Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = cardiac autonomic nervous activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2784 KiB  
Article
Principal Connection Between Typical Heart Rate Variability Parameters as Revealed by a Comparative Analysis of Their Heart Rate and Age Dependence
by András Búzás, Balázs Sonkodi and András Dér
Entropy 2025, 27(8), 792; https://doi.org/10.3390/e27080792 - 25 Jul 2025
Viewed by 329
Abstract
Heart rate (HR) is strongly affected by the autonomic nervous system (ANS), while its spontaneous fluctuations, called heart rate variability (HRV), report about the dynamics of the complex, vegetative regulation of the heart rhythm. Hence, HRV is widely considered an important marker of [...] Read more.
Heart rate (HR) is strongly affected by the autonomic nervous system (ANS), while its spontaneous fluctuations, called heart rate variability (HRV), report about the dynamics of the complex, vegetative regulation of the heart rhythm. Hence, HRV is widely considered an important marker of the ANS effects on the cardiac system, and as such, a crucial diagnostic tool in cardiology. In order to obtain nontrivial results from HRV analysis, it would be desirable to establish exact, universal interrelations between the typical HRV parameters and HR itself. That, however, has not yet been fully accomplished. Hence, our aim was to perform a comparative statistical analysis of ECG recordings from a public database, with a focus on the HR dependence of typical HRV parameters. We revealed their fundamental connections, which were substantiated by basic mathematical considerations, and were experimentally demonstrated via the analysis of 24 h of ECG recordings of more than 200 healthy individuals. The large database allowed us to perform unique age-cohort analyses. We confirmed the HR dependence of typical time-domain parameters, such as RMSSD and SDNN, frequency-domain parameters such as the VLF, LF, and HF components, and nonlinear indices such as sample entropy and DFA exponents. In addition to shedding light on their relationship, we are the first, to our knowledge, to identify a new, diffuse structure in the VHF regime as an important indicator of SNS activity. In addition, the demonstrated age dependence of the HRV parameters gives important new insight into the long-term changes in the ANS regulation of the cardiac system. As a possible molecular physiological mechanism underlying our new findings, we suggest that they are associated with Piezo2 channel function and its age-related degradation. We expect our results to be utilized in HRV analysis related to both medical research and practice. Full article
Show Figures

Figure 1

24 pages, 921 KiB  
Review
Neuromodulation of the Cardiac Autonomic Nervous System for Arrhythmia Treatment
by Benjamin Wong, Yuki Kuwabara and Siamak Salavatian
Biomedicines 2025, 13(7), 1776; https://doi.org/10.3390/biomedicines13071776 - 21 Jul 2025
Viewed by 667
Abstract
This review explores current and emerging neuromodulation techniques targeting the cardiac autonomic nervous system for the treatment and prevention of atrial and ventricular arrhythmias. Arrhythmias remain a significant cause of morbidity and mortality, with the autonomic nervous system playing a crucial role in [...] Read more.
This review explores current and emerging neuromodulation techniques targeting the cardiac autonomic nervous system for the treatment and prevention of atrial and ventricular arrhythmias. Arrhythmias remain a significant cause of morbidity and mortality, with the autonomic nervous system playing a crucial role in arrhythmogenesis. Interventions span surgical, pharmacological, and bioelectronic methods. We discuss the range of neuromodulation methods targeting the stellate ganglion, the spinal region, the parasympathetic system, and other promising methods. These include stellate ganglion block, stellate ganglion ablation, cardiac sympathetic denervation, subcutaneous electrical stimulation, thoracic epidural anesthesia, spinal cord stimulation, dorsal root ganglion stimulation, vagus nerve stimulation, baroreflex activation therapy, carotid body ablation, renal denervation, ganglionated plexi ablation, acupuncture, and transcutaneous magnetic stimulation. Both preclinical and clinical studies are presented as evidence for arrhythmia management. Full article
Show Figures

