A Novel Apportionment Method Utilizing Particle Mass Size Distribution across Multiple Particle Size Ranges
Abstract
:1. Introduction
2. Experiment
2.1. Site Description
2.2. Instrument and Data Description
2.3. Normalized Non-Negative Matrix Factorization (N-NMF)
2.4. Calculation of PM Concentration over Various Size Ranges
3. Results and Discussions
3.1. General Characteristics of PMSD
3.2. N-NMF Performance
3.2.1. Source Identification
3.2.2. Pollution Episodes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD. Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, P344–P381. [Google Scholar] [CrossRef] [PubMed]
- Hopke, P.K.; Dai, Q.; Li, L.; Feng, Y. Global review of recent source apportionments for airborne particulate matter. Sci. Total Environ. 2020, 740, 140091. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huo, J.; Fu, Q.; Duan, Y.; Xiao, H.; Chen, J. Impact of quarantine measures on chemical compositions of PM2.5 during the COVID-19 epidemic in Shanghai, China. Sci. Total Environ. 2020, 743, 140758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, J.; Wang, Q.; Qi, L.; Manousakas, M.I.; Han, Y.; Ran, W.; Sun, Y.; Liu, H.; Zhang, R.; et al. High-time-resolution chemical composition and source apportionment of PM2.5 in northern Chinese cities: Implications for policy. Atmos. Chem. Phys. 2023, 23, 9455–9471. [Google Scholar] [CrossRef]
- Hagan, D.H.; Gani, S.; Bhandari, S.; Patel, K.; Habib, G.; Apte, J.S.; Hildebrandt Ruiz, L.; Kroll, J.H. Inferring Aerosol Sources from Low-Cost Air Quality Sensor Measurements: A Case Study in Delhi, India. Environ. Sci. Technol. Lett. 2019, 6, 467–472. [Google Scholar] [CrossRef]
- Masic, A.; Bibic, D.; Pikula, B.; Blazevic, A.; Huremovic, J.; Zero, S. Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution. Atmos. Meas. Tech. 2020, 13, 6427–6443. [Google Scholar] [CrossRef]
- Qin, X.; Wei, P.; Ghadikolaei, M.A.; Gali, N.K.; Wang, Y.; Ning, Z. The application of a multi-channel sensor network to decompose the local and background sources and quantify their contributions. Build. Environ. 2023, 230, 110005. [Google Scholar] [CrossRef]
- Pope, F.D.; Gatari, M.; Ng’ang’a, D.; Poynter, A.; Blake, R. Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors. Atmos. Chem. Phys. 2018, 18, 15403–15418. [Google Scholar] [CrossRef]
- Owoade, O.K.; Abiodun, P.O.; Omokungbe, O.R.; Fawole, O.G.; Olise, F.S.; Popoola, O.O.M.; Jones, R.L.; Hopke, P.K. Spatial-temporal Variation and Local Source Identification of Air Pollutants in a Semi-urban Settlement in Nigeria Using Low-cost Sensors. Aerosol Air Qual. Res. 2021, 21, 200598. [Google Scholar] [CrossRef]
- Bousiotis, D.; Singh, A.; Haugen, M.; Beddows, D.C.S.; Diez, S.; Murphy, K.L.; Edwards, P.M.; Boies, A.; Harrison, R.M.; Pope, F.D. Assessing the sources of particles at an urban background site using both regulatory instruments and low-cost sensors—A comparative study. Atmos. Meas. Tech. 2021, 14, 4139–4155. [Google Scholar] [CrossRef]
- Yang, L.H.; Hagan, D.H.; Rivera-Rios, J.C.; Kelp, M.M.; Cross, E.S.; Peng, Y.; Kaiser, J.; Williams, L.R.; Croteau, P.L.; Jayne, J.T.; et al. Investigating the Sources of Urban Air Pollution Using Low-Cost Air Quality Sensors at an Urban Atlanta Site. Environ. Sci. Technol. 2022, 56, 7063–7073. [Google Scholar] [CrossRef]
