Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = carveol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2413 KB  
Article
Comparative Study of Wild and Cultivated Lavandula dentata: Differences in Essential Oil Composition, Biological Activities, and Associated Microbial Communities
by Siham Houssayni, Oumaima Akachoud, Btissam Zoubi, Meryem Youssfi, Anissa Lounès-Hadj Sahraoui, Frédéric Laruelle, Azucena Gonzalez Coloma, Maria Fe Andrés Yeves, Abderrazak Benkebboura, Hafida Bouamama and Ahmed Qaddoury
Molecules 2025, 30(24), 4695; https://doi.org/10.3390/molecules30244695 - 8 Dec 2025
Viewed by 439
Abstract
To ensure the preservation and sustainable use of Lavandula dentata L., we examined the impact of various growth conditions on the composition of essential oils extracted from the leaves of both cultivated and wild L. dentata. Additionally, we assessed the biological activities [...] Read more.
To ensure the preservation and sustainable use of Lavandula dentata L., we examined the impact of various growth conditions on the composition of essential oils extracted from the leaves of both cultivated and wild L. dentata. Additionally, we assessed the biological activities of these essential oils, along with the biomass of the root and soil microorganisms. Gas chromatography analysis revealed 21 and 23 components in the EO of the wild and cultivated plants, accounting for over 98% of the total composition in both cases. The major compounds of wild EO were borneol (49.47%), eucalyptol (23.01%), β-pinene (3.95%), β-eudesmol (3.79%), and myrtenol (3.61%). In contrast, the EO extracted from cultivated plants was characterized by a high content of borneol (32.83%), isobornyl acetate (24.45%), eucalyptol (14.71%), and α-pinene (5.83%). Unique compounds were found in wild and cultivated EO, such as linalool, cis-verbenol, carveol, α-selinene, and terpinyl acetate or tricyclene, d-limonene, camphene hydrate, and isobornyl acetate, respectively. PLFA analysis revealed a higher microbial biomass in both soil (10.393 µg/g) and the roots (68.04 µg/g) of the wild plants compared to the cultivated ones (3.91 µg/g in soil and 62.04 µg/g in roots), driven especially by Gram-negative bacteria in soil, and by saprotrophic fungi in the roots. The biological activities of the essential oils showed some variations with growth conditions, with the wild EO generally exhibiting slightly higher antibacterial, antifungal, antioxidant, and nematicidal activities in certain assays. Overall, our findings indicate that the essential oils from wild and cultivated L. dentata exhibit comparable biological value, although some differences were observed. In particular, the wild EO tended to show significantly higher biological activities in certain assays, which may be associated with its distinct chemical composition and growth environment. However, these differences were moderate and not consistently significant across all tests. Therefore, properly managed cultivation can be a dependable alternative for producing L. dentata essential oil, helping to reduce pressure on natural populations. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Graphical abstract

17 pages, 1315 KB  
Article
Biological Activities of Essential Oils and Hydrolates from Different Parts of Croatian Sea Fennel (Crithmum maritimum L.)
by Livia Slišković, Nikolina Režić Mužinić, Olivera Politeo, Petra Brzović, Josip Tomaš, Ivana Generalić Mekinić and Marijana Popović
Biomolecules 2025, 15(5), 666; https://doi.org/10.3390/biom15050666 - 4 May 2025
Cited by 1 | Viewed by 1474
Abstract
The traditional nutritional use of sea fennel (Crithmum maritimum L.) has been rediscovered and reestablished, making this halophyte plant a prominent ingredient in coastal cuisine and a subject of interest in various scientific disciplines, including pharmacy and medicine. The first objective of [...] Read more.
The traditional nutritional use of sea fennel (Crithmum maritimum L.) has been rediscovered and reestablished, making this halophyte plant a prominent ingredient in coastal cuisine and a subject of interest in various scientific disciplines, including pharmacy and medicine. The first objective of this study was to identify the volatile profiles of essential oils (EOs) and hydrolates derived from the leaves, flowers, and fruits of sea fennel using gas chromatography–mass spectrometry. A total of 25 different volatiles were identified in the EOs and 63 were identified in the hydrolates. Limonene was the most abundant component in the EOs (74.85%, 74.30%, and 67.41%, respectively), while in the hydrolates, it was terpinen-4-ol in the leaves (27.8%) and the flowers (36.7%) and (Z)-carveol in the fruits (11.4%). The second objective was to investigate the biological activities of the samples. The antioxidant and choline inhibitory activities of hydrolates were generally low, with the flower hydrolate providing the inhibition of both enzymes and the leaf hydrolate with the highest antiradical activity. The cytotoxic activities of the EOs and hydrolates were also investigated. The human breast adenocarcinoma cell line MDA-MB-23 was the most sensitive against EOs from the flowers and fruits, reaching the IC50 after 48 and 72 h, respectively. The leaf hydrolate exhibited cytotoxic activity after 72 h, while the flower hydrolate was effective after 48 h. The MCF-7 cell line was sensitive to the flower and fruit EOs, and the IC50 was reached at all the tested periods. Overall, the results highlight sea fennel as a rich source of bioactive compounds that have significant potential for greater utilization in the nutraceutical and pharmaceutical industries. Full article
(This article belongs to the Special Issue Natural Bioactives as Leading Molecules for Drug Development)
Show Figures