Figure 1

15 pages, 436 KiB  
Article
An Exploratory Investigation of Heart Rate Variability in Response to Exercise Training and Detraining in Young and Middle-Aged Men
by Andres E. Carrillo, Petros C. Dinas, Paraskevi Gkiata, Alexa R. Ferri, Glen P. Kenny, Yiannis Koutedakis, Athanasios Z. Jamurtas, George S. Metsios and Andreas D. Flouris
Biology 2025, 14(7), 794; https://doi.org/10.3390/biology14070794 - 30 Jun 2025
Viewed by 468
Abstract
We examined heart rate (HR) and heart rate variability (HRV) in young and middle-aged men after a period of detraining that immediately followed the completion of an exercise training program. Eight young (27.8 ± 3.8 years) and ten middle-aged (41.9 ± 3.8 years) [...] Read more.
We examined heart rate (HR) and heart rate variability (HRV) in young and middle-aged men after a period of detraining that immediately followed the completion of an exercise training program. Eight young (27.8 ± 3.8 years) and ten middle-aged (41.9 ± 3.8 years) men were randomly assigned to complete an 8-week exercise training program that included either aerobic (young: n = 3; middle-aged: n = 2), resistance (young: n = 3; middle-aged: n = 3), or combined (aerobic/resistance) (young: n = 2; middle-aged: n = 5) exercise. Thereafter, participants ceased all planned exercise training activities during an 8-week detraining period. Resting HR and HRV were assessed at baseline, after exercise training, and after detraining. An analysis of mean differences between age groups at each time-point revealed a significantly higher standard deviation of normal RR intervals (SDNN), square root of the mean of squared differences between successive RR intervals (RMSSD), high-frequency (HF) band (0.15–0.40 Hz), and cardiac vagal index (CVI) in young participants when compared to middle-aged participants at baseline (p ≤ 0.019) and after detraining (p ≤ 0.045), but not after the 8-week exercise training intervention (p ≥ 0.057). Additionally, in middle-aged participants, we observed a significant negative association between the percent change in HRV indices (RMSSD, HF, and CVI) and systolic blood pressure in response to detraining (p < 0.05). In conclusion, young participants had higher levels of HRV indices at baseline, reflecting greater cardiac vagal modulation when compared to middle-aged participants. We showed that these age-related differences in HRV are diminished following exercise training but are reestablished following 8 weeks of detraining. Given that age-related attenuations in HRV may reflect changes in cardiovascular health, it is important to further investigate the relationships between HRV, exercise training and detraining, aging, and the risk of poor health outcomes. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

19 pages, 2109 KiB  
Review
Exercise Intervention in Autonomic Function, Immunity, and Cardiovascular Health: A Precision Medicine Approach
by Jianyu Li, Junbei Bai, Guochun Liu, Ziyan Zhu and Chunmei Cao
J. Cardiovasc. Dev. Dis. 2025, 12(7), 247; https://doi.org/10.3390/jcdd12070247 - 26 Jun 2025
Viewed by 699
Abstract
The imbalance in the interaction between the autonomic nervous system and the immune system serves as a central mechanism in the onset and progression of cardiovascular diseases. The excessive activation of the sympathetic nervous system and suppression of vagal function contribute to chronic [...] Read more.
The imbalance in the interaction between the autonomic nervous system and the immune system serves as a central mechanism in the onset and progression of cardiovascular diseases. The excessive activation of the sympathetic nervous system and suppression of vagal function contribute to chronic inflammation and cardiac remodeling. Precision medicine, by integrating multidimensional data such as genomics and metabolomics, offers a novel perspective for the personalized design of exercise interventions. This systematic review explores the bidirectional regulatory mechanisms of exercise interventions on the autonomic nervous system–immune axis and examines the potential applications of precision medicine in optimizing exercise prescriptions and clinical translation. Exercise significantly improves cardiovascular function through immunometabolic reprogramming, which includes suppressing sympathetic overactivity, enhancing vagal tone, and modulating the IL-6/IL-10 balance, as well as activating the short-chain fatty acid (SCFA)–Treg axis. Moreover, precision-medicine-driven ACE I/D gene typing provides a basis for selecting tailored exercise prescriptions, thereby significantly enhancing the efficacy of exercise interventions. By leveraging a multi-tiered “neuro–immune–metabolic” regulatory framework, exercise interventions contribute to improved cardiovascular health. The application of precision medicine technology overcomes individual variability constraints, advancing exercise prescription design from generalized recommendations toward personalized and dynamically adaptive strategies. Full article
(This article belongs to the Special Issue Exercise Testing and Interventions in Cardiovascular Disease)
Show Figures

