Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = carbonaceous aerosol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5927 KB  
Article
Aerosols in Northern Morocco (Part 4): Seasonal Chemical Signatures of PM2.5 and PM10
by Abdelfettah Benchrif, Mounia Tahri, Otmane Khalfaoui, Bouamar Baghdad, Moussa Bounakhla and Hélène Cachier
Atmosphere 2025, 16(8), 982; https://doi.org/10.3390/atmos16080982 - 18 Aug 2025
Viewed by 208
Abstract
Atmospheric aerosols are recognized as a major air pollutant with significant impacts on human health, air quality, and climate. Yet, the chemical composition and seasonal variability of aerosols remain underexplored in several Western Mediterranean regions. This study presents a year-long investigation of PM [...] Read more.
Atmospheric aerosols are recognized as a major air pollutant with significant impacts on human health, air quality, and climate. Yet, the chemical composition and seasonal variability of aerosols remain underexplored in several Western Mediterranean regions. This study presents a year-long investigation of PM2.5 and PM10 in Tetouan, Northern Morocco, where both local emissions and regional transport influence air quality. PM2.5 and PM10 samples were collected and analysed for total mass and comprehensive chemical characterization, including organic carbon (OC), elemental carbon (EC), water-soluble ions (WSIs), and sugar tracers (levoglucosan, arabitol, and glucose). Concentration-weighted trajectory (CWT) modelling and air mass back-trajectory analyses were used to assess potential source regions and transport pathways. PM2.5 concentrations ranged from 4.2 to 41.8 µg m−3 (annual mean: 18.0 ± 6.4 µg m−3), while PM10 ranged from 11.9 to 66.3 µg m−3 (annual mean: 30.8 ± 9.7 µg m−3), with peaks in winter and minima in spring. The PM2.5-to-PM10 ratio averaged 0.59, indicating a substantial accumulation of particle mass within the fine fraction, especially during the cold season. Carbonaceous aerosols dominated the fine fraction, with total carbonaceous aerosol (TCA) contributing ~52% to PM2.5 and ~34% to PM10. Secondary organic carbon (SOC) accounted for up to 90% of OC in PM2.5, reaching 7.3 ± 3.4 µg m−3 in winter. WSIs comprised ~39% of PM2.5 mass, with sulfate, nitrate, and ammonium as major components, peaking in summer. Sugar tracers exhibited coarse-mode dominance, reflecting biomass burning and biogenic activity. Concentration-weighted trajectory and back-trajectory analyses identified the Mediterranean Basin and Iberian Peninsula as dominant source regions, in addition to local urban emissions. Overall, this study attempts to fill a critical knowledge gap in Southwestern Mediterranean aerosol research by providing a comprehensive characterization of PM2.5 and PM10 chemical composition and their seasonal dynamics in Tetouan. It further offers new insights into how a combination of local emissions and regional transport shapes the aerosol composition in this North African urban environment. Full article
(This article belongs to the Special Issue Atmospheric Aerosol Pollution)
Show Figures