Figure 1

21 pages, 3564 KB  
Article
Avocado Seed Waste as a Green Catalyst for the Sustainable Oxidation of Limonene with Molecular Oxygen
by Sylwia Gajewska, Joanna Siemak, Agnieszka Wróblewska and Beata Michalkiewicz
Sustainability 2025, 17(9), 3923; https://doi.org/10.3390/su17093923 - 27 Apr 2025
Cited by 1 | Viewed by 1946
Abstract
Avocado is a rich source of numerous nutrients, such as micro- and macroelements, essential unsaturated fatty acids, and vitamins essential for the correct functioning of the body. Consequently, its consumption has significantly increased in recent years. The primary edible part of the fruit [...] Read more.
Avocado is a rich source of numerous nutrients, such as micro- and macroelements, essential unsaturated fatty acids, and vitamins essential for the correct functioning of the body. Consequently, its consumption has significantly increased in recent years. The primary edible part of the fruit is the flesh, while the seed is still considered biowaste. Currently, various methods for utilization of this biowaste are being explored, prompting the authors of this work to investigate the catalytic properties of ground avocado seeds. Dried, ground avocado seeds were used as the catalyst in the environmentally friendly oxidation of limonene with oxygen. The process was carried out in mild conditions, without the use of any solvent and at atmospheric pressure. The studies examined the influence of temperature (70–110 °C), the amount of the catalyst (0.5–5.0 wt%), and the reaction time (15–360 min). The analyses of the post-reaction mixtures were performed using the gas chromatography method (GC). The maximum value of the conversion of limonene obtained during the tests was 36 mol%. The main products of this process were as follows: 1,2-epoxylimonene, carveol, and perillyl alcohol. Also, the following compounds were determined in the post-reaction mixtures: carvone and 1,2-epoxylimonene diol. The studied process is interesting, taking into account both the management of waste in the form of avocado seeds and possible wide applications of limonene transformation products in medicine, cosmetics and the food industry. Given that limonene is now increasingly being extracted from waste orange peels, this is also a good way to manage the future naturally derived limonene and reduce the amount of waste orange peels. The presented studies fit perfectly with the goals of sustainable development and circular economy and may be the basis for the future development of “green technology” for obtaining value-added oxygenated derivatives of limonene. These studies show the use of waste biomass in the form of avocado seeds to obtain a green catalyst. In this context, our research presents an effective way of waste valorization. Full article
Show Figures

