Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = carbon-fiber-reinforced plastic (CFRP) laminates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6962 KiB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 - 4 Aug 2025
Viewed by 211
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

15 pages, 4106 KiB  
Article
Effect of Alumina Microparticle-Infused Polymer Matrix on Mechanical Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite
by Ganesh Radhakrishnan, Teodora Odett Breaz, Abdul Hamed Hamed Al Hinai, Fisal Hamed Al Busaidi, Laqman Malik Al Sheriqi, Mohammed Ali Al Hattali, Mohammed Ibrahim Al Rawahi, Mohammed Nasser Al Rabaani and Kadhavoor R. Karthikeyan
J. Compos. Sci. 2025, 9(7), 360; https://doi.org/10.3390/jcs9070360 - 10 Jul 2025
Viewed by 328
Abstract
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the [...] Read more.
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the field of transportation and building engineering, replacing conventional materials due to their attractive properties as mentioned. In this work, a CFRP laminate is fabricated with carbon fiber mats and epoxy by a hand layup technique. Alumina (Al2O3) micro particles are used as a filler material, mixed with epoxy at different weight fractions of 0% to 4% during the fabrication of CFRP laminates. The important objective of the study is to investigate the influence of alumina micro particles on the mechanical performance of the laminates through characterization for various physical and mechanical properties. It is revealed from the results of study that the mass density of the laminates steadily increased with the quantity of alumina micro particles added and subsequently, the porosity of the laminates is reduced significantly. The SEM micrograph confirmed the constituents of the laminate and uniform distribution of Al2O3 micro particles with no significant agglomeration. The hardness of the CFRP laminates increased significantly for about 60% with an increase in weight % of Al2O3 from 0% to 4%, whereas the water gain % gradually drops from 0 to 2%, after which a substantial rise is observed for 3 to 4%. The improved interlocking due to the addition of filler material reduced the voids in the interfaces and thereby resist the absorption of water and in turn reduced the plasticity of the resin too. Tensile, flexural and inter-laminar shear strengths of the CFRP laminate were improved appreciably with the addition of alumina particles through extended grain boundary and enhanced interfacial bonding between the fibers, epoxy and alumina particles, except at 1 and 3 wt.% of Al2O3, which may be due to the pooling of alumina particles within the matrix. Inclusion of hard alumina particles resulted in a significant drop in impact strength due to appreciable reduction in softness of the core region of the laminates. Full article
Show Figures

Figure 1

16 pages, 3783 KiB  
Article
Investigation of a New Stacking Pattern of Laminates with Approximately Constant Bending Stiffness
by Qingnian Liu, Yingfeng Shao, Yong Cai, Long Li and Fan Song
Polymers 2025, 17(8), 1098; https://doi.org/10.3390/polym17081098 - 18 Apr 2025
Viewed by 339
Abstract
To achieve laminates with constant bending stiffness to match the high precision requirement of optical systems made of carbon fiber reinforced plastic (CFRP), a new method, the normalized direction factor of bending stiffness (NDFBS), is proposed based on the normalized geometric factor of [...] Read more.
To achieve laminates with constant bending stiffness to match the high precision requirement of optical systems made of carbon fiber reinforced plastic (CFRP), a new method, the normalized direction factor of bending stiffness (NDFBS), is proposed based on the normalized geometric factor of bending stiffness. Using NDFBS and its variance (VNDFBS), we investigate two common stacking patterns, I and II ([(θ1)m/(θ2)m/…/(θp)m]S and [(θ1/θ2/…/θp)m]S) and our proposed new stacking pattern, Pattern III ([(θ1/θ2/…/θp)S]m) based on the initial quasi-isotropic laminates, [θ1/θ2/…/θp]. The bending stiffness of the stacking sequence [(45/−45/0/90)S]2 tends to be more uniform than that of [45/−45/0/90]2S, and the order of uniformity in bending stiffness of other stacking sequences is [(60/0/−60)S]4 > [60/0/−60]4S > [(60/0/−60)S]2 > [60/0/−60]2S. Both theoretical deviations and experimental observations confirm that as the cycle number m increased, the uniformity in bending stiffness is improved gradually, except for that of Pattern I. As the cycle number increased, the speed of Pattern III approaching the constant bending stiffness was faster than that of Patterns I and II. Notably, to achieve a nearly identical uniformity in bending stiffness, only the square root of the cycle number of Pattern II was enough for Pattern III. Based on the same initial laminate and cycle number, Pattern III exhibited more uniform bending stiffness and strength, which are appropriate for precision optical components that require dimensional stability, such as space mirrors. Full article
Show Figures