- Westervelt, D.M.; Isevulambire, P.K.; Yombo Phaka, R.; Yang, L.H.; Raheja, G.; Milly, G.; Selenge, J.-L.B.; Mulumba, J.P.M.; Bousiotis, D.; Djibi, B.L.; et al. Low-Cost Investigation into Sources of PM2.5 in Kinshasa, Democratic Republic of the Congo. ACS EST Air 2024, 1, 43–51. [Google Scholar] [CrossRef]
- Bousiotis, D.; Beddows, D.C.S.; Singh, A.; Haugen, M.; Diez, S.; Edwards, P.M.; Boies, A.; Harrison, R.M.; Pope, F.D. A study on the performance of low-cost sensors for source apportionment at an urban background site. Atmos. Meas. Tech. 2022, 15, 4047–4061. [Google Scholar] [CrossRef]
- Beddows, D.C.S.; Harrison, R.M. Receptor modelling of both particle composition and size distribution from a background site in London, UK—A two-step approach. Atmos. Chem. Phys. 2019, 19, 4863–4876. [Google Scholar] [CrossRef]
- Sulaymon, I.D.; Zhang, Y.; Hopke, P.K.; Hu, J.; Zhang, Y.; Li, L.; Mei, X.; Gong, K.; Shi, Z.; Zhao, B.; et al. Persistent high PM2.5 pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China. Environ. Res. 2021, 198, 111186. [Google Scholar] [CrossRef]
- Gao, J.; Wang, K.; Wang, Y.; Liu, S.; Zhu, C.; Hao, J.; Liu, H.; Hua, S.; Tian, H. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut. 2018, 233, 714–724. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef]
- Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF). Atmos. Chem. Phys. 2016, 16, 4849–4866. [Google Scholar] [CrossRef]
- Cai, J.; Chu, B.; Yao, L.; Yan, C.; Heikkinen, L.M.; Zheng, F.; Li, C.; Fan, X.; Zhang, S.; Yang, D.; et al. Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmos. Chem. Phys. 2020, 20, 12721–12740. [Google Scholar] [CrossRef]
- Vörösmarty, M.; Hopke, P.K.; Salma, I. Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset. Atmos. Chem. Phys. 2024, 24, 5695–5712. [Google Scholar] [CrossRef]
- Wang, Q.; Huo, J.; Chen, H.; Duan, Y.; Fu, Q.; Sun, Y.; Zhang, K.; Huang, L.; Wang, Y.; Tan, J.; et al. Traffic, marine ships and nucleation as the main sources of ultrafine particles in suburban Shanghai, China. Environ. Sci. Atmos. 2023, 3, 1805–1819. [Google Scholar] [CrossRef]
- Brunet, J.-P.; Tamayo, P.; Golub, T.R.; Mesirov, J.P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA 2004, 101, 4164–4169. [Google Scholar] [CrossRef] [PubMed]
- Mohotti, W.A.; Nayak, R. Deep Hierarchical Non-negative Matrix Factorization for Clustering Short Text. In Neural Information Processing, Proceedings of the 27th International Conference, ICONIP 2020, Bangkok, Thailand, 23–27 November 2020; Springer: Cham, Switzerland, 2020; pp. 270–282. [Google Scholar] [CrossRef]
- Kim, H.; Park, H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 2007, 23, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Hoyer, P.O. Non-negative Matrix Factorization with Sparseness Constraints. J. Mach. Learn. Res. 2004, 5, 1457–1469. [Google Scholar]