Figure 1

18 pages, 2824 KiB  
Article
Aerobic Exercise Alleviates Cardiac Dysfunction Correlated with Lipidomics and Mitochondrial Quality Control
by Kunzhe Li, Sujuan Li, Hao Jia, Yinping Song, Zhixin Chen and Youhua Wang
Antioxidants 2025, 14(6), 748; https://doi.org/10.3390/antiox14060748 - 17 Jun 2025
Viewed by 620
Abstract
Cardiac adaptations induced by aerobic exercise have been shown to reduce the risk of cardiovascular disease, and the autonomic nervous system is closely associated with the development of cardiovascular disease. Aerobic exercise intervention has been shown to enhance cardiac function and mitigate myocardial [...] Read more.
Cardiac adaptations induced by aerobic exercise have been shown to reduce the risk of cardiovascular disease, and the autonomic nervous system is closely associated with the development of cardiovascular disease. Aerobic exercise intervention has been shown to enhance cardiac function and mitigate myocardial fibrosis and hypertrophy in heart failure mice. Further insights reveal that cardiomyocytes experiencing chronic heart failure undergo modifications in their lipidomic profile, including remodeling of multiple myocardial membrane phospholipids. Notably, there is a decrease in the total content of cardiolipin, as well as in the levels of total lysolipid CL and the CL (22:6). These alterations disrupt mitochondrial quality control processes, leading to abnormal expressions of proteins such as Drp1, MFN2, OPA1, and BNIP3, thereby resulting in a disrupted mitochondrial dynamic network. Whereas aerobic exercise ameliorated mitochondrial damage to a large extent by activating parasympathetic nerves, this beneficial effect was accomplished by modulating myocardial membrane phospholipid remodeling and restoring the mitochondrial dynamic network. In conclusion, aerobic exercise activated the parasympathetic state in mice and attenuated lipid peroxidation and oxidative stress injury, thereby maintaining mitochondrial dynamic homeostasis and improving cardiac function. Full article
Show Figures

Figure 1

19 pages, 1959 KiB  
Review
Role of Cav1.3 Channels in Brain–Heart Interactions: An Unexpected Journey
by Jean-Baptiste Reisqs, Yvonne Sleiman, Michael Cupelli and Mohamed Boutjdir
Biomedicines 2025, 13(6), 1376; https://doi.org/10.3390/biomedicines13061376 - 4 Jun 2025
Viewed by 825
Abstract
The intricate brain–heart interaction, essential for physiological balance, is largely governed by the autonomic nervous system (ANS). This bidirectional communication, involving both the sympathetic and parasympathetic branches of the ANS, is critical for maintaining cardiac homeostasis. Dysregulation of the ANS is a significant [...] Read more.
The intricate brain–heart interaction, essential for physiological balance, is largely governed by the autonomic nervous system (ANS). This bidirectional communication, involving both the sympathetic and parasympathetic branches of the ANS, is critical for maintaining cardiac homeostasis. Dysregulation of the ANS is a significant factor in cardiovascular diseases. Beyond the ANS, higher brain functions, particularly through interoceptive prediction, contribute to this dynamic interplay. The Cav1.3 L-type calcium channel, expressed in both the central nervous system (CNS) and the heart, is crucial for this interaction. Cav1.3, a key regulator of cellular excitability, exhibits genetic variations that are linked to both neurological and cardiac disorders, highlighting its pivotal role in the brain–heart axis. This review aims to delve into the under-explored role of Cav1.3 in brain–heart interaction, specifically examining how it modulates ANS activity and, consequently, the cardiac function. This will illuminate its significant role in the broader context of brain–heart interactions. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

15 pages, 3436 KiB  
Article
Synchronization of Inhalation/Exhalation Ratio and Heart Rate Variability During Spontaneous Breathing
by Emi Yuda and Yutaka Yoshida
Electronics 2025, 14(9), 1903; https://doi.org/10.3390/electronics14091903 - 7 May 2025
Viewed by 1463
Abstract
In this study, we investigate the relationship between breathing patterns and cardiac autonomic nervous activity during spontaneous breathing. Electrocardiograms and respiratory signals were simultaneously monitored in six subjects for 5 min while in a seated position. The inhalation/exhalation ratio (i/e) was calculated, and [...] Read more.
In this study, we investigate the relationship between breathing patterns and cardiac autonomic nervous activity during spontaneous breathing. Electrocardiograms and respiratory signals were simultaneously monitored in six subjects for 5 min while in a seated position. The inhalation/exhalation ratio (i/e) was calculated, and its variance was compared with the heart rate variability index. The results showed that inhalation time tended to be longer than exhalation time, with the inhalation-to-exhalation ratio ranging from 1.074 to 1.423. Additionally, one subject exhibited an unusually slow respiratory cycle. The inhalation/exhalation ratio was partly associated with changes in the low-frequency to high-frequency ratio (LF/HF) of heart rate variability, indicating individual differences. These findings suggest that while breathing patterns play a role in autonomic nervous system regulation and may have applications in stress and respiratory health management, there are limitations to these associations. Full article
Show Figures

Figure 1

12 pages, 671 KiB  
Article
Adaptations of the Autonomic Nervous System and Body Composition After 8 Weeks of Specific Training and Nutritional Re-Education in Amateur Muay Thai Fighters: A Clinical Trial
by Antonio Beira de Andrade Junior, Elena Marie Peixoto Ruthes de Andrade, Guilherme Rodrigues de Souza and Agnaldo José Lopes
Sports 2025, 13(3), 72; https://doi.org/10.3390/sports13030072 - 3 Mar 2025
Viewed by 1443
Abstract
Background: Considering that the nervous system regulates cardiac autonomic modulation (CAM) and that low CAM is associated with poorer performance, it is essential to evaluate the effects of training to increase parasympathetic modulation in Muay Thai (MT) fighters. Therefore, the aim of this [...] Read more.
Background: Considering that the nervous system regulates cardiac autonomic modulation (CAM) and that low CAM is associated with poorer performance, it is essential to evaluate the effects of training to increase parasympathetic modulation in Muay Thai (MT) fighters. Therefore, the aim of this study was to evaluate the effects of an 8-week intervention based on strength training and nutritional counseling on performance, CAM, and nutritional status in amateur MT fighters. Methods: This is a longitudinal and interventional study in which 22 MT fighters underwent a strength training program and nutritional protocol. Before and after the intervention, they underwent the ten-second frequency speed of kick test (FSKT-10s), multiple frequency speed of kick test (FSKT-mult), bioimpedance analysis (BIA), and assessment of heart rate variability. Results: After the intervention, there was an increase in the number of kicks in both FSKT-10s and FSKT-mult (p = 0.0008 and p = 0.032, respectively). In BIA, there was a significant increase in both fat-free mass and basal metabolic rate (p = 0.031 and p = 0.020, respectively). After the intervention, significant increases were observed during the physical test in the following variables that denote improvement in parasympathetic modulation: square root of the mean squared differences of successive RR intervals (p = 0.005); percentage of adjacent RR intervals with a difference in duration greater than 50 ms (p = 0.002); high frequency range (p < 0.0001); and standard deviation measuring the dispersion of points in the plot perpendicular to the line of identity (p = 0.004). Conclusions: In amateur MT fighters, an intervention with strength training and nutritional guidance is able to improve CAM through greater parasympathetic activation. Furthermore, there is an improvement in performance and body composition after the intervention. Full article
Show Figures

Figure 1

22 pages, 19836 KiB  
Article
Assessing Cardiac Sympatho-Vagal Balance Through Wavelet Transform Analysis of Heart Rate Variability
by A.M. Nelushi, C.H. Manathunga, N.G.S. Shantha Gamage and Tadachika Nakayama
Appl. Sci. 2025, 15(4), 1687; https://doi.org/10.3390/app15041687 - 7 Feb 2025
Viewed by 1251
Abstract
Heart rate variability (HRV), which is the variation between consecutive heartbeats, reflects the electrical activity of the heart and provides insight into the autonomic nervous system (ANS) function. This study uses wavelet transform-based HRV feature extraction to investigate cardiac sympatho-vagal balance. Both the [...] Read more.
Heart rate variability (HRV), which is the variation between consecutive heartbeats, reflects the electrical activity of the heart and provides insight into the autonomic nervous system (ANS) function. This study uses wavelet transform-based HRV feature extraction to investigate cardiac sympatho-vagal balance. Both the continuous wavelet transform (CWT) and discrete wavelet transform (DWT) methods were applied in different steps. DWT was used for R-peak detection and CWT and MODWT were used to generate spectrograms from RR intervals. Frequency components (HF, LF, and VLF) within 0.003–0.4 Hz were extracted, and power estimation was performed. The LF/HF ratio, indicating sympatho-vagal balance, was calculated. ECG data from 42 arrhythmia patients and 18 normal sinus rhythm subjects were analyzed. The results showed a lower LF/HF ratio in arrhythmia patients, with higher HF power in arrhythmia subjects and higher LF power in normal sinus rhythm subjects. The study suggests that the parasympathetic nervous system dominates the ANS in arrhythmia patients, while the sympathetic nervous system dominates in normal sinus rhythm patients. Full article
Show Figures