Figure 1

14 pages, 1912 KB  
Article
Seasonal Variations of Carbonaceous Aerosols of PM2.5 at a Coastal City in Northern China: A Case Study of Qinhuangdao
by Xian Li, Mengyang Wang, Jiajia Shao, Qiong Wu, Yutao Gao, Xiuyan Zhou and Wenhua Wang
Atmosphere 2025, 16(8), 960; https://doi.org/10.3390/atmos16080960 - 12 Aug 2025
Viewed by 216
Abstract
Carbonaceous aerosols exert significant impacts on human health and climate systems. This study investigates the seasonal variations of carbonaceous components in fine particulate matter (PM2.5) in Qinhuangdao, a coastal city in northern China, throughout 2023. The mass concentrations of organic carbon [...] Read more.
Carbonaceous aerosols exert significant impacts on human health and climate systems. This study investigates the seasonal variations of carbonaceous components in fine particulate matter (PM2.5) in Qinhuangdao, a coastal city in northern China, throughout 2023. The mass concentrations of organic carbon (OC) and elemental carbon (EC) averaged 9.44 ± 4.57 μg m−3 and 0.84 ± 0.33 μg m−3, contributing 26.49 ± 8.74% and 2.81 ± 1.56% to total PM2.5, respectively. OC exhibited a distinct seasonal trend: winter (12.02 μg m−3) > spring (11.96 μg m−3) > autumn (8.15 μg m−3) > summer (5.71 μg m−3), whereas EC followed winter (1.31 μg m−3) > autumn (0.73 μg m−3) > spring (0.70 μg m−3) > summer (0.63 μg m−3). Both OC and EC levels were elevated at night compared to daytime. Secondary organic carbon (SOC), estimated via the EC-tractor method, constituted 37.94 ± 14.26% of total OC. A positive correlation between SOC/OC ratios and PM2.5 concentrations suggests that SOC formation critically influences haze events. In autumn and winter, SOC formation was higher at night, likely driven by aqueous-phase reactions, whereas in summer SOC formation was more pronounced during the day, likely due to enhanced photochemical reactions. Source apportionment analysis revealed that gasoline and diesel vehicles were major contributors to carbonaceous aerosols, accounting for 27.35–29.06% and 14.97–31.83%, respectively. Coal combustion contributed less (10.51–21.55%), potentially due to strict regulations prohibiting raw coal use for domestic heating in surrounding regions. Additionally, fugitive dust was found to have a high contribution to carbonaceous aerosols during spring and summer. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

20 pages, 11386 KB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Viewed by 512
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

16 pages, 5287 KB  
Article
Long-Term Integrated Measurements of Aerosol Microphysical Properties to Study Different Combustion Processes at a Coastal Semi-Rural Site in Southern Italy
by Giulia Pavese, Adelaide Dinoi, Mariarosaria Calvello, Giuseppe Egidio De Benedetto, Francesco Esposito, Antonio Lettino, Margherita Magnante, Caterina Mapelli, Antonio Pennetta and Daniele Contini
Atmosphere 2025, 16(7), 866; https://doi.org/10.3390/atmos16070866 - 16 Jul 2025
Viewed by 266
Abstract
Biomass burning processes affect many semi-rural areas in the Mediterranean, but there is a lack of long-term datasets focusing on their classification, obtained by monitoring carbonaceous particle concentrations and optical properties variations. To address this issue, a campaign to measure equivalent black carbon [...] Read more.
Biomass burning processes affect many semi-rural areas in the Mediterranean, but there is a lack of long-term datasets focusing on their classification, obtained by monitoring carbonaceous particle concentrations and optical properties variations. To address this issue, a campaign to measure equivalent black carbon (eBC) and particle number size distributions (0.3–10 μm) was carried out from August 2019 to November 2020 at a coastal semi-rural site in the Basilicata region of Southern Italy. Long-term datasets were useful for aerosol characterization, helping to clearly identify traffic as a constant eBC source. For a shorter period, PM2.5 mass concentrations were also measured, allowing the estimation of elemental and organic carbon (EC and OC), and chemical and SEM (scanning electron microscope) analysis of aerosols collected on filters. This multi-instrumental approach enabled the discrimination among different biomass burning (BB) processes, and the analysis of three case studies related to domestic heating, regional smoke plume transport, and a local smoldering process. The AAE (Ångström absorption exponent) daily pattern was characterized as having a peak late in the morning and mean hourly values that were always higher than 1.3. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

