituents) in tar significantly increased from 2.55% to 6.45% compared with the blank test. In this scenario, CaO breaks down macromolecular compounds in tar and cleaves long-chain esters to produce aliphatic hydrocarbons. These hydrocarbons are then dehydrogenated to produce lighter aromatic hydrocarbons over the CaO surface. Subsequently, the volatiles pass through the Ni/olivine catalysis, where ether compounds are produced by means of dehydration reactions. In addition, the CaO absorbs the CO2 in the pyrolysis gas, leading to an elevation of CH4 and H2 concentration. Particularly, the concentration of H2 significantly increased from 16.2% to 30.37%, while the concentration of CO2 significantly decreased from 37.9% to 10.57%. These findings suggest that the usage of combined CaO and Ni/olivine catalysts is beneficial for improving both the tar and gas quality. Full article
(This article belongs to the Section I3: Energy Chemistry)
Show Figures

Figure 1

13 pages, 3065 KiB  
Article
Simulation of Biogas Upgrading by Sorption-Enhanced Methanation with CaO in a Dual Interconnected Fluidized Bed System
by Fiorella Massa, Fabrizio Scala and Antonio Coppola
Processes 2023, 11(11), 3218; https://doi.org/10.3390/pr11113218 - 13 Nov 2023
Viewed by 2041
Abstract
In this work, ASPENplus was used to simulate biogas upgrading by sorption-enhanced methanation in a dual interconnected bubbling fluidized bed configuration using inexpensive, abundant, and eco-friendly CaO to remove H2O from the reaction environment. The chemical looping scheme consisted of two [...] Read more.
In this work, ASPENplus was used to simulate biogas upgrading by sorption-enhanced methanation in a dual interconnected bubbling fluidized bed configuration using inexpensive, abundant, and eco-friendly CaO to remove H2O from the reaction environment. The chemical looping scheme consisted of two reactors: a methanator/hydrator, where the catalytic reactions occurred on a catalyst with 20% Ni supported on alumina as well as the steam removal by CaO, and a regenerator, where the Ca(OH)2 was dehydrated back to CaO. The simulations were carried out to identify possible reactant compositions (H2 and biogas), CaO amount, and the methanation temperature able to produce an outlet gas matching the specifications for direct grid injection. When considering a stoichiometric gas feed ratio at the methanator inlet, the unwanted CaO carbonation worsened the process performance, subtracting CO2 from the desired methanation reaction. However, optimal conditions were found with hydrogen-lean gas feedings, balancing the limited H2 amount with the capture of CO2 due to the sorbent carbonation. Thermodynamic considerations pointed out the possibility of solid carbon formation induced by sorption-enhanced methanation conditions, especially for H2 sub-stoichiometric feedings. Full article
(This article belongs to the Special Issue Modeling and Optimization of Gas-Solid Reaction Vessels)
Show Figures

Figure 1

22 pages, 3021 KiB  
Review
Technological Insights on Glycerol Valorization into Propanediol through Thermocatalytic and Synthetic Biology Approaches
by Arash Yahyazadeh, Austin Bot, Sonil Nanda and Ajay K. Dalai
Fermentation 2023, 9(10), 894; https://doi.org/10.3390/fermentation9100894 - 6 Oct 2023
Cited by 5 | Viewed by 3243
Abstract
The adverse effects of climate change, predominantly propelled by greenhouse gas emissions from fossil fuels, underscore the urgency of seeking sustainable alternatives to fossil fuel use. Amid growing concerns about climate change caused by fossil fuels and petrochemicals, this review focuses on sustainable [...] Read more.
The adverse effects of climate change, predominantly propelled by greenhouse gas emissions from fossil fuels, underscore the urgency of seeking sustainable alternatives to fossil fuel use. Amid growing concerns about climate change caused by fossil fuels and petrochemicals, this review focuses on sustainable solutions through the conversion of glycerol into value-added biochemicals. Glycerol, as the main byproduct of biodiesel production, is a particularly attractive chemical due to its potential to be upgraded into value-added building blocks and biochemicals. This review provides a detailed analysis of different thermochemical (catalytic) and synthetic biology (fermentative) pathways for the conversion of glycerol into 1,2-propanediol and 1,3-propanediol, which have proven industrial and commercial applications globally. The synthesis of propanediol from glycerol hydrogenolysis and other catalytic processes using different active metals and acidic oxides is reviewed. The reaction mechanism involved in hydrogenolysis reactions concerning the surface reaction mechanism is systematically discussed. The metabolic activities of promising microorganisms in fermenting glycerol, as the carbon source used to produce propanediol, are illustrated and elaborated. Combining these insights, this review is a comprehensive resource that can foster a better understanding of glycerol transformation into propanediol and its implications for sustainable chemistry and industrial practices. This exploration of alternative methods emphasizes the potential of sustainable approaches to reshape production practices and contribute to climate change mitigation. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation 2023)
Show Figures