Figure 1

27 pages, 2913 KiB  
Article
Healthcare Monitoring Using an Internet of Things-Based Cardio System
by Galya Georgieva-Tsaneva, Krasimir Cheshmedzhiev, Yoan-Aleksandar Tsanev, Miroslav Dechev and Ekaterina Popovska
IoT 2025, 6(1), 10; https://doi.org/10.3390/iot6010010 - 6 Feb 2025
Cited by 3 | Viewed by 2230
Abstract
This study describes an IoT-based health monitoring system designed to notify attending physicians when necessary. The developed IoT system incorporates sensors for ECG, PPG, and temperature; a gyroscope/accelerometer; and a microcontroller. A critical analysis of existing components in these areas was conducted to [...] Read more.
This study describes an IoT-based health monitoring system designed to notify attending physicians when necessary. The developed IoT system incorporates sensors for ECG, PPG, and temperature; a gyroscope/accelerometer; and a microcontroller. A critical analysis of existing components in these areas was conducted to ensure the IoT system’s good performance, reliability, and suitability for continuous cardiac monitoring and data processing. This study addresses the challenge of monitoring cardiac activity in patients with arrhythmias, focusing on the differences in heart rate variability (HRV) parameters between healthy individuals and those with extrasystolic arrhythmia. The purpose of this research is to evaluate the effectiveness of IoT-based systems using PPG and ECG sensors for cardiac data registration and HRV analysis. The system leverages time domain and frequency domain methods for HRV analysis to assess the states of the autonomic nervous system. Significant differences were observed in HRV parameters, such as the SDNN, SDANN, RMSSD, and the LF/HF ratio. The results demonstrated that both the PPG and ECG methods provide comparable HRV measurements, despite PPG’s higher susceptibility to noise. This study concludes that IoT-based monitoring systems with PPG and ECG integration can reliably detect arrhythmias and offer real-time data for cardiac care. Full article
Show Figures

Figure 1

14 pages, 590 KiB  
Article
Assessment of Cardiac Autonomic Function by Short-Term Sensor-Based and Long-Term Heart Rate Variability Analyses in Individuals with Spinal Cord Injury After Long-Term Table Tennis Training
by Georgia Vogiatzi, Vasiliki Michou, Nikos Malliaropoulos, Vasileios Tsimaras, Asterios Deligiannis and Evangelia Kouidi
Sensors 2024, 24(22), 7167; https://doi.org/10.3390/s24227167 - 8 Nov 2024
Viewed by 1490
Abstract
This study aimed to examine the acute and chronic effects of an exercising table tennis program on cardiac Autonomic Nervous System (ANS) and functional capacity in people with tetraplegia. Twenty males with tetraplegia (C6–C7), with a mean age of 38.50 ± 4.04 years [...] Read more.
This study aimed to examine the acute and chronic effects of an exercising table tennis program on cardiac Autonomic Nervous System (ANS) and functional capacity in people with tetraplegia. Twenty males with tetraplegia (C6–C7), with a mean age of 38.50 ± 4.04 years old, were randomly assigned into two equal groups: A, who followed a 6-month exercise training program with table tennis 3 times per week, and B, who remained untrained. Additionally, 11 healthy sedentary men (group C) with a mean age of 39.71 ± 5.87 years old participated in the study as healthy controls. At baseline, all participants underwent a short-term (5 min) and a long-term (24 h ambulatory) ECG monitoring to evaluate the heart rate variability (HRV) indices and a maximal arm ergometric and dynamometric testing of the upper limbs. Moreover, the acute cardiac autonomic responses to maximal arm cycle exercise test were evaluated by Polar S810i sensor chest strap. At the end of the 6-month study, all parameters were revaluated only in groups A and B. At baseline, there was no statistically significant difference between the two patient groups. However, intra-group changes at the end of the 6-month study regarding the 24-h HRV monitoring indicated that group A statistically increased the standard deviation of R-R intervals (SDNN) by 13.9% (p = 0.007), the standard deviation of R-R intervals calculated every 5 min (SDANN) by 8.4% (p = 0.007), the very low frequency (VLF) by 7.1% (p = 0.042), and the low frequency [LF (ms2)] by 10.5% (p = 0.009), which almost reached the levels of group C. Favorable improvements were also noticed at the end of the study for group A in maximal exercise time of the upper limbs by 80.4% (p < 0.001) and maximal strength of the right hand by 27.8% (p < 0.001). Linear regression analysis after training showed that maximal exercise time was positively correlated with SDNN (r = 0.663, p = 0.036) and with LF (ms2) (r = 0.623, p = 0.045). Our results indicate that a 6-month table tennis training program is efficient and can improve cardiac ANS activity mainly by increasing sympathovagal balance. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 2114 KiB  
Article
Autonomic Modulation in Parkinson’s Disease Using Whole-Body Cryostimulation: A Pilot Study
by Paolo Piterà, Riccardo Cremascoli, Laura Bianchi, Francesca Borghesi, Federica Verme, Stefania Cattaldo, Elisa Prina, Stefania Mai, Pietro Cipresso, Federica Galli, Jacopo Maria Fontana, Lorenzo Priano, Alessandro Mauro and Paolo Capodaglio
Biomedicines 2024, 12(11), 2467; https://doi.org/10.3390/biomedicines12112467 - 27 Oct 2024
Cited by 1 | Viewed by 1936
Abstract
Background: Parkinson’s disease (PD) is a multifaceted neurodegenerative disorder that progressively affects both the central and peripheral nervous systems. This pilot study aimed to examine the effects of repeated whole-body cryostimulation (WBC) sessions on the sympathovagal balance in PD patients and correlate heart [...] Read more.
Background: Parkinson’s disease (PD) is a multifaceted neurodegenerative disorder that progressively affects both the central and peripheral nervous systems. This pilot study aimed to examine the effects of repeated whole-body cryostimulation (WBC) sessions on the sympathovagal balance in PD patients and correlate heart rate variability (HRV) indexes with peripheral biomarkers of the autonomic nervous system (ANS). Methods: Seventeen PD patients with mild to moderate motor severity underwent a 10-session WBC cycle over 5 consecutive days. Thirteen patients (6 males, 7 females; mean age 64.5 ± 9.01 years; mean disease duration 5.4 ± 2.3 years) completed the protocol. Cardiac autonomic activity was assessed through HRV measures including RR interval variability (RR mean, RR min, RR max), power density of high and low frequencies (HF, LF), RMSSD, and the LF/HF ratio. Systemic sympathetic activity was evaluated via circulating blood catecholamine levels. Results: Significant increases were observed in RR mean, RR min, RR max, RMSSD, and HF spectrum, indicating enhanced parasympathetic activity. Blood pressure remained stable, suggesting safety. Conclusions: These findings provide initial support to WBC as a potential “rehabilitation booster” in PD, enhancing sympathovagal balance. Further research is needed to explore the long-term benefits of WBC in PD management. Full article
Show Figures

Figure 1

13 pages, 1362 KiB  
Article
Variations in Heart Rate Variability and Physiological Responses during Analog Space Missions: An Exploratory Study
by Acatzin Benítez-Salgado, Miguel Ángel Peña-Castillo, Laura Mercedes Santiago-Fuentes, Luis Adrián Zúñiga-Avilés, Eric Alonso Abarca-Castro, Ana Karen Talavera-Peña, Lizeth Avila-Gutierrez, Jorge Rodríguez-Arce and José Javier Reyes-Lagos
Aerospace 2024, 11(10), 833; https://doi.org/10.3390/aerospace11100833 - 10 Oct 2024
Viewed by 1858
Abstract
This exploratory study investigates changes in the autonomic cardiac system of young analog astronauts in a hostile, confined, and isolated environment. It uses linear and nonlinear indices of heart rate variability (HRV) during a Mars analog mission to assess how HRV varies under [...] Read more.
This exploratory study investigates changes in the autonomic cardiac system of young analog astronauts in a hostile, confined, and isolated environment. It uses linear and nonlinear indices of heart rate variability (HRV) during a Mars analog mission to assess how HRV varies under day and night stressors. This study is guided by the hypothesis that significant HRV changes occur based on adaptation days, aiming to offer insights into autonomic nervous system (ANS) adaptation to environmental stressors. Over five days in August 2022, five analog astronauts faced adverse conditions in the Mojave Desert, simulating Martian conditions. Electrocardiograms were recorded daily for five minutes during morning and evening sessions to extract short-term RR time series. HRV parameters were analyzed using both time- and frequency-domain indices and nonlinear measures. Significant differences in HRV parameters across days highlight the mission environment’s impact on autonomic cardiac function. Morning measurements showed significant changes in average RR intervals and heart rate, indicating ANS adaptation. Nonlinear indices such as detrended fluctuation analysis and approximate entropy also showed significant differences, reflecting shifts in autonomic function. The Borg scale indicated reduced perceived exertion over time, aligning with HRV changes. Increased vagal activity during Mars analog adaptation under confinement/isolation may be crucial for cardiovascular adaptation and survival in future space flights. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

20 pages, 4379 KiB  
Article
Feasibility of Early Assessment for Psychological Distress: HRV-Based Evaluation Using IR-UWB Radar
by Yuna Lee, Kounseok Lee, Sarfaraz Ahmed and Sung Ho Cho
Sensors 2024, 24(19), 6210; https://doi.org/10.3390/s24196210 - 25 Sep 2024
Viewed by 1837
Abstract
Mental distress-induced imbalances in autonomic nervous system activities adversely affect the electrical stability of the cardiac system, with heart rate variability (HRV) identified as a related indicator. Traditional HRV measurements use electrocardiography (ECG), but impulse radio ultra-wideband (IR-UWB) radar has shown potential in [...] Read more.
Mental distress-induced imbalances in autonomic nervous system activities adversely affect the electrical stability of the cardiac system, with heart rate variability (HRV) identified as a related indicator. Traditional HRV measurements use electrocardiography (ECG), but impulse radio ultra-wideband (IR-UWB) radar has shown potential in HRV measurement, although it is rarely applied to psychological studies. This study aimed to assess early high levels of mental distress using HRV indices obtained using radar through modified signal processing tailored to reduce phase noise and improve positional accuracy. We conducted 120 evaluations on 15 office workers from a software startup, with each 5 min evaluation using both radar and ECG. Visual analog scale (VAS) scores were collected to assess mental distress, with evaluations scoring 7.5 or higher classified as high-mental distress group, while the remainder formed the control group. Evaluations indicating high levels of mental distress showed significantly lower HRV compared to the control group, with radar-derived indices correlating strongly with ECG results. The radar-based analysis demonstrated a significant ability to differentiate high mental distress, supported by receiver operating characteristic (ROC) analysis. These findings suggest that IR-UWB radar could be a supportive tool for distinguishing high levels of mental stress, offering clinicians complementary diagnostic insights. Full article
Show Figures

Figure 1

14 pages, 1114 KiB  
Review
Linking Sleep Disorders to Atrial Fibrillation: Pathways, Risks, and Treatment Implications
by Monica Ferreira, Mario Oliveira, Sergio Laranjo and Isabel Rocha
Biology 2024, 13(10), 761; https://doi.org/10.3390/biology13100761 - 25 Sep 2024
Cited by 1 | Viewed by 2941
Abstract
Sleep is a complex biobehavioural process essential for overall health, with various dimensions including duration, continuity, timing, and satisfaction. This study investigated the intricate relationships between common sleep disorders such as insomnia and obstructive sleep apnoea (OSA) and their impact on atrial fibrillation [...] Read more.
Sleep is a complex biobehavioural process essential for overall health, with various dimensions including duration, continuity, timing, and satisfaction. This study investigated the intricate relationships between common sleep disorders such as insomnia and obstructive sleep apnoea (OSA) and their impact on atrial fibrillation (AF), a prevalent arrhythmia with significant health implications. Using a comprehensive review of the current literature, this study examined the pathophysiological mechanisms linking sleep disorders to cardiovascular risks, focusing on autonomic nervous system disturbances, inflammation, and oxidative stress associated with OSA. These findings indicate that sleep disorders significantly elevate the risk of AF through mechanisms such as increased sympathetic activity and structural cardiac remodelling. Additionally, this study highlights the potential benefits of treating sleep disorders, particularly with continuous positive airway pressure (CPAP) therapy, in reducing AF recurrence and improving cardiovascular outcomes. This conclusion emphasises the importance of integrated therapeutic approaches that address both sleep disorders and AF to enhance patient outcomes and quality of life. Future research should explore these connections to develop more effective and holistic treatment strategies. Full article
(This article belongs to the Special Issue Advance in Sleep and Circadian Rhythms 2.0)
Show Figures

Figure A1

Back to TopTop