Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (225)

Search Parameters:
Keywords = care organization innovation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 13655 KiB  
Review
Molar Pregnancy: Early Diagnosis, Clinical Management, and the Role of Referral Centers
by Antônio Braga, Lohayne Coutinho, Marcela Chagas, Juliana Pereira Soares, Gustavo Yano Callado, Raphael Alevato, Consuelo Lozoya, Sue Yazaki Sun, Edward Araujo Júnior and Jorge Rezende-Filho
Diagnostics 2025, 15(15), 1953; https://doi.org/10.3390/diagnostics15151953 - 4 Aug 2025
Viewed by 18
Abstract
Molar pregnancy (MP) is a gestational disorder resulting from abnormal fertilization, leading to atypical trophoblastic proliferation and the formation of a complete or partial hydatidiform mole. This condition represents the most common form of gestational trophoblastic disease (GTD) and carries a significant risk [...] Read more.
Molar pregnancy (MP) is a gestational disorder resulting from abnormal fertilization, leading to atypical trophoblastic proliferation and the formation of a complete or partial hydatidiform mole. This condition represents the most common form of gestational trophoblastic disease (GTD) and carries a significant risk of progression to gestational trophoblastic neoplasia (GTN). Although rare in high-income countries, MP remains up to ten times more prevalent in low-income and developing countries, contributing to preventable maternal morbidity and mortality. This narrative review provides an updated, practical overview of the clinical presentation, diagnosis, treatment, and follow-up of MP. A key focus is the challenge of early diagnosis, particularly given the increasing frequency of first-trimester detection, where classical histopathological criteria may be subtle, leading to diagnostic errors. The review innovates by integrating advanced diagnostic methods—combining histopathology, immunohistochemistry using p57Kip2, Ki-67, and p53 markers, along with cytogenetic analysis—to improve diagnostic accuracy in early gestation. The central role of referral centers is also emphasized, not only in facilitating timely treatment and access to chemotherapy, but also in implementing standardized post-molar follow-up protocols that reduce progression to GTN and maternal mortality. By focusing on both advanced diagnostic strategies and the organization of care through referral centers, this review offers a comprehensive, practice-oriented perspective to optimize patient outcomes in GTD and address persistent care gaps in high-burden regions. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 201
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

13 pages, 2697 KiB  
Communication
Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing
by Qingmei Zhong, Xiaomei Rong, Tingting Wu and Chuan Yan
Biosensors 2025, 15(8), 490; https://doi.org/10.3390/bios15080490 - 29 Jul 2025
Viewed by 316
Abstract
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While [...] Read more.
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While conventional colorimetric determination methods predominantly employ enzymatic or nanozyme catalysts, we present an innovative non-catalytic approach utilizing the redox-responsive properties of organic neutral radicals. Specifically, we designed and synthesized a novel radical TTM-DMODPA based on the tris (2,4,6-trichlorophenyl) methyl (TTM) scaffold, which exhibits remarkable optical tunability and oxidative sensitivity. This system enables dual-mode H2O2 quantification: (1) UV-vis spectrophotometry (linear range: 2.5–250 μmol/L, LOD: 1.275 μmol/L) and (2) smartphone-based visual analysis (linear range: 2.5–250 μmol/L, LOD: 3.633 μmol/L), the latter being particularly suitable for point-of-care testing. Validation studies using urine samples demonstrated excellent recovery rates (96–104%), confirming the method’s reliability for real-sample applications. Our work establishes a portable, instrument-free platform for urinary H2O2 determination, with significant potential in clinical diagnostics and environmental monitoring. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