Figure 1

16 pages, 2449 KB  
Article
Identification of Cherry Tomato Volatiles Using Different Electron Ionization Energy Levels
by Dalma Radványi, László Csambalik, Dorina Szakál and Attila Gere
Molecules 2024, 29(23), 5567; https://doi.org/10.3390/molecules29235567 - 25 Nov 2024
Viewed by 1659
Abstract
A comprehensive analysis of the volatile components of 11 different cherry tomato pastes (Tesco Extra, Orange, Zebra, Yellow, Round Netherland, Mini San Marzano, Spar truss, Tesco Sunstream, Paprikakertész, Mc Dreamy, and Tesco Eat Fresh) commercially available in Hungary was performed. In order to [...] Read more.
A comprehensive analysis of the volatile components of 11 different cherry tomato pastes (Tesco Extra, Orange, Zebra, Yellow, Round Netherland, Mini San Marzano, Spar truss, Tesco Sunstream, Paprikakertész, Mc Dreamy, and Tesco Eat Fresh) commercially available in Hungary was performed. In order to ensure the reliability and accuracy of the measurement, the optimal measurement conditions were first determined. SPME (solid-phase microextraction) fiber coating, cherry tomato paste treatment, and SPME sampling time and temperature were optimized. CAR/PDMS (carboxen/polydimethylsiloxane) fiber coating with a film thickness of 85 µm is suggested at a 60 °C sampling temperature and 30 min extraction time. A total of 64 common compounds was found in the prepared, mashed cherry tomato samples, in which 59 compounds were successfully identified. Besides the already published compounds, new, cherry tomato-related compounds were found, such as 3 methyl 2 butenal, heptenal, Z-4-heptenal, E-2-heptenal, E-carveol, verbenol, limonene oxide, 2-decen-1-ol, Z-4-decen-1-al, caryophyllene oxide, and E,E-2,4-dodecadienal. Supervised and unsupervised classification methods have been used to classify the tomato varieties based on their volatiles, which identified 16 key components that enable the discrimination of the samples with a high accuracy. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

17 pages, 1811 KB  
Article
Thermodynamic Exercises for the Kinetically Controlled Hydrogenation of Carvone
by Artemiy A. Samarov, Sergey V. Vostrikov, Aleksandr P. Glotov and Sergey P. Verevkin
Chemistry 2024, 6(4), 706-722; https://doi.org/10.3390/chemistry6040042 - 10 Aug 2024
Viewed by 1877
Abstract
Carvone belongs to the chemical family of terpenoids and is the main component of various plant oils. Carvone and its hydrogenated products are used in the flavouring and food industries. A quantitative thermodynamic analysis of the general network of carvone hydrogenation reactions was [...] Read more.
Carvone belongs to the chemical family of terpenoids and is the main component of various plant oils. Carvone and its hydrogenated products are used in the flavouring and food industries. A quantitative thermodynamic analysis of the general network of carvone hydrogenation reactions was performed based on the thermochemical properties of the starting carvone and all possible intermediates and end products. The enthalpies of vaporisation, enthalpies of formation, entropies and heat capacities of the reactants were determined by complementary measurements and a combination of empirical, theoretical and quantum chemical methods. The energetics and entropy change in the hydrogenation and isomerisation reactions that take place during the conversion of carvone were derived, and the Gibbs energies of the reactions were estimated. It was shown that negative Gibbs energies are recorded for all reactions that may occur during the hydrogenation of carvone, although these differ significantly in magnitude. This means that all these reactions are thermodynamically feasible in a wide range from ambient temperature to elevated temperatures. Therefore, all these reactions definitely take place under kinetic and not thermodynamic control. Nevertheless, the numerical Gibbs energy values can help to establish the chemoselectivity of catalysts used to convert carvone to either carvacarol or to dihydro- and terahydrocarvone, either in carvotanacetone or carveol. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