15 pages, 4446 KB  
Article
Characteristic Chemical Profile of Particulate Matter (PM2.5)—A Comparative Study Between Two Periods, Case Study in Medellín, Colombia
by Mauricio A. Correa-Ochoa, Miriam Gómez-Marín, Kelly Viviana Patiño-López, David Aguiar and Santiago A. Franco
Sustainability 2025, 17(12), 5380; https://doi.org/10.3390/su17125380 - 11 Jun 2025
Viewed by 813
Abstract
Medellín, a densely populated city in the Colombian Andes, faces significant health and environmental risks due to poor air quality. This is linked to the atmospheric dynamics of the valley in which it is located (Aburrá Valley). The region is characterized by a [...] Read more.
Medellín, a densely populated city in the Colombian Andes, faces significant health and environmental risks due to poor air quality. This is linked to the atmospheric dynamics of the valley in which it is located (Aburrá Valley). The region is characterized by a narrow valley and one of the most polluted areas in South America. This is a comparative study of the chemical composition of PM2.5 (particles with diameter less than 2.5 µm) in Medellín between two periods (2014–2015 and 2018–2019) in which temporal trends and emission sources were evaluated. PM2.5 samples were collected from urban, suburban, and rural stations following standardized protocols and compositional analyses of metals (ICP-MS), ions (ion chromatography), and carbonaceous species (organic carbon (OC) and elemental carbon (EC) by thermo-optical methods) were performed. The results show a reduction in average PM2.5 concentrations for the two periods (from 26.74 µg/m3 to 20.10 µg/m3 in urban areas), although levels are still above WHO guidelines. Urban stations showed higher PM2.5 levels, with predominance of carbonaceous aerosols (Total Carbon—TC = OC + EC = 35–50% of PM2.5 mass) and secondary ions (sulfate > nitrate, 13–14% of PM2.5 mass). Rural areas showed lower PM2.5 concentrations but elevated OC/EC ratios, suggesting the influence of biomass burning as a major emission source. Metals were found to occupy fractions of less than 10% of the PM2.5 mass; however, they included important toxic species associated with respiratory and cardiovascular risks. This study highlights progress in reducing PM2.5 levels in the region, which has been impacted by local policies but emphasizes current and future challenges related mainly to secondary aerosol formation and carbonaceous aerosol emissions. Full article
Show Figures

Figure 1

27 pages, 4289 KB  
Article
Unveiling Light-Absorbing Carbonaceous Aerosols at a Regional Background Site in Southern Balkans
by Martha Seraskeri, Nestor Kontos, Miltiades I. Michalopoulos, Paraskevi Kardolama, Marina V. Karava, Iliana E. Tasiopoulou, Stylianos K. Garas, Rafaella-Eleni P. Sotiropoulou, Dimitris G. Kaskaoutis and Efthimios Tagaris
Atmosphere 2025, 16(6), 644; https://doi.org/10.3390/atmos16060644 - 26 May 2025
Viewed by 532
Abstract
This study examines the seasonality of Black Carbon (BC) and Brown Carbon (BrC) spectral absorption characteristics at a continental background site (Kozani) in southern Balkans (NW Greece). It aims to assess the seasonality and impact of different sources on light absorption properties, BC [...] Read more.
This study examines the seasonality of Black Carbon (BC) and Brown Carbon (BrC) spectral absorption characteristics at a continental background site (Kozani) in southern Balkans (NW Greece). It aims to assess the seasonality and impact of different sources on light absorption properties, BC concentrations, and the fraction of BrC absorption. Moderate-to-low BC concentrations were observed, ranging from 0.05 µg m−3 to 2.44 µg m−3 on an hourly basis (annual mean: 0.44 ± 0.27 µg m−3; median: 0.39 µg m−3) with higher levels during winter (0.53 ± 0.33), reflecting enhanced emissions from residential wood burning (RWB) for heating purposes. Atmospheric conditions are mostly clean during spring (MAM) (BC: 0.34 µg m−3), associated with increased rainfall. BC components associated with fossil fuel combustion (BCff) and biomass burning (BCbb), maximize in summer (0.36 µg m−3) and winter (0.28 µg m−3), respectively, while the absorption Ångstrôm exponent (AAE370–880) values ranged from 1.09 to 1.93 on daily basis. The annual mean total absorption coefficient (babs,520) inferred by aethalometer (AE33) was 4.09 ± 2.65 Mm−1 (median: 3.51 Mm−1), peaking in winter (5.30 ± 3.35 Mm−1). Furthermore, the contribution of BrC absorption at 370 nm, was also high in winter (36.7%), and lower during the rest of the year (17.3–29.8%). The measuring station is located at a rural background site 4 km outside Kozani City and is not directly affected by traffic and urban heating emissions. Therefore, the regional background atmosphere is composed of a significant fraction of carbonaceous aerosols from RWB in nearby villages, a characteristic feature of the Balkan’s rural environment. Emissions from the lignin-fired power plants, still operating in the region, have decreased during the last years and moderately affect the atmospheric conditions. Full article
Show Figures