- Lyu, X.P.; Guo, H.; Cheng, H.R.; Wang, X.M.; Ding, X.; Lu, H.X.; Yao, D.W.; Xu, C. Observation of SOA tracers at a mountainous site in Hong Kong: Chemical characteristics, origins and implication on particle growth. Sci. Total Environ. 2017, 605–606, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Hu, W.; Yue, S.; Wu, L.; Ren, L.; Pan, X.; Wang, Z.; Sun, Y.; Kawamura, K.; Fu, P. Tracer-based characterization of fine carbonaceous aerosol in Beijing during a strict emission control period. Sci. Total Environ. 2022, 841, 156638. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Huang, R.J.; Cao, J.; Guo, J.; Deng, H.; Dusek, U. Sources and formation of carbonaceous aerosols in Xi’an, China: Primary emissions and secondary formation constrained by radiocarbon. Atmos. Chem. Phys. 2019, 19, 15609–15628. [Google Scholar] [CrossRef]
- Li, J.; Han, Z.; Wu, J.; Tao, J.; Li, J.; Sun, Y.; Liang, L.; Liang, M.; Wang, Q.G. Secondary organic aerosol formation and source contributions over east China in summertime. Environ. Pollut. 2022, 306, 119383. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, H.; Sun, H.; Zhang, F.; Shang, X.; Yao, L.; Zheng, H.; Li, Q.; Chen, J. Nocturnal PM2.5 explosive growth dominates severe haze in the rural North China Plain. Atmos. Res. 2020, 242, 105020. [Google Scholar] [CrossRef]
- Zosima, A.T.; Tsakanika, L.-A.V.; Ochsenkühn-Petropoulou, M.T. Particulate matter emissions, and metals and toxic elements in airborne particulates emitted from biomass combustion: The importance of biomass type and combustion conditions. J. Environ. Sci. Health Part A 2017, 52, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Ji, D.; Chen, H.; Gao, M.; Maenhaut, W.; He, J.; Wang, Y. Characteristics and Sources of Hourly Trace Elements in Airborne Fine Particles in Urban Beijing, China. J. Geophys. Res. Atmos. 2019, 124, 11595–11613. [Google Scholar] [CrossRef]
- Ji, D.; Gao, W.; Maenhaut, W.; He, J.; Wang, Z.; Li, J.; Du, W.; Wang, L.; Sun, Y.; Xin, J.; et al. Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: Insights gained from long-term measurement. Atmos. Chem. Phys. 2019, 19, 8569–8590. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Wang, P.; Lin, X.; Ma, J.; Wang, C. Characteristics of PM2.5 Chemical Species in 23 Chinese Cities Identified Using a Vehicular Platform. Sustainability 2024, 16, 2340. [Google Scholar] [CrossRef]
- Yu, C.; Wang, Z.; Xia, M.; Fu, X.; Wang, W.; Tham, Y.J.; Chen, T.; Zheng, P.; Li, H.; Shan, Y.; et al. Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: Improving model representation of uptake parameters. Atmos. Chem. Phys. 2020, 20, 4367–4378. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Lu, X.; Lu, K.; Zhang, L.; Tham, Y.J.; Shi, Z.; Aikin, K.; Fan, S.; Brown, S.S.; et al. Increased night-time oxidation over China despite widespread decrease across the globe. Nat. Geosci. 2023, 16, 217–223. [Google Scholar] [CrossRef]
- Wang, M.; Kong, W.; Marten, R.; He, X.-C.; Chen, D.; Pfeifer, J.; Heitto, A.; Kontkanen, J.; Dada, L.; Kürten, A.; et al. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 2020, 581, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.; Archer-Nicholls, S.; Morgan, W.; Allan, J.; Utembe, S.; Ouyang, B.; Aruffo, E.; Le Breton, M.; Zaveri, R.A.; Di Carlo, P.; et al. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe. Atmos. Chem. Phys. 2015, 15, 1385–1409. [Google Scholar] [CrossRef]