Figure 1

39 pages, 1828 KiB  
Review
Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review
by Md Sumon Reza, Zhanar Baktybaevna Iskakova, Shammya Afroze, Kairat Kuterbekov, Asset Kabyshev, Kenzhebatyr Zh. Bekmyrza, Marzhan M. Kubenova, Muhammad Saifullah Abu Bakar, Abul K. Azad, Hridoy Roy and Md Shahinoor Islam
Energies 2023, 16(14), 5547; https://doi.org/10.3390/en16145547 - 22 Jul 2023
Cited by 21 | Viewed by 5243
Abstract
In the modern world, as the population rises and fossil fuel supplies decline, energy demands continue to rise. Moreover, the use of fossil fuels harms the ecology, contributing to pollution and global warming. In order to overcome these difficulties, several approaches are revealed, [...] Read more.
In the modern world, as the population rises and fossil fuel supplies decline, energy demands continue to rise. Moreover, the use of fossil fuels harms the ecology, contributing to pollution and global warming. In order to overcome these difficulties, several approaches are revealed, such as the utilization of biomass as a renewable source of energy. Studies revealed that biomass can be converted into bioenergy via several thermal conversion processes, like pyrolysis, gasification, and torrefaction. Pyrolysis is the most convenient process to obtain three different types of biofuels (biochar as a solid, bio-oil as a liquid, and syngas as a gas). The biofuels produced in this process are normally lower in quality and cannot be used directly as fuel because they contain many undesirable components. Catalytic pyrolysis is one of the best processes to upgrade the quality of biofuels. Several varieties of catalysts are used in the catalytic pyrolysis process (ex situ and in situ). Due to stable operating conditions, both catalytic and non-catalytic pyrolysis procedures produce biochar that has a consistent output. Meanwhile, the effects of catalysts in the catalytic pyrolysis process considerably enhance the quality and quantity of bio-oils and syngas. By removing the unwanted oxygenated and nitrogenous components, the bio-oils produced through the catalytic pyrolysis method have a higher calorific value, reduced viscosity, and improved stability. Many researchers have looked at ways to increase the rate of pyrolysis, whereas a few have focused on maximizing the effects of the factors in order to improve the efficiency of catalytic pyrolysis. This review addresses the impact of catalysts on the catalytic pyrolysis of biomass to enhance the quality of the bio-oils in great detail. Machine learning and techno-economic analysis were investigated, as well as the future potential of the catalytic pyrolysis method for the generation of bio-oil. Full article
Show Figures

Figure 1

41 pages, 2514 KiB  
Review
Recent Advances in the Technologies and Catalytic Processes of Ethanol Production
by Mohd Nor Latif, Wan Nor Roslam Wan Isahak, Alinda Samsuri, Siti Zubaidah Hasan, Wan Nabilah Manan and Zahira Yaakob
Catalysts 2023, 13(7), 1093; https://doi.org/10.3390/catal13071093 - 12 Jul 2023
Cited by 13 | Viewed by 14476
Abstract
On the basis of its properties, ethanol has been identified as the most used biofuel because of its remarkable contribution in reducing emissions of carbon dioxide which are the source of greenhouse gas and prompt climate change or global warming worldwide. The use [...] Read more.
On the basis of its properties, ethanol has been identified as the most used biofuel because of its remarkable contribution in reducing emissions of carbon dioxide which are the source of greenhouse gas and prompt climate change or global warming worldwide. The use of ethanol as a new source of biofuel reduces the dependence on conventional gasoline, thus showing a decreasing pattern of production every year. This article contains an updated overview of recent developments in the new technologies and operations in ethanol production, such as the hydration of ethylene, biomass residue, lignocellulosic materials, fermentation, electrochemical reduction, dimethyl ether, reverse water gas shift, and catalytic hydrogenation reaction. An improvement in the catalytic hydrogenation of CO2 into ethanol needs extensive research to address the properties that need modification, such as physical, catalytic, and chemical upgrading. Overall, this assessment provides basic suggestions for improving ethanol synthesis as a source of renewable energy in the future. Full article
(This article belongs to the Special Issue Current Advanced Technologies in Catalysts/Catalyzed Reactions)
Show Figures