Figure 1

26 pages, 38880 KB  
Article
The Impact of MERRA-2 and CAMS Aerosol Reanalysis Data on FengYun-4B Geostationary Interferometric Infrared Sounder Simulations
by Weiyi Peng, Fuzhong Weng and Chengzhi Ye
Remote Sens. 2025, 17(5), 761; https://doi.org/10.3390/rs17050761 - 22 Feb 2025
Cited by 2 | Viewed by 1351
Abstract
Aerosols significantly impact the brightness temperature (BT) in thermal infrared (IR) channels, and ignoring their effects can lead to relatively large observation-minus-background (OMB) bias in radiance calculations. The accuracy of aerosol datasets is essential for BT simulations and bias reduction. This study incorporated [...] Read more.
Aerosols significantly impact the brightness temperature (BT) in thermal infrared (IR) channels, and ignoring their effects can lead to relatively large observation-minus-background (OMB) bias in radiance calculations. The accuracy of aerosol datasets is essential for BT simulations and bias reduction. This study incorporated aerosol reanalysis datasets from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS) into the Advanced Radiative Transfer Modeling System (ARMS) to compare their impacts on BT simulations from the Geostationary Interferometric Infrared Sounder (GIIRS) and their effectiveness in reducing OMB biases. The results showed that, for a sandstorm event on 10 April 2023, incorporating total aerosol data from the MERRA-2 improved the BT simulations by 0.56 K on average, surpassing CAMS’s 0.11 K improvement. Dust aerosols notably impacted the BT, with the MERRA-2 showing a 0.17 K improvement versus CAMS’s 0.06 K due to variations in the peak aerosol level, thickness, and column mass density. Improvements for sea salt and carbonaceous aerosols were concentrated in the South China Sea and Bay of Bengal, where the MERRA-2 outperformed CAMS. For sulfate aerosols, the MERRA-2 excelled in the Bohai Sea and southern Bay of Bengal, while CAMS was better in the northern Bay of Bengal. These findings provide guidance for aerosol assimilation and retrieval, emphasizing the importance of quality control and bias correction in data assimilation systems. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 10007 KB  
Article
Levels, Sources and Risk Assessment of Carbonaceous and Organic Species Associated with PM2.5 in Two Small Cities of Morelos, Mexico
by Brenda L. Valle-Hernández, José de Jesús Figueroa-Lara, Miguel Torres-Rodríguez, Noé Ginéz-Hernández, Tamara Álvarez-Lupercio and Violeta Mugica-Álvarez
Atmosphere 2024, 15(12), 1496; https://doi.org/10.3390/atmos15121496 - 15 Dec 2024
Cited by 1 | Viewed by 1852
Abstract
A study of carbonaceous species, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs associated with PM2.5 was conducted to assess their carcinogenic potential and associated health risks in the two main cities of the State of Morelos: Cuernavaca and Cuautla. The annual median concentrations [...] Read more.
A study of carbonaceous species, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs associated with PM2.5 was conducted to assess their carcinogenic potential and associated health risks in the two main cities of the State of Morelos: Cuernavaca and Cuautla. The annual median concentrations in Cuernavaca of organic carbon (OC) and elemental carbon (EC) were 6.2 µg m−3 and 0.6 µg m−3, respectively, whereas in Cuautla, OC concentrations averaged 4.8 µg m−3 and EC 0.6 µg m−3. OC/EC ratios, total carbonaceous aerosols (TCA), primary (POC) and secondary organic carbon (SOC), as well as elemental carbon reactive (ECR) were estimated, also showing prevalence of primary emissions such as biomass burning. The seventeen PAHs recommended by the EPA and twelve nitro-PAHs were measured using gas chromatography–mass spectrometry. The annual median sum of PAHs was 9.7 ng m−3 in Cuernavaca and 11.2 ng m−3 in Cuautla, where carcinogenic high-molecular-weight compounds were the most dominant; the annual median sums of nitro-PAHs were 287 pg m−3 and 432 pg m−3, respectively. Diagnostic ratios were applied to identify potential sources of PAH emissions, suggesting that fuel combustion is the major contributor in both sites, followed by coal biomass burning and agricultural activities. The annual carcinogenic potential as benzo(a)pyrene equivalent was 2.2 ng m−3 for both sites. The lifetime excess cancer risk from PAH inhalation was estimated to range from 1.8 × 10−4 to 2 × 10−4 in Cuernavaca and from 1.5 × 10−4 to 2.2 × 10−4 in Cuautla, similar to values observed in other urban regions globally. Full article
Show Figures