Figure 1

16 pages, 13437 KiB  
Article
Theoretical Prediction Method for Tensile Properties of High-Strength Steel/Carbon Fiber-Reinforced Polymer Laminates
by Haichao Hu, Qiang Wei, Tianao Wang, Quanjin Ma, Shupeng Pan, Fengqi Li, Chuancai Wang and Jie Ding
Polymers 2025, 17(7), 846; https://doi.org/10.3390/polym17070846 - 21 Mar 2025
Viewed by 786
Abstract
This study introduces a method for predicting the tensile properties of high-strength steel/carbon fiber-reinforced polymer (CFRP) composite laminates using Metal Volume Fraction (MVF) theory. DP590 and DP980 high-strength steels (thickness ~0.8 mm) were selected as substrates, and composite laminates were fabricated by compression [...] Read more.
This study introduces a method for predicting the tensile properties of high-strength steel/carbon fiber-reinforced polymer (CFRP) composite laminates using Metal Volume Fraction (MVF) theory. DP590 and DP980 high-strength steels (thickness ~0.8 mm) were selected as substrates, and composite laminates were fabricated by compression molding with CFRP prepreg. Tensile tests were performed on an MTS universal testing machine, and fracture morphology was analyzed using scanning electron microscopy (SEM). The results demonstrated a typical mixed failure mode: necking and fracture in the metal layer, and neat fiber fracture in the CFRP layer. Comparisons of experimental tensile strength with theoretical predictions revealed that the model based on the metal strength at fracture significantly outperformed the model using tensile strength for predictions, with narrower error ranges. For example, the error for DP590/CFRP laminates ranged from 2.31% to 12.89%, whereas for DP980/CFRP laminates, it was –6.12%. Additionally, the study showed that using metals with higher plasticity in fiber metal laminates could underutilize the metal layer’s potential at peak stress, leading to significant deviations when predictions rely on tensile strength. Therefore, it is recommended to use the metal strength corresponding to peak stress for more accurate MVF-based tensile property predictions. This method provides a robust theoretical foundation for predicting the tensile performance of high-strength steel/CFRP laminates, aiding in optimizing structural designs for automotive and aerospace applications. Future research could explore the effects of different metal and fiber combinations, as well as more complex stacking designs. Full article
Show Figures

Figure 1

22 pages, 15990 KiB  
Article
Study on the Transverse Properties of T800-Grade Unidirectional Carbon Fiber-Reinforced Polymers
by Hao Wang, Xiang-Yu Zhong, He Jia, Lian-Wang Zhang, Han-Song Liu, Ming-Chen Sun, Tian-Wei Liu, Jian-Wen Bao, Jiang-Bo Bai and Si-Cheng Ge
Materials 2025, 18(4), 816; https://doi.org/10.3390/ma18040816 - 13 Feb 2025
Cited by 2 | Viewed by 1341
Abstract
This paper focuses on the transverse tensile and compressive mechanical properties of T800-grade unidirectional (UD) carbon fiber-reinforced polymers (CFRPs). Firstly, transverse tensile and compressive tests were conducted on UD composite laminates, yielding corresponding stress–strain curves. The results indicated that, for tension, the transverse [...] Read more.
This paper focuses on the transverse tensile and compressive mechanical properties of T800-grade unidirectional (UD) carbon fiber-reinforced polymers (CFRPs). Firstly, transverse tensile and compressive tests were conducted on UD composite laminates, yielding corresponding stress–strain curves. The results indicated that, for tension, the transverse tensile modulus, strength, and failure strain were 8.7 GPa, 64 MPa, and 0.74%, respectively, whereas for compression, these values were 8.4 GPa, 197.1 MPa, and 3.43%, respectively. The experimental curves indicated brittle failure under tensile loadings and significant plastic failure characteristics under compressive loading for the T800-grade composite. Subsequently, fractography experiments were