- Chen, H.; Qiao, S.; Li, C.; Wu, Y.; Li, D.; Li, L.; Liu, J. Source-oriented risk assessment of heavy metal(loid)s in agricultural soils around a multimetal smelting area near the Yellow River, China. Environ. Geochem. Health 2024, 46, 59. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.; Wang, Y.; Zhang, J.; Liu, L.; Xu, L.; Xu, J.; Shi, J.; Shao, L.; Fu, P.; et al. Sources and processes of iron aerosols in a megacity in Eastern China. Atmos. Chem. Phys. 2022, 22, 2191–2202. [Google Scholar] [CrossRef]
- Tian, Y.; Harrison, R.M.; Feng, Y.; Shi, Z.; Liang, Y.; Li, Y.; Xue, Q.; Xu, J. Size–resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components. Environ. Pollut. 2021, 289, 117932. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, F.; Lin, Q.; Fu, Y.; Yang, Y.; Peng, L.; Lian, X.; Zhang, G.; Bi, X.; Wang, X.; et al. Characteristics and Formation Mechanisms of Sulfate and Nitrate in Size-segregated Atmospheric Particles from Urban Guangzhou, China. Aerosol Air Qual. Res. 2019, 19, 1284–1293. [Google Scholar] [CrossRef]
- Hrdina, A.; Murphy, J.G.; Hallar, A.G.; Lin, J.C.; Moravek, A.; Bares, R.; Petersen, R.C.; Franchin, A.; Middlebrook, A.M.; Goldberger, L.; et al. The role of coarse aerosol particles as a sink of HNO3 in wintertime pollution events in the Salt Lake Valley. Atmos. Chem. Phys. 2021, 21, 8111–8126. [Google Scholar] [CrossRef]
- Li, H.; Zheng, B.; Lei, Y.; Hauglustaine, D.; Chen, C.; Lin, X.; Zhang, Y.; Zhang, Q.; He, K. Trends and drivers of anthropogenic NOx emissions in China since 2020. Environ. Sci. Ecotechnol. 2024, 21, 100425. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.; Jacob, D.J.; Pendergrass, D.C.; Colombi, N.K.; Shah, V.; Yang, L.H.; Zhang, Q.; Wang, S.; Kim, H.; Sun, Y.; et al. Coarse particulate matter air quality in East Asia: Implications for fine particulate nitrate. Atmos. Chem. Phys. 2023, 23, 4271–4281. [Google Scholar] [CrossRef]
- Fang, C.; Wang, L.; Gao, H.; Wang, J. Analysis of the PM2.5 emission inventory and source apportionment in Jilin City, Northeast of China. Environ. Sci. Pollut. Res. 2020, 27, 37324–37332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wang, Q.; Jia, Y.; Ma, J.; Wang, C.; Qiao, L.; Fu, Q.; Mellouki, A.; Chen, H.; Li, L. A Novel Apportionment Method Utilizing Particle Mass Size Distribution across Multiple Particle Size Ranges. Atmosphere 2024, 15, 955. https://doi.org/10.3390/atmos15080955
Wang P, Wang Q, Jia Y, Ma J, Wang C, Qiao L, Fu Q, Mellouki A, Chen H, Li L. A Novel Apportionment Method Utilizing Particle Mass Size Distribution across Multiple Particle Size Ranges. Atmosphere. 2024; 15(8):955. https://doi.org/10.3390/atmos15080955
Chicago/Turabian StyleWang, Peizhi, Qingsong Wang, Yuhuan Jia, Jingjin Ma, Chunying Wang, Liping Qiao, Qingyan Fu, Abdelwahid Mellouki, Hui Chen, and Li Li. 2024. "A Novel Apportionment Method Utilizing Particle Mass Size Distribution across Multiple Particle Size Ranges" Atmosphere 15, no. 8: 955. https://doi.org/10.3390/atmos15080955
APA StyleWang, P., Wang, Q., Jia, Y., Ma, J., Wang, C., Qiao, L., Fu, Q., Mellouki, A., Chen, H., & Li, L. (2024). A Novel Apportionment Method Utilizing Particle Mass Size Distribution across Multiple Particle Size Ranges. Atmosphere, 15(8), 955. https://doi.org/10.3390/atmos15080955