Figure 1

15 pages, 3548 KB  
Article
Source Apportionment of Carbonaceous Matter in Size-Segregated Aerosols at Haikou: Combustion-Related Emissions vs. Natural Emissions
by Lingling Cao, Li Luo, Chen Wang, Mingbin Wang, Rongqiang Yang and Shuhji Kao
Sustainability 2024, 16(22), 9859; https://doi.org/10.3390/su16229859 - 12 Nov 2024
Viewed by 1186
Abstract
Air pollution can induce diseases and increase the risks of death, and it also has close links with climate change. Carbonaceous matter is an important component of aerosols, but studies quantifying the source apportionment of carbonaceous compositions in different-sized aerosols from a stable [...] Read more.
Air pollution can induce diseases and increase the risks of death, and it also has close links with climate change. Carbonaceous matter is an important component of aerosols, but studies quantifying the source apportionment of carbonaceous compositions in different-sized aerosols from a stable carbon isotopic perspective remain scarce. In this study, fine (particulate size < 2.5 μm) and coarse (particulate size 2.5~10 μm) particles were collected from December 2021 to February 2022 (winter) and from June to August 2022 (summer) in the tropical city of Haikou; the concentrations of water-soluble inorganic ions (WSIIs) and total carbonaceous matter (TC) and the stable carbon isotope of TC (δ13C-TC) values in both fine and coarse particles were analyzed. Higher concentrations of TC, SO42−, NO3, and NH4+ but lower δ13C-TC values in fine particles than those in coarse particles in both winter and summer indicated that combustion-related emissions dominate fine particulate TC sources. The δ13C-TC values coupled with the stable isotope mixing model in R (SIAR) results showed that combustion-related emissions contributed 77.5% and 76.6% to the TC of fine particles in winter and summer, respectively. Additionally, the lowest δ13C-TC values were observed in summertime fine particles; plant physiological activity was identified as an important source of fine particulate TC in summer and contributed 12.4% to fine particulate TC. For coarse particles, higher δ13C-TC values and Ca2+ and Na+ concentrations but lower TC concentrations implied significant contributions from natural emissions (29.2% in winter and 44.3% in summer) to coarse particulate TC. This study underscores that instead of fossil fuels and biomass, clean energy can decrease 45–78% of aerosol TC at Haikou. In addition, our results also provide a dataset for making environmental policy and optimizing the energy structure, which further favors the sustainable development of air quality. Full article
Show Figures

Figure 1

17 pages, 9310 KB  
Article
A Novel Apportionment Method Utilizing Particle Mass Size Distribution across Multiple Particle Size Ranges
by Peizhi Wang, Qingsong Wang, Yuhuan Jia, Jingjin Ma, Chunying Wang, Liping Qiao, Qingyan Fu, Abdelwahid Mellouki, Hui Chen and Li Li
Atmosphere 2024, 15(8), 955; https://doi.org/10.3390/atmos15080955 - 10 Aug 2024
Cited by 1 | Viewed by 1662
Abstract
Many cities in China are facing the dual challenge of PM2.5 and PM10 pollution. There is an urgent need to develop a cost-effective method that can apportion both with high-time resolution. A novel and practical apportionment method is presented in this [...] Read more.
Many cities in China are facing the dual challenge of PM2.5 and PM10 pollution. There is an urgent need to develop a cost-effective method that can apportion both with high-time resolution. A novel and practical apportionment method is presented in this study. It combines the measurement of particle mass size distribution (PMSD) with an optical particle counter (OPC) and the algorithm of normalized non-negative matrix factorization (N-NMF). Applied in the city center of Baoding, Hebei, this method separates four distinct pollution factors. Their sizes (ordered from the smallest to largest) range from 0.16 μm to 0.6 μm, 0.16 μm to 1.0 μm, 0.5 μm to 17.0 μm, and 2.0 μm to 20.0 μm, respectively. They correspondingly contribute to PM2.5 (PM10) with portions of 26% (17%), 37% (26%), 33% (41%), and 4% (16%), respectively, on average. The smaller three factors are identified as combustion, secondary, and industrial aerosols because of their high correlation with carbonaceous aerosols, nitrate aerosols, and trace elements of Fe/Mn/Ca in PM2.5, respectively. The largest-sized factor is linked to dust aerosols. The primary origin regions, oxidation degrees, and formation mechanisms of each source are further discussed. This provides a scientific basis for the comprehensive management of PM2.5 and PM10 pollution. Full article
Show Figures