Figure 1

17 pages, 3580 KiB  
Article
Aquathermolysis of Heavy Crude Oil: Comparison Study of the Performance of Ni(CH3COO)2 and Zn(CH3COO)2 Water-Soluble Catalysts
by Yasser I. I. Abdelsalam, Firdavs A. Aliev, Oybek O. Mirzayev, Sergey A. Sitnov, Vladimir E. Katnov, Leysan A. Akhmetzyanova, Rezeda E. Mukhamatdinova and Alexey V. Vakhin
Catalysts 2023, 13(5), 873; https://doi.org/10.3390/catal13050873 - 11 May 2023
Cited by 13 | Viewed by 3849
Abstract
Aquathermolysis is one of the crucial processes being considered to successfully upgrade and irreversibly reduce the high viscosity of heavy crude oil during steam enhanced oil recovery technologies. The aquathermolysis of heavy oil can be promoted by transition metal-based catalysts. In this study, [...] Read more.
Aquathermolysis is one of the crucial processes being considered to successfully upgrade and irreversibly reduce the high viscosity of heavy crude oil during steam enhanced oil recovery technologies. The aquathermolysis of heavy oil can be promoted by transition metal-based catalysts. In this study, the catalytic performance of two water-soluble catalysts Ni(CH3COO)2 and Zn(CH3COO)2 on the aquathermolytic upgrading of heavy oil at 300 °C for 24 h was investigated in a high pressure–high temperature (HP-HT) batch reactor. The comparison study showed that nickel acetate is more effective than zinc acetate in terms of viscosity reduction at 20 °C (58% versus 48%). The viscosity alteration can be mainly explained by the changes in the group composition, where the content of resins and asphaltenes in the upgraded heavy crude oil sample in the presence of nickel catalyst was reduced by 44% and 13%, respectively. Moreover, the nickel acetate-assisted aquathermolysis of heavy oil contributed to the increase in the yield of gasoline and diesel oil fractions by 33% and 29%, respectively. The activity of the compared metal acetates in hydrogenation of the crude oil was judged by the results of the atomic H/C ratio. The atomic H/C ratio of crude oil upgraded in the presence of Ni(CH3COO)2 was significantly increased from 1.52 to 2.02. In addition, the catalyst contributed to the desulfurization of crude oil, reducing the content of sulfur in crude oil from 5.55 wt% to 4.51 wt% The destructive hydrogenation of resins and asphaltenes was supported by the results of gas chromatography-mass spectroscopy (GC-MS) and Fourier-transform infrared (FT-IR) spectroscopy analysis methods. The obtained experimental results showed that using water-soluble catalysts is effective in promoting the aquathermolytic reactions of heavy oil and has a great potential for industrial-scale applications. Full article
Show Figures

Figure 1

18 pages, 4037 KiB  
Article
Use of Nickel Oxide Catalysts (Bunsenites) for In-Situ Hydrothermal Upgrading Process of Heavy Oil
by Jiménez Padilla Pedro Alonso, Richard Djimasbe, Rustem Zairov, Chengdong Yuan, Ameen A. Al-Muntaser, Alexey Stepanov, Guliya Nizameeva, Alexey Dovzhenko, Muneer A. Suwaid, Mikhail A. Varfolomeev and Almaz L. Zinnatullin
Nanomaterials 2023, 13(8), 1351; https://doi.org/10.3390/nano13081351 - 12 Apr 2023
Cited by 7 | Viewed by 2913
Abstract
In this study, Nickel oxide-based catalysts (NixOx) were synthesized and used for the in-situ upgrading process of heavy crude oil (viscosity 2157 mPa·s, and API gravity of 14.1° at 25 °C) in aquathermolysis conditions for viscosity reduction and heavy [...] Read more.
In this study, Nickel oxide-based catalysts (NixOx) were synthesized and used for the in-situ upgrading process of heavy crude oil (viscosity 2157 mPa·s, and API gravity of 14.1° at 25 °C) in aquathermolysis conditions for viscosity reduction and heavy oil recovery. All characterizations of the obtained nanoparticles catalysts (NixOx) were performed through Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), X-Ray and Diffraction (XRD), and ASAP 2400 analyzer from Micromeritics (USA), methods. Experiments of catalytic and non-catalytic upgrading processes were carried out in a discontinuous reactor at a temperature of 300 °C and 72 bars for 24 h and 2% of catalyst ratio to the total weight of heavy crude oil. XRD analysis revealed that the use of nanoparticles of NiO significantly participated in the upgrading processes (by desulfurization) where different activated form catalysts were observed, such as α-NiS, β-NiS, Ni3S4, Ni9S8, and NiO. The results of viscosity analysis, elemental analysis, and 13C NMR analysis revealed that the viscosity of heavy crude oil decreased from 2157 to 800 mPa·s, heteroatoms removal from heavy oil ranged from S—4.28% to 3.32% and N—0.40% to 0.37%, and total content of fractions (ΣC8–C25) increased from 59.56% to a maximum of 72.21%, with catalyst-3 thank to isomerization of normal and cyclo-alkanes and dealkylation of lateral chains of aromatics structures, respectively. Moreover, the obtained nanoparticles showed good selectivity, promoting in-situ hydrogenation-dehydrogenation reactions, and hydrogen redistribution over carbons (H/C) is improved, ranging from 1.48 to a maximum of 1.77 in sample catalyst-3. On the other hand, the use of nanoparticle catalysts have also impacted the hydrogen production, where the H2/CO provided from the water gas shift reaction has increased. Nickel oxide catalysts have the potential for in-situ hydrothermal upgrading of heavy crude oil because of their great potential to catalyze the aquathermolysis reactions in the presence of steam. Full article
Show Figures

Figure 1

Back to TopTop