13 pages, 442 KiB  
Review
Sensor Technologies and Rehabilitation Strategies in Total Knee Arthroplasty: Current Landscape and Future Directions
by Theodora Plavoukou, Spiridon Sotiropoulos, Eustathios Taraxidis, Dimitrios Stasinopoulos and George Georgoudis
Sensors 2025, 25(15), 4592; https://doi.org/10.3390/s25154592 - 24 Jul 2025
Viewed by 315
Abstract
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter [...] Read more.
Total Knee Arthroplasty (TKA) is a well-established surgical intervention for the management of end-stage knee osteoarthritis. While the procedure is generally successful, postoperative rehabilitation remains a key determinant of long-term functional outcomes. Traditional rehabilitation protocols, particularly those requiring in-person clinical visits, often encounter limitations in accessibility, patient adherence, and personalization. In response, emerging sensor technologies have introduced innovative solutions to support and enhance recovery following TKA. This review provides a thematically organized synthesis of the current landscape and future directions of sensor-assisted rehabilitation in TKA. It examines four main categories of technologies: wearable sensors (e.g., IMUs, accelerometers, gyroscopes), smart implants, pressure-sensing systems, and mobile health (mHealth) platforms such as ReHub® and BPMpathway. Evidence from recent randomized controlled trials and systematic reviews demonstrates their effectiveness in tracking mobility, monitoring range of motion (ROM), detecting gait anomalies, and delivering real-time feedback to both patients and clinicians. Despite these advances, several challenges persist, including measurement accuracy in unsupervised environments, the complexity of clinical data integration, and digital literacy gaps among older adults. Nevertheless, the integration of artificial intelligence (AI), predictive analytics, and remote rehabilitation tools is driving a shift toward more adaptive and individualized care models. This paper concludes that sensor-enhanced rehabilitation is no longer a future aspiration but an active transition toward a smarter, more accessible, and patient-centered paradigm in recovery after TKA. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

31 pages, 1981 KiB  
Review
Volatile Organic Compounds in Teas: Identification, Extraction, Analysis, and Application of Tea Aroma
by Qin Zeng, Huifeng Wang, Jiaojiao Tuo, Yumeng Ding, Hongli Cao and Chuan Yue
Foods 2025, 14(15), 2574; https://doi.org/10.3390/foods14152574 - 23 Jul 2025
Viewed by 461
Abstract
Volatile organic compounds (VOCs) are important for teas’ quality and act as a critical evaluative criterion in teas. The distinctive aromatic profile of tea not only facilitates tea classification but also has potential applications in aroma-driven product innovation. In this review, we summarized [...] Read more.
Volatile organic compounds (VOCs) are important for teas’ quality and act as a critical evaluative criterion in teas. The distinctive aromatic profile of tea not only facilitates tea classification but also has potential applications in aroma-driven product innovation. In this review, we summarized the tea aroma from tea classification, VOCs extraction methodologies, and VOCs detection techniques. Moreover, the potential utilization of tea aroma in the future, such as applications in essential oil refinement, food flavor enhancement, and functional fragrance for personal health care, was proposed. Our review will provide a solid foundation for further investigations in tea aroma and offer significant insights into the development and application of tea fragrance. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

16 pages, 755 KiB  
Review
Hip Fracture as a Systemic Disease in Older Adults: A Narrative Review on Multisystem Implications and Management
by Silvia Andaloro, Stefano Cacciatore, Antonella Risoli, Rocco Maria Comodo, Vincenzo Brancaccio, Riccardo Calvani, Simone Giusti, Mathias Schlögl, Emanuela D’Angelo, Matteo Tosato, Francesco Landi and Emanuele Marzetti
Med. Sci. 2025, 13(3), 89; https://doi.org/10.3390/medsci13030089 - 11 Jul 2025
Viewed by 692
Abstract
Hip fractures are among the most serious health events in older adults, frequently leading to disability, loss of independence, and elevated mortality. In 2019, an estimated 9.6 million new cases occurred globally among adults aged ≥ 55 years, with an incidence rate of [...] Read more.
Hip fractures are among the most serious health events in older adults, frequently leading to disability, loss of independence, and elevated mortality. In 2019, an estimated 9.6 million new cases occurred globally among adults aged ≥ 55 years, with an incidence rate of 681 per 100,000. Despite improved surgical care, one-year mortality remains high (15–30%), and fewer than half of survivors regain their pre-fracture functional status. Traditionally regarded as mechanical injuries, hip fractures are now increasingly recognized as systemic events reflecting and accelerating biological vulnerability and frailty progression. We synthesize evidence across biological, clinical, and social domains to explore the systemic implications of hip fracture, from the acute catabolic response and immune dysfunction to long-term functional decline. The concept of intrinsic capacity, introduced by the World Health Organization, offers a resilience-based framework to assess the multidimensional impact of hip fracture on physical, cognitive, and psychological function. We highlight the importance of orthogeriatric co-management, early surgical intervention, and integrated rehabilitation strategies tailored to the individual’s functional reserves and personal goals. Innovations such as digital health tools, biological aging biomarkers, and personalized surgical approaches represent promising avenues to enhance recovery and autonomy. Ultimately, we advocate for a shift toward interdisciplinary, capacity-oriented models of care that align with the goals of healthy aging and enable recovery that transcends survival, focusing instead on restoring function and quality of life. Full article
Show Figures