Figure 1

14 pages, 3166 KB  
Article
Hygroscopic Properties of Water-Soluble Counterpart of Ultrafine Particles from Agriculture Crop-Residue Burning in Patiala, Northwestern India
by Ashmeet Kaur Alang, Shankar G. Aggarwal, Khem Singh, Prabha Johri, Ravinder Agarwal and Kimitaka Kawamura
Atmosphere 2024, 15(7), 835; https://doi.org/10.3390/atmos15070835 - 14 Jul 2024
Cited by 1 | Viewed by 1444
Abstract
To determine the link between hygroscopicity and the constituent chemical composition of real biomass-burning atmospheric particles, we collected and analyzed aerosols during wheat-straw (April–May), rice-straw (October–November), and no-burning periods (August–September) in 2008 and 2009 in Patiala, Punjab. A hygroscopicity tandem differential mobility analyzer [...] Read more.
To determine the link between hygroscopicity and the constituent chemical composition of real biomass-burning atmospheric particles, we collected and analyzed aerosols during wheat-straw (April–May), rice-straw (October–November), and no-burning periods (August–September) in 2008 and 2009 in Patiala, Punjab. A hygroscopicity tandem differential mobility analyzer (HTDMA) system was used to measure hygroscopicity at ~5 to ~95% relative humidity (RH) of aerosolized 100 nm particles generated from the water extracts of PM0.4 burning and no-burning aerosol samples. The chemical analyses of the extracts show that organic carbon and water-soluble inorganic-ion concentrations are 2 to 3 times higher in crop-residue burning aerosol samples compared to no-burning aerosols, suggesting the substantial contribution of biomass burning to the carbonaceous aerosols at the sampling site. We observed that aerosolized 100 nm particles collected during the crop-residue burning period show higher and more variable hygroscopic growth factor (g(RH)) ranging from 1.21 to 1.68 at 85% RH, compared to no-burning samples (1.27 to 1.33). Interestingly, crop-residue burning particles also show considerable shrinkage in their size (i.e., g(RH) < 1) at lower RH (<50%) in the dehumidification mode. The increased level of major inorganic ions in biomass-burning period aerosols is a possible reason for higher g(RH) as well as the observed particle shrinkage. Overall, the measured g(RH), together with the correlation observed between aerosol water content and ionic-species volume fraction, and the study of the abundance of individual constituent ionic species suggests that inorganic salts and their proportion in aerosol particles primarily governed the aerosol hygroscopicity. Full article
Show Figures