16 pages, 9475 KB  
Article
The [(Bn-tpen)FeII]2+ Complex as a Catalyst for the Oxidation of Cyclohexene and Limonene with Dioxygen
by Katarzyna Rydel-Ciszek and Andrzej Sobkowiak
Molecules 2024, 29(16), 3755; https://doi.org/10.3390/molecules29163755 - 8 Aug 2024
Cited by 1 | Viewed by 1553
Abstract
[(Bn-tpen)FeII(MeCN)](ClO4)2, containing the pentadentate Bn-tpen–N-benzyl-N,N′,N′-tris(2-pyridylmethyl)-1,2-diaminoethane ligand, was studied in the oxygenation of cyclohexene and limonene using low-pressure dioxygen (0.2 atm air or 1 atm pure O2) in [...] Read more.
[(Bn-tpen)FeII(MeCN)](ClO4)2, containing the pentadentate Bn-tpen–N-benzyl-N,N′,N′-tris(2-pyridylmethyl)-1,2-diaminoethane ligand, was studied in the oxygenation of cyclohexene and limonene using low-pressure dioxygen (0.2 atm air or 1 atm pure O2) in acetonitrile. 2-Cyclohexen-1-one and 2-cyclohexen-1-ol are the main products of cyclohexene oxidations, with cyclohexene oxide as a minor product. Limonene is oxidized to limonene oxide, carvone, and carveol. Other oxidation products such as perillaldehyde and perillyl alcohol are found in trace amounts. This catalyst is slightly less active than the previously reported [(N4Py)FeII(MeCN)](ClO4)2 (N4Py–N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine). Based on cyclic voltammetry experiments, it is postulated that [(Bn-tpen)FeIV=O]2+ is the active species. The induction period of approx. 3 h during cyclohexene oxygenation is probably caused by deactivation of the reactive Fe(IV)=O species by the parent Fe(II) complex. Equimolar mixtures of Fe(II) salt and the ligand (in situ-formed catalyst) gave catalytic performance similar to that of the synthesized catalyst. Full article
(This article belongs to the Special Issue Synthesis and Applications of Transition Metal Complexes)
Show Figures

Figure 1

11 pages, 451 KB  
Article
Essential Oil Content, Composition and Free Radical Scavenging Activity from Different Plant Parts of Wild Sea Fennel (Crithmum maritimum L.) in Montenegro
by Ljubomir Šunić, Zoran S. Ilić, Ljiljana Stanojević, Lidija Milenković, Dragana Lalević, Jelena Stanojević, Aleksandra Milenković and Dragan Cvetković
Plants 2024, 13(14), 2003; https://doi.org/10.3390/plants13142003 - 22 Jul 2024
Cited by 5 | Viewed by 1777
Abstract
This study was conducted to determine the sea fennel essential oil (SFEO) yield, composition, and antioxidant activity of leaves, stem, inflorescences, and umbels from seeds of wild sea fennel (SF) (Crithmum maritimum L.) from the Montenegro coast. The chemical composition of isolated [...] Read more.
This study was conducted to determine the sea fennel essential oil (SFEO) yield, composition, and antioxidant activity of leaves, stem, inflorescences, and umbels from seeds of wild sea fennel (SF) (Crithmum maritimum L.) from the Montenegro coast. The chemical composition of isolated essential oil was determined by GC/MS and GC/FID analyses. The antioxidant activity was determined using the DPPH assay. The maximum SFEO yield was found in umbels with seeds (4.77 mL/100 g p.m.). The leaves contained less EO (0.52 mL/100 g p.m.) than immature inflorescence (0.83 mL/100 g p.m.) The minimum EO content was found in the stem (0.08%). Twenty components were isolated from SFEO leaves, twenty-four from inflorescence, thirty-four components from the stem, and twenty-one components from umbels with seeds. Limonene (62.4–72.0%), γ-terpinene (9.5–14.0%), α-pinene (1.4–5.8%), and sabinene (1–6.5%) were found to be the main components of the SFEO from monoterpene hydrocarbons as dominant grouped components (86% to 98.1%). SF plant parts showed differences in chemical profiles, especially in specific and low-represented ingredients. (E)-anethole (4.4%), fenchone (0.5%), and trans-carveol (0.2%) were present only in umbel with seeds, while the β-longipipene (0.5%), (E)-caryophyllene (0.5%), and (2E)-decenal (0.2%) were found only in the stems. The degree of DPPH radical neutralization increased with incubation time. The SFEO isolated from the stems showed stronger antioxidant activity during the incubation times of 20 and 40 min (EC50 value of 5.30 mg/mL and 5.04 mg/mL, respectively) in comparison to the SFEO isolated from the other plant parts. The lowest antioxidant activity was obtained with the SFEO leaves (155.25 mg/mL and 58.30 mg/mL, respectively). This study indicates that SFEO possesses significant antioxidant activities and is animportant component in the food and pharmaceutical industries. It is important to preserve the existing gene pool and biodiversity with rational use SF for the extraction of high-quality essential oils. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 4242 KB  
Article
Elucidating the Phytochemical Landscape of Leaves, Stems, and Tubers of Codonopsis convolvulacea through Integrated Metabolomics
by Fang Yuan, Shiying Yan and Jian Zhao
Molecules 2024, 29(13), 3193; https://doi.org/10.3390/molecules29133193 - 4 Jul 2024
Cited by 2 | Viewed by 1702
Abstract
Codonopsis convolvulacea is a highly valued Chinese medicinal plant containing diverse bioactive compounds. While roots/tubers have been the main medicinal parts used in practice, leaves and stems may also harbor valuable phytochemicals. However, research comparing volatiles across tissues is lacking. This study performed [...] Read more.
Codonopsis convolvulacea is a highly valued Chinese medicinal plant containing diverse bioactive compounds. While roots/tubers have been the main medicinal parts used in practice, leaves and stems may also harbor valuable phytochemicals. However, research comparing volatiles across tissues is lacking. This study performed metabolomic profiling of leaves, stems, and tubers of C. convolvulacea to elucidate tissue-specific accumulation patterns of volatile metabolites. Ultra-high performance liquid chromatography–tandem mass spectrometry identified 302 compounds, belonging to 14 classes. Multivariate analysis clearly differentiated the metabolic profiles of the three tissues. Numerous differentially accumulated metabolites (DAMs) were detected, especially terpenoids and esters. The leaves contained more terpenoids, ester, and alcohol. The stems accumulated higher levels of terpenoids, heterocyclics, and alkaloids with pharmaceutical potential. The tubers were enriched with carbohydrates like sugars and starch, befitting their storage role, but still retained reasonable amounts of valuable volatiles. The characterization of tissue-specific metabolic signatures provides a foundation for the selective utilization of C. convolvulacea parts. Key metabolites identified include niacinamide, p-cymene, tridecanal, benzeneacetic acid, benzene, and carveol. Leaves, stems, and tubers could be targeted for antioxidants, drug development, and tonics/nutraceuticals, respectively. The metabolomic insights can also guide breeding strategies to enhance the bioactive compound content in specific tissues. This study demonstrates the value of tissue-specific metabolite profiling for informing the phytochemical exploitation and genetic improvement of medicinal plants. Full article
Show Figures

Figure 1

15 pages, 1692 KB  
Article
Chemical Characterization of the Essential Oil Compositions of Mentha spicata and M. longifolia ssp. cyprica from the Mediterranean Basin and Multivariate Statistical Analyses
by Hasan İsfendiyaroğlu, Azmi Hanoğlu, Duygu Yiğit Hanoğlu, Fehmi B. Alkaş, Kemal Hüsnü Can Başer and Dudu Özkum Yavuz
Molecules 2024, 29(9), 1970; https://doi.org/10.3390/molecules29091970 - 25 Apr 2024
Cited by 9 | Viewed by 3392
Abstract
This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis [...] Read more.
This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis by comparing with the existing literature, emphasizing the literature published within the last two decades, conducted on both species growing within the Mediterranean Basin. The major essential oil components of M. spicata were determined as carvone (67.8%) and limonene (10.6%), while the major compounds of M. longifolia ssp. cyprica essential oil were pulegone (64.8%) and 1,8-cineole (10.0%). As a result of statistical analysis, three clades were determined for M. spicata: a carvone-rich chemotype, a carvone/trans-carveol chemotype, and a pulegone/menthone chemotype, with the present study result belonging to the carvone-rich chemotype. Carvone was a primary determinant of chemotype, along with menthone, pulegone, and trans-carveol. In M. longifolia, the primary determinants of chemotype were identified as pulegone and menthone, with three chemotype clades being pulegone-rich, combined menthone/pulegone, and combined menthone/pulegone with caryophyllene enrichment. The primary determinants of chemotype were menthone, pulegone, and caryophyllene. The present study result belongs to pulegone-rich chemotype. Full article
Show Figures

Graphical abstract

14 pages, 4128 KB  
Article
Ammonium Phosphotungstate Bonded on Imidazolized Activated Carbon for Selective Catalytic Rearrangement of α-Epoxypinane to Carveol
by Min Zheng, Xiangzhou Li, Dulin Yin, Steven R. Kirk, Hui Li, Peng Zhou and Yanhong Yang
Catalysts 2024, 14(1), 36; https://doi.org/10.3390/catal14010036 - 3 Jan 2024
Cited by 4 | Viewed by 2041
Abstract
Carveol is a rare fine chemical with specific biological activities and functions in nature. The artificial synthesis of carveol from plentiful and cheap turpentine is expected to further improve development of pharmaceutical and industrial applications. A new green catalytic system for the preparation [...] Read more.
Carveol is a rare fine chemical with specific biological activities and functions in nature. The artificial synthesis of carveol from plentiful and cheap turpentine is expected to further improve development of pharmaceutical and industrial applications. A new green catalytic system for the preparation of high-value carveol from α-epoxypinane is presented. A novel ammonium salt solid acid (AC-COIMI-NH4PW) was obtained from phosphotungstic acid bonded with imidazole basic site on nitrogen-doped activated carbon which, after ammonia fumigation, presented an excellent catalytic performance for the selective rearrangement of α-epoxypinane to carveol in DMF as solvent under mild reaction conditions. At 90 °C for 2 h, the conversion of α-epoxypinane could reach 98.9% and the selectivity of carveol was 50.6%. The acidic catalytic sites exhibited superior durability and the catalytic performance can be restored by supplementing the lost catalyst. Based on the investigation of catalytic processes, a parallel catalytic mechanism for the main product was proposed from the rearrangement of α-epoxypinane on AC-COIMI-NH4PW. Full article
(This article belongs to the Special Issue Catalytic Conversion of Renewable Biomass Platform Molecules)
Show Figures

Graphical abstract

16 pages, 911 KB  
Article
Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics
by Horațiu Roman, Adelina-Gabriela Niculescu, Veronica Lazăr and Mihaela Magdalena Mitache
Antibiotics 2023, 12(11), 1635; https://doi.org/10.3390/antibiotics12111635 - 17 Nov 2023
Cited by 10 | Viewed by 3611
Abstract
Medicinal plants with multiple targets of action have become one of the most promising solutions in the fight against multidrug-resistant (MDR) bacterial infections. Tanacetum vulgare (Tansy) is one of the medicinal plants with antibacterial qualities that deserve to be studied. Thus, this research [...] Read more.
Medicinal plants with multiple targets of action have become one of the most promising solutions in the fight against multidrug-resistant (MDR) bacterial infections. Tanacetum vulgare (Tansy) is one of the medicinal plants with antibacterial qualities that deserve to be studied. Thus, this research takes a closer look at tansy extract’s composition and antibacterial properties, aiming to highlight its potential against clinically relevant bacterial strains. In this respect, the antibacterial test was performed against several drug-resistant pathogenic strains, and we correlated them with the main isolated compounds, demonstrating the therapeutic properties of the extract. The essential oil was extracted via hydrodistillation, and its composition was characterized via gas chromatography. The main isolated compounds known for their antibacterial effects were α-Thujone, β-Thujone, Eucalyptol, Sabinene, Chrysanthenon, Camphor, Linalool oxide acetate, cis-Carveol, trans-Carveyl acetate, and Germacrene. The evaluation of the antibacterial activity was carried out using the Kirby–Bauer and binary microdilution methods on Gram-positive and Gram-negative MDR strains belonging to the ESKAPE group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). Tansy essential oil showed MIC values ranging from 62.5 to 500 μg/mL against the tested strains. Synergistic activity with different classes of antibiotics (penicillins, cephalosporins, carbapenems, monobactams, aminoglycosides, and quinolones) has also been noted. The obtained results demonstrate that tansy essential oil represents a promising lead for developing new antimicrobials active against MDR alone or in combination with antibiotics. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Products and Plants Extracts)
Show Figures

Figure 1

19 pages, 1541 KB  
Review
Overview of the Biotransformation of Limonene and α-Pinene from Wood and Citrus Residues by Microorganisms
by Adama Ndao and Kokou Adjallé
Waste 2023, 1(4), 841-859; https://doi.org/10.3390/waste1040049 - 4 Oct 2023
Cited by 8 | Viewed by 9685
Abstract
This review provides an overview of the biotransformation of limonene and α-pinene, which are commonly found in wood residues and citrus fruit by-products, to produce high-value-added products. Essential oils derived from various plant parts contain monoterpene hydrocarbons, such as limonene and pinenes which [...] Read more.
This review provides an overview of the biotransformation of limonene and α-pinene, which are commonly found in wood residues and citrus fruit by-products, to produce high-value-added products. Essential oils derived from various plant parts contain monoterpene hydrocarbons, such as limonene and pinenes which are often considered waste due to their low sensory activity, poor water solubility, and tendency to autoxidize and polymerise. However, these terpene hydrocarbons serve as ideal starting materials for microbial transformations. Moreover, agro-industrial byproducts can be employed as nutrient and substrate sources, reducing fermentation costs, and enhancing industrial viability. Terpenes, being secondary metabolites of plants, are abundant in byproducts generated during fruit and plant processing. Microbial cells offer advantages over enzymes due to their higher stability, rapid growth rates, and genetic engineering potential. Fermentation parameters can be easily manipulated to enhance strain performance in large-scale processes. The economic advantages of biotransformation are highlighted by comparing the prices of substrates and products. For instance, R-limonene, priced at US$ 34/L, can be transformed into carveol, valued at around US$ 530/L. This review emphasises the potential of biotransformation to produce high-value products from limonene and α-pinene molecules, particularly present in wood residues and citrus fruit by-products. The utilisation of microbial transformations, along with agro-industrial byproducts, presents a promising approach to extract value from waste materials and enhance the sustainability of the antimicrobial, the fragrance and flavour industry. Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization)
Show Figures

Figure 1

18 pages, 5381 KB  
Article
Bio-Inspired Iron Pentadentate Complexes as Dioxygen Activators in the Oxidation of Cyclohexene and Limonene
by Katarzyna Rydel-Ciszek, Tomasz Pacześniak, Paweł Chmielarz and Andrzej Sobkowiak
Molecules 2023, 28(5), 2240; https://doi.org/10.3390/molecules28052240 - 28 Feb 2023
Cited by 5 | Viewed by 2732
Abstract
The use of dioxygen as an oxidant in fine chemicals production is an emerging problem in chemistry for environmental and economical reasons. In acetonitrile, the [(N4Py)FeII]2+ complex, [N4Py—N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine] in the presence of the substrate activates dioxygen [...] Read more.
The use of dioxygen as an oxidant in fine chemicals production is an emerging problem in chemistry for environmental and economical reasons. In acetonitrile, the [(N4Py)FeII]2+ complex, [N4Py—N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine] in the presence of the substrate activates dioxygen for the oxygenation of cyclohexene and limonene. Cyclohexane is oxidized mainly to 2-cyclohexen-1-one, and 2-cyclohexen-1-ol, cyclohexene oxide is formed in much smaller amounts. Limonene gives as the main products limonene oxide, carvone, and carveol. Perillaldehyde and perillyl alcohol are also present in the products but to a lesser extent. The investigated system is twice as efficient as the [(bpy)2FeII]2+/O2/cyclohexene system and comparable to the [(bpy)2MnII]2+/O2/limonene system. Using cyclic voltammetry, it has been shown that, when the catalyst, dioxgen, and substrate are present simultaneously in the reaction mixture, the iron(IV) oxo adduct [(N4Py)FeIV=O]2+ is formed, which is the oxidative species. This observation is supported by DFT calculations. Full article
(This article belongs to the Special Issue Organometallic Compounds: Synthesis and Structural Characterization)
Show Figures

Figure 1

12 pages, 2490 KB  
Article
Exogenous Application of a Plant Elicitor Induces Volatile Emission in Wheat and Enhances the Attraction of an Aphid Parasitoid Aphidius gifuensis
by Dianzhao Xiao, Jiahui Liu, Yulong Liu, Yiwei Wang, Yidi Zhan and Yong Liu
Plants 2022, 11(24), 3496; https://doi.org/10.3390/plants11243496 - 13 Dec 2022
Cited by 8 | Viewed by 3149
Abstract
It is well known that plant elicitors can induce plant defense against pests. The herbivore-induced plant volatile (HIPV) methyl salicylate (MeSA), as a signaling hormone involved in plant pathogen defense, is used to recruit natural enemies to protect wheat and other crops. However, [...] Read more.
It is well known that plant elicitors can induce plant defense against pests. The herbivore-induced plant volatile (HIPV) methyl salicylate (MeSA), as a signaling hormone involved in plant pathogen defense, is used to recruit natural enemies to protect wheat and other crops. However, the defense mechanism remains largely unknown. Here, the headspace volatiles of wheat plants were collected and analyzed by gas chromatography-mass spectrometry (GC−MS), gas chromatography with electroantennographic detection (GC−EAD) and principal component analysis (PCA). The results showed that exogenous application of MeSA induced qualitative and quantitative changes in the volatiles emitted from wheat plants, and these changes were mainly related to Carveol, Linalool, m-Diethyl-benzene, p-Cymene, Nonanal, D-limonene and 6-methyl-5-Hepten-2-one. Then, the electroantennogram (EAG) and Y-tube bioassay were performed to test the physiological and behavioral responses of Aphidius gifuensis Ashmesd to the active volatile compounds (p-Cymene, m-Diethyl-benzene, Carveol) that identified by using GC-EAD. The female A. gifuensis showed strong physiological responses to 1 μg/μL p-Cymene and 1 μg/μL m-Diethyl-benzene. Moreover, a mixture blend was more attractive to female A. gifuensis than a single compound. These findings suggested that MeSA could induce wheat plant indirect defense against wheat aphids through attracting parasitoid in the wheat agro-ecosystem. Full article
(This article belongs to the Special Issue Wheat–Pest Interaction: From Biology to Integrated Management)
Show Figures

Figure 1

21 pages, 3062 KB  
Article
Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants
by Nguyen Huy Hung, Pham Minh Quan, Prabodh Satyal, Do Ngoc Dai, Vo Van Hoa, Ngo Gia Huy, Le Duc Giang, Nguyen Thi Ha, Le Thi Huong, Vu Thi Hien and William N. Setzer
Molecules 2022, 27(20), 7092; https://doi.org/10.3390/molecules27207092 - 20 Oct 2022
Cited by 59 | Viewed by 6509
Abstract
Essential oils are promising as environmentally friendly and safe sources of pesticides for human use. Furthermore, they are also of interest as aromatherapeutic agents in the treatment of Alzheimer’s disease, and inhibition of the enzyme acetylcholinesterase (AChE) has been evaluated as an important [...] Read more.
Essential oils are promising as environmentally friendly and safe sources of pesticides for human use. Furthermore, they are also of interest as aromatherapeutic agents in the treatment of Alzheimer’s disease, and inhibition of the enzyme acetylcholinesterase (AChE) has been evaluated as an important mechanism. The essential oils of some species in the genera Callicarpa, Premna, Vitex and Karomia of the family Lamiaceae were evaluated for inhibition of electric eel AChE using the Ellman method. The essential oils of Callicarpa candicans showed promising activity, with IC50 values between 45.67 and 58.38 μg/mL. The essential oils of Callicarpa sinuata, Callicarpa petelotii, Callicarpa nudiflora, Callicarpa erioclona and Vitex ajugifolia showed good activity with IC50 values between 28.71 and 54.69 μg/mL. The essential oils Vitex trifolia subsp. trifolia and Callicarpa rubella showed modest activity, with IC50 values of 81.34 and 89.38, respectively. trans-Carveol showed an IC50 value of 102.88 µg/mL. Molecular docking and molecular dynamics simulation were performed on the major components of the studied essential oils to investigate the possible mechanisms of action of potential inhibitors. The results obtained suggest that these essential oils may be used to control mosquito vectors that transmit pathogenic viruses or to support the treatment of Alzheimer’s disease. Full article
(This article belongs to the Special Issue Essential Oils II)
Show Figures

Figure 1

Back to TopTop