Figure 1

32 pages, 1739 KiB  
Review
Effects of Pharmaceuticals and Endocrine-Disrupting Chemicals on Reproductive Biology of Aquatic Fauna: Penguins as Sentinel Species
by Grace Emily Okuthe, Edith Dube and Patrick Siyambulela Mafunda
J. Xenobiot. 2025, 15(4), 110; https://doi.org/10.3390/jox15040110 - 4 Jul 2025
Viewed by 930
Abstract
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations [...] Read more.
The escalating global contamination of aquatic ecosystems by pharmaceuticals and endocrine-disrupting chemicals (EDCs) stemming from diverse anthropogenic sources represents a critical and pervasive threat to planetary Earth. These contaminants exhibit bioaccumulative properties in long-lived organisms and undergo trophic biomagnification, leading to elevated concentrations in apex predators. This review synthesizes current knowledge regarding the far-reaching impacts of pharmaceutical and EDC pollution on the reproductive biology of aquatic fauna, focusing on the heightened vulnerability of the endangered African penguin. A rigorous literature review across key scientific databases—PubMed, Scopus, Web of Science, and Google Scholar—using targeted search terms (e.g., penguins, contaminants of emerging concern, penguin species, seabird species, Antarctica, pharmaceuticals, personal care products, EDCs) underpins this analysis. This review explores the anthropogenic sources of pharmaceuticals and EDCs in aquatic ecosystems. It discusses the mechanisms by which these chemicals disrupt the reproductive physiology of aquatic fauna. Recent studies on the ecological and population-level consequences of these contaminants are also reviewed. Furthermore, the review elaborates on the urgent need for comprehensive mitigating strategies to address their effects on vulnerable penguin populations. These approaches hold the potential to unlock innovative pathways for conservation initiatives and the formulation of robust environmental management policies aimed at safeguarding aquatic ecosystems and the diverse life they support. Full article
Show Figures

Figure 1

40 pages, 7036 KiB  
Review
Bioluminescence in Clinical and Point-of-Care Testing
by Sherwin Reyes, Raymarcos Rodriguez, Emre Dikici, Sylvia Daunert and Sapna Deo
Biosensors 2025, 15(7), 422; https://doi.org/10.3390/bios15070422 - 2 Jul 2025
Viewed by 509
Abstract
Point-of-care testing (POCT) offers a transformative approach to diagnostics by enabling rapid and accurate results at or near the site of patient care. This is especially valuable in critical care, emergency settings, and resource-limited areas. However, one major limitation of POCT remains its [...] Read more.
Point-of-care testing (POCT) offers a transformative approach to diagnostics by enabling rapid and accurate results at or near the site of patient care. This is especially valuable in critical care, emergency settings, and resource-limited areas. However, one major limitation of POCT remains its analytical sensitivity, particularly in detecting low concentrations of analytes. To address this, various innovations are being explored, including advanced sensors, signal amplification, and sensitive labels. Among these, bioluminescent proteins have gained attention for their high sensitivity, fast readout, minimal background interference, and simplified instrumentation. Bioluminescence—light emission from biochemical reactions—presents an ideal platform for enhancing POCT sensitivity. In parallel, metal–organic frameworks (MOFs), especially structures like ZIF-8, are emerging as valuable materials in biosensing. Their high porosity, tunable surface properties, and ability to host biomolecules make them excellent candidates for improving analyte capture and signal transduction. When integrated with bioluminescent systems, MOFs can stabilize proteins, concentrate targets, and enhance overall assay performance. This review highlights the role of bioluminescent proteins in medical diagnostics and their application in POCT platforms. We also discuss the potential synergy between MOFs and bioluminescence to overcome current sensitivity limitations. Finally, we examine existing challenges and strategies to optimize these technologies for robust, field-deployable diagnostic tools. By leveraging both the natural sensitivity of bioluminescence and the structural advantages of MOFs, next-generation POCT systems can achieve superior performance, driving forward diagnostic accessibility and patient care outcomes. Full article
Show Figures

Figure 1

38 pages, 3240 KiB  
Review
Beyond the Limits: How Is Spectral Flow Cytometry Reshaping the Clinical Landscape and What Is Coming Next?
by Kamila Czechowska, Diana L. Bonilla, Adam Cotty, Amay Dankar, Paul E. Mead and Veronica Nash
Cells 2025, 14(13), 997; https://doi.org/10.3390/cells14130997 - 30 Jun 2025
Viewed by 1012
Abstract
Spectral flow cytometry has revolutionized traditional single-cell profiling to a new era of high-dimensional analysis, allowing for unprecedented deep phenotyping and more precise cell characterization, thereby significantly enhancing our multiplexing capability. The recent application of this technology in clinical settings has been redefining [...] Read more.
Spectral flow cytometry has revolutionized traditional single-cell profiling to a new era of high-dimensional analysis, allowing for unprecedented deep phenotyping and more precise cell characterization, thereby significantly enhancing our multiplexing capability. The recent application of this technology in clinical settings has been redefining the landscape of clinical diagnostic panels and immune monitoring, particularly for hematologic malignancies, immunological disorders, and drug discovery. Emerging technologies like ghost cytometry, LASE, and imaging flow cytometry are advancing cytometry by improving sensitivity, throughput, and spatial resolution. In this review, we discuss the requirements, challenges, and considerations for spectral applications in clinical diagnostic laboratories and pharmaceutical/contract research organization (CRO) settings. We discuss how these recent innovations are set to push the boundaries of diagnostic accuracy and analytical power, heralding a new frontier in clinical cytometry with the potential to dramatically enhance patient care and treatment outcomes. Full article
(This article belongs to the Special Issue Insight into Developments and Applications of Flow Cytometry)
Show Figures

Figure 1

30 pages, 1071 KiB  
Review
Assessment and Monitoring of Groundwater Contaminants in Heavily Urbanized Areas: A Review of Methods and Applications for Philippines
by Kevin Paolo V. Robles and Cris Edward F. Monjardin
Water 2025, 17(13), 1903; https://doi.org/10.3390/w17131903 - 26 Jun 2025
Cited by 1 | Viewed by 729
Abstract
Groundwater remains a critical water source for urban communities, particularly in rapidly urbanizing countries such as the Philippines. However, intensifying anthropogenic pressures have contributed to widespread contamination from heavy metals, nutrients, pathogens, volatile organic compounds (VOCs), and emerging pollutants, including pharmaceuticals and personal [...] Read more.
Groundwater remains a critical water source for urban communities, particularly in rapidly urbanizing countries such as the Philippines. However, intensifying anthropogenic pressures have contributed to widespread contamination from heavy metals, nutrients, pathogens, volatile organic compounds (VOCs), and emerging pollutants, including pharmaceuticals and personal care products (PPCPs). This review synthesizes findings from 130 peer-reviewed studies on groundwater monitoring and remediation, emphasizing technological advancements and their application in urban environments. The literature is categorized into five thematic areas: monitoring technologies, contaminant profiles, remediation strategies, Philippine-specific case studies, and alignment with global frameworks. Recent innovations—such as Internet of Things (IoT)-enabled systems, remote sensing, biosensors, and artificial intelligence/machine-learning (AI/ML) models—show strong potential for real-time and predictive monitoring. Despite these advancements, technology adoption in the Philippines remains limited due to regulatory, technical, and infrastructural constraints. This review identifies key research and implementation gaps, particularly in the monitoring of emerging contaminants and the integration of data into policy-making and urban planning. To address these challenges, a conceptual framework is proposed to support more sustainable, technology-driven, and context-sensitive groundwater management in heavily urbanized areas. Full article
Show Figures

Figure 1

33 pages, 10547 KiB  
Review
Prospects and Trends in Biomedical Microelectromechanical Systems (MEMS) Devices: A Review
by Lowell Welburn, Amir Milad Moshref Javadi, Luong Nguyen and Salil Desai
Biomolecules 2025, 15(6), 898; https://doi.org/10.3390/biom15060898 - 18 Jun 2025
Cited by 1 | Viewed by 2561
Abstract
Designing and manufacturing devices at the micro- and nanoscales offers significant advantages, including high precision, quick response times, high energy density ratios, and low production costs. These benefits have driven extensive research in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS), resulting in various [...] Read more.
Designing and manufacturing devices at the micro- and nanoscales offers significant advantages, including high precision, quick response times, high energy density ratios, and low production costs. These benefits have driven extensive research in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS), resulting in various classifications of materials and manufacturing techniques, which are ultimately used to produce different classifications of MEMS devices. The current work aims to systematically organize the literature on MEMS in biomedical devices, encompassing past achievements, present developments, and future prospects. This paper reviews the current research trends, highlighting significant material advancements and emerging technologies in biomedical MEMS in order to meet the current challenges facing the field, such as ensuring biocompatibility, achieving miniaturization, and maintaining precise control in biological environments. It also explores projected applications, including use in advanced diagnostic tools, targeted drug delivery systems, and innovative therapeutic devices. By mapping out these trends and prospects, this review will help identify current research gaps in the biomedical MEMS field. By pinpointing these gaps, researchers can focus on addressing unmet needs and advancing state-of-the-art biomedical MEMS technology. Ultimately, this can lead to the development of more effective and innovative biomedical devices, improving patient care and outcomes. Full article
(This article belongs to the Special Issue Novel Materials for Biomedical Applications: 2nd Edition)
Show Figures

Figure 1

13 pages, 8591 KiB  
Review
IgG4-Related Disease: Current and Future Insights into Pathological Diagnosis
by Marlon Arias-Intriago, Tamar Gomolin, Flor Jaramillo, Adriana C. Cruz-Enríquez, Angie L. Lara-Arteaga, Andrea Tello-De-la-Torre, Esteban Ortiz-Prado and Juan S. Izquierdo-Condoy
Int. J. Mol. Sci. 2025, 26(11), 5325; https://doi.org/10.3390/ijms26115325 - 1 Jun 2025
Viewed by 1229
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a systemic fibroinflammatory condition marked by tumefactive lesions, IgG4+ plasma cell-rich infiltrates, storiform fibrosis, and obliterative phlebitis. Its multisystem involvement and overlap with malignancies, infections, and immune disorders complicate diagnosis despite recent classification advances. This study summarizes diagnostic [...] Read more.
Immunoglobulin G4-related disease (IgG4-RD) is a systemic fibroinflammatory condition marked by tumefactive lesions, IgG4+ plasma cell-rich infiltrates, storiform fibrosis, and obliterative phlebitis. Its multisystem involvement and overlap with malignancies, infections, and immune disorders complicate diagnosis despite recent classification advances. This study summarizes diagnostic challenges, highlights the role of histopathology as per the 2019 classification criteria established by the American College of Rheumatology and the European League Against Rheumatism (ACR/EULAR), and explores emerging tools to improve diagnostic accuracy. ACR/EULAR classification emphasizes three cardinal histopathological features (storiform fibrosis, obliterative phlebitis, or dense lymphoplasmacytic infiltrates) combined with an IgG4+/IgG+ plasma cell ratio >40% and organ-specific IgG4+ thresholds. While serum IgG4 levels are often elevated, their poor specificity necessitates confirmatory biopsy. Diagnostic limitations include sampling variability due to patchy fibrosis, interobserver discrepancies in immunohistochemical interpretation, and differentiation from mimics like lymphoma. Emerging solutions incorporate novel biomarkers (plasmablasts, anti-annexin A11) and advanced techniques (flow cytometry, digital pathology). Future research directions should focus on AI-assisted pattern recognition, multi-omics profiling, and organ-specific criteria refinement. While histopathology remains the diagnostic cornerstone, a multidisciplinary approach integrating clinical, radiological, and laboratory data is vital. Innovations in biomarkers promise improved diagnostic accuracy and personalized care, balancing novel advancements with foundational pathological evaluation. Full article
(This article belongs to the Special Issue Rare Diseases: A Diagnostic and Therapeutic Challenge)
Show Figures

Figure 1

20 pages, 6193 KiB  
Case Report
Exploring Atypical Origins of Trismus: Surgical Solutions for Rare Pathologies—Insights from Rare Clinical Cases
by Ioanna Kalaitsidou, Mathieu Gass, Dimitris Tatsis, Sherin Khalil, Christian Schedeit, Simon David Marjanowski, Sarah Wiegner and Benoît Schaller
Diagnostics 2025, 15(11), 1360; https://doi.org/10.3390/diagnostics15111360 - 28 May 2025
Viewed by 770
Abstract
Background: Trismus, or restricted mouth opening, can present significant challenges in oral and maxillofacial surgery and trigger substantial functional and psychosocial disabilities. Intra-articular causes, such as temporomandibular joint ankylosis and arthritis, are thoroughly described; however, extra-articular pathologies like neoplastic, traumatic, infectious, and [...] Read more.
Background: Trismus, or restricted mouth opening, can present significant challenges in oral and maxillofacial surgery and trigger substantial functional and psychosocial disabilities. Intra-articular causes, such as temporomandibular joint ankylosis and arthritis, are thoroughly described; however, extra-articular pathologies like neoplastic, traumatic, infectious, and fibrotic conditions of adjacent soft and hard tissues are less frequently reported and present distinct diagnostic complexities and therapeutic hurdles. This retrospective study aims to investigate the difficulties encountered in diagnosis and surgical interventions associated with rare extra-articular causes of trismus. Material and Methods: This article describes five rare causes of extra-articular trismus. The cases range from benign pathologies like coronoid hyperplasia and osteomas to more complex diagnoses of myositis ossificans, external auditory canal abscess, and chronic osteomyelitis. A thorough diagnostic workup was performed for each patient, and specific surgical interventions were administered based on their pathology. Results: All five patients showed significant improvements in mouth opening after surgery. Diagnostic accuracy was ensured with advanced imaging modalities and innovative surgical techniques, and adequate postoperative care translated the favorable outcome. Conclusions: Although based on individual case descriptions, this study emphasizes the potential importance of early diagnosis, a multidisciplinary approach, and individualized treatment planning in managing rare extra-articular causes of trismus. These cases suggest a basis for a more organized system for the timely identification and treatment of such conditions. Additional research is needed to improve diagnostic accuracy, optimize surgical management, and develop evidence-based aftercare treatment to improve patient care and quality of life. Full article
(This article belongs to the Special Issue Advances in Oral Diseases Diagnosis and Management: 2nd Edition)
Show Figures

Figure 1

33 pages, 892 KiB  
Perspective
The Body Can Balance the Score: Using a Somatic Self-Care Intervention to Support Well-Being and Promote Healing
by William Chance Nicholson, Michael Sapp, Elaine Miller Karas, Ingrid Margaret Duva and Linda Grabbe
Healthcare 2025, 13(11), 1258; https://doi.org/10.3390/healthcare13111258 - 26 May 2025
Viewed by 3696
Abstract
Natural and human-made disasters, community violence, climate change, and political instability engender mental health problems worldwide. Childhood traumas, now recognized as commonplace and global in nature, augment the urgent need for mental health interventions that are accessible and scalable. The World Health Organization [...] Read more.
Natural and human-made disasters, community violence, climate change, and political instability engender mental health problems worldwide. Childhood traumas, now recognized as commonplace and global in nature, augment the urgent need for mental health interventions that are accessible and scalable. The World Health Organization has called for innovative strategies that extend beyond traditional cognitive approaches. Biologically based methods are gaining recognition for their significant role in affect regulation and wellness promotion. This paper explores the potential for interventions focusing on interoceptive awareness, or noticing sensations arising from the body, to address mental health challenges, especially relevant for populations affected by trauma. The Community Resiliency Model (CRM)®, a low-intensity, body-based intervention that cultivates interoceptive awareness, is described and compared to other well-being interventions. Available research studies, program evaluations and anecdotal reports are presented in addition to CRM’s biological and theoretical underpinnings. The neurobiology of trauma, interoception research, and the concept of neural synchrony are briefly introduced, further explaining the likely mechanism of action and an underlying rationale for the reported improvements in well-being and resilience among individuals and communities who learn CRM body awareness techniques. Given increasing global demand and limited access to conventional mental health services, CRM and the six core skills that are taught in this model offer a promising, transferable, self-care strategy. Community dissemination has the potential to expand access in underserved populations. This review concludes by suggesting future research directions, such as the exploration of biophysical outcomes, intra- and interpersonal synchrony, and evaluation of interoceptive training for emotional regulation and populations affected by trauma or violence. Full article
(This article belongs to the Special Issue Beyond Words: Somatic Approaches for Treating PTSD and Trauma)
Show Figures

Figure 1

20 pages, 1041 KiB  
Study Protocol
Partial Breast Reirradiation for Breast Cancer Recurrences After Repeat Breast-Conserving Surgery with Proton Beam Therapy: The Prospective BREAST Trial (NCT06954623)
by Eva Meixner, Semi Harrabi, Katharina Seidensaal, Beata Koczur, Thomas Tessonnier, Adriane Lentz-Hommertgen, Line Hoeltgen, Philipp Hoegen-Saßmannshausen, Fabian Weykamp, Jakob Liermann, Juliane Hörner-Rieber and Jürgen Debus
J. Clin. Med. 2025, 14(10), 3416; https://doi.org/10.3390/jcm14103416 - 13 May 2025
Viewed by 824
Abstract
(1) Background: The management of ipsilateral breast cancer recurrence depends on the extent of the tumor, and staging results, and mastectomy is currently the standard of care for previously irradiated patients. Studies are increasingly investigating suitable candidates for the repeated use of [...] Read more.
(1) Background: The management of ipsilateral breast cancer recurrence depends on the extent of the tumor, and staging results, and mastectomy is currently the standard of care for previously irradiated patients. Studies are increasingly investigating suitable candidates for the repeated use of breast-conserving approaches as an alternative to mastectomy. But this includes the crucial necessity for curative reirradiation (Re-RT). The therapeutic challenge in reirradiation involves finding a balance between tumor control and the risk of severe toxicity from cumulative radiation doses in previously irradiated organs. Re-RT options include the use of brachytherapy, intraoperative radiotherapy, or external beam RT with photons or electrons. The application of particle therapy using proton beam therapy represents an innovative radiotherapeutic technique for breast cancer patients that might offer advantageous physical properties, a superior dose reduction to adjacent organs-at-risk, and effective target volume coverage with lower integral doses to the patient’s whole body. In addition, this technique could potentially offer higher radiobiological effects and tumor responses. (2) Methods: The BREAST trial (NCT06954623) will be conducted as a prospective, single-arm, phase II study in 20 patients with histologically proven invasive breast cancer recurrences after repeat breast-conserving surgery and with an indication for local reirradiation. The patients will receive partial-breast re-RT with proton beam therapy in 15 once-daily fractions up to a total dose of 40.05 Gy(RBE), delivered with active raster scanning. The required time interval will be 1 year after previous RT to the ipsilateral breast. (3) Results: The following results will be reported: The primary endpoint is defined as the cumulative overall occurrence of (sub)acute skin toxicity of grade ≥ 3 within 6 months after the start of re-RT. Secondary outcome includes an analysis of the local, regional, and distant control, progression-free and overall survival, quality of life, and cosmesis. The explorative and translational objectives of this study include planning comparisons to other RT techniques and irradiation types, dosimetric evaluations, analyses of radiological imaging features, and translational assessments of cardiac toxicity biomarkers and tumor markers. (4) Conclusions: Overall, the aim of this study is to evaluate the potential of proton beam therapy for partial breast reirradiation and to establish the underlying data for a randomized trial. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

Back to TopTop