Figure 1

29 pages, 25143 KB  
Article
Multi-Decadal Trends in Aerosol Optical Depth of the Main Aerosol Species Based on MERRA-2 Reanalysis: A Case Study in the Baltic Sea Basin
by Enrico Mancinelli, Giorgio Passerini, Simone Virgili and Umberto Rizza
Remote Sens. 2024, 16(13), 2421; https://doi.org/10.3390/rs16132421 - 1 Jul 2024
Cited by 2 | Viewed by 1546
Abstract
This study analyses the trends of total aerosol and the main aerosol species over nine capitals in the Baltic Sea basin from 1989 to 2019 based on the Modern-Era Retrospective Analysis for Research and Applications, Version 2 Reanalysis. Aerosol speciation includes mineral dust, [...] Read more.
This study analyses the trends of total aerosol and the main aerosol species over nine capitals in the Baltic Sea basin from 1989 to 2019 based on the Modern-Era Retrospective Analysis for Research and Applications, Version 2 Reanalysis. Aerosol speciation includes mineral dust, sea salt, sulphate (SO4), organic carbon (OC), and black carbon (BC). The mean total aerosol optical depth (AOD) values were the highest (up to 0.216) over the continental capitals (i.e., Warsaw, Berlin, and Vilnius). For each capital, the mean SO4 AOD was the main aerosol species, with a trend specular to total AOD. Apart from Warsaw, the mean BC AOD was the aerosol species with the lowest level. The composition of aerosols changed with respect to the species of anthropogenic origins (i.e., SO4, OC, and BC), with the percentage contribution to the total AOD decreasing for the SO4 AOD and increasing for the BC AOD. Also, the OC AOD showed an increase in the percentage contribution to total AOD for Copenhagen, Oslo, Stockholm, and the continental capitals. Anthropogenic aerosols contributed up to 90.3% of the total AOD, with the highest values over the continental capitals. For each capital, the minimum in the percentage contribution of anthropogenic AOD was between 2007 and 2008, likely due to the global financial crisis. Anthropogenic AOD as a percentage of the total AOD decreased from 1989 to 2008. Both the total and the SO4 AODs decreased over each capital. By contrast, the BC AOD increased over Stockholm, and both the OC and BC AODs increased over Berlin, Copenhagen, and Oslo. The decoupling of carbonaceous aerosols and the SO4 AOD trends was likely due to concurrent factors such as biomass burning and low-sulphur fuel policies. From 2000 to 2019, the inverse relationships between gross domestic products and SO4 AODs suggest a relative decoupling of economic growth from fossil fuels for Oslo, Stockholm, Tallinn, and Vilnius. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Graphical abstract

16 pages, 3189 KB  
Article
Characterization of PM2.5 Carbonaceous Components in a Typical Industrial City in China under Continuous Mitigation Measures
by Hongya Niu, Chunmiao Wu, Michael Schindler, Luis F. O. Silva, Bojian Ma, Xinyi Ma, Xiaoteng Ji, Yuting Tian, Hao Zhu, Xiaolei Bao and Yanhai Cheng
Toxics 2024, 12(7), 461; https://doi.org/10.3390/toxics12070461 - 26 Jun 2024
Cited by 4 | Viewed by 1616
Abstract
The goals of the “dual carbon” program in China are to implement a series of air pollution policies to reduce the emission of carbon-bearing particulate matter (PM). Following improvements in the reduction in carbon emissions in Handan City, China, fine particulate matter (PM [...] Read more.
The goals of the “dual carbon” program in China are to implement a series of air pollution policies to reduce the emission of carbon-bearing particulate matter (PM). Following improvements in the reduction in carbon emissions in Handan City, China, fine particulate matter (PM2.5) was collected in the winters from 2016 to 2020 to characterize the concentrations and sources of carbonaceous components in PM2.5. Trend analysis revealed that both organic carbon (OC) and elemental carbon (EC) concentrations significantly decreased. The proportion of total carbon aerosol (TCA) in PM2.5 decreased by 47.0%, highlighting the effective reduction in carbon emissions. Secondary organic carbon (SOC) concentrations increased from 2016 (12.86 ± 14.10 μg·m−3) to 2018 (36.76 ± 21.59 μg·m−3) and then declined gradually. SOC/OC was larger than 67.0% from 2018 to 2020, implying that more effective synergistic emission reduction measures for carbonaceous aerosol and volatile organic compounds (VOCs) were needed. In the winters from 2016 to 2020, primary organic carbon (POC) concentrations reduced by 76.1% and 87.6% under a light/moderate pollution period (LP) and heavy/severe pollution periods (HPs), respectively. The TCA/PM2.5 showed a decreasing trend under LP and HP conditions, decreasing by 42.1% and 54.7%, respectively. Source analysis revealed that carbonaceous components were mainly from biomass burning, coal combustion and automotive exhaust emissions in the winters of 2016 and 2020. OC/EC and K+/EC analysis pointed out that air pollutant reduction measurements should focus on rectification biomass fuels in the next stage. Compared with 2016, the contributions of automotive exhaust emissions decreased in 2020. OC and EC concentrations decreased due to control measures on automotive exhaust emissions. Full article
Show Figures

Figure 1

23 pages, 4330 KB  
Article
High-Resolution Modeling of Air Quality in Abidjan (Côte d’Ivoire) Using a New Urban-Scale Inventory
by Sylvain Gnamien, Cathy Liousse, Sekou Keita, Rajesh Kumar and Véronique Yoboué
Atmosphere 2024, 15(7), 758; https://doi.org/10.3390/atmos15070758 - 25 Jun 2024
Viewed by 1419
Abstract
In West African cities, the impacts of the air quality on the health of the population is expected to increase significantly in the near future. For the first time to our knowledge, we conducted a high-resolution modeling study over Abidjan (Côte d’Ivoire) using [...] Read more.
In West African cities, the impacts of the air quality on the health of the population is expected to increase significantly in the near future. For the first time to our knowledge, we conducted a high-resolution modeling study over Abidjan (Côte d’Ivoire) using the WRF-Chem model and the simplified GOCART model to simulate carbonaceous aerosols BC and OC, sulfate, dust, sea salt, PM2.5, and PM10. The simulations were carried out during January and February 2019, a period over which there are databases of observations available. The DACCIWA inventory provided anthropogenic emissions at the regional scale, whereas a new emission inventory has been developed for the city of Abidjan. In 2019, the emissions were 4986.8 Gg for BC, 14,731.4 Gg for OC, and 7751.6 Gg for SO2. Domestic fires were the primary OC source (7719.5 Gg), while road traffic was the largest BC emitter (2198.8 Gg). Our modeling results generally overestimate urban particle concentrations, despite having a better agreement for those based on the inventory of the city of Abidjan. Modeled concentrations of BC are higher in administrative centers due to road traffic, while OC concentrations are significant in densely populated neighborhoods. Full article
(This article belongs to the Special Issue Urban Air Quality Modelling)
Show Figures

Figure 1

12 pages, 2505 KB  
Article
Wintertime Diurnal Variation in Absorption Coefficient of Brown Carbon Associated with the Molecular Marker of Levoglucosan
by Geun-Hye Yu, Myoungki Song, Sea-Ho Oh, Seoyeong Choe, Hajeong Jeon, Dong-Hoon Ko and Min-Suk Bae
Appl. Sci. 2024, 14(10), 4117; https://doi.org/10.3390/app14104117 - 13 May 2024
Cited by 5 | Viewed by 1390
Abstract
This study investigated the aerosol particle properties and light absorption properties of brown carbon (BrC) by utilizing a seven-wavelength aethalometer, and analyzed NH4+, NO3, SO42−, K+, K, organic carbon, elemental carbon, levoglucosan, [...] Read more.
This study investigated the aerosol particle properties and light absorption properties of brown carbon (BrC) by utilizing a seven-wavelength aethalometer, and analyzed NH4+, NO3, SO42−, K+, K, organic carbon, elemental carbon, levoglucosan, and mannosan in PM2.5. The research was conducted in a rural area of Jeonnam, South Korea, during the winter season. In addition, the dithiothreitol assay-oxidative potential normalized to 9,10-phenanthrenequinone (QDTT-OP) was investigated throughout the study period. The absorption coefficient was found to be 2.6 to 5.6 times higher at 370 nm compared to 880 nm, suggesting the presence of light-absorbing substances in addition to black carbon (BC) particles. The estimated absorption coefficient of BrC370 was 29.9% of the total light absorption coefficient at 370 nm. Furthermore, BrC370 exhibited a strong affinity with levoglucosan while showing a weak correlation with K+, confirming the suitability of levoglucosan as a tracer for biomass burning. The QDTT-OP was 5.3 nM m−3, and highly correlated with the carbonaceous components levoglucosan and mannosan, suggesting a relatively high contribution of biomass combustion emissions to oxidative potential. Further research should be conducted to assess the health risks associated with future PM2.5 exposure related to biomass burning in the atmosphere. Full article
(This article belongs to the Special Issue Short- and Long-Term Air Pollution Analysis, Modeling and Prediction)
Show Figures

Figure 1

Back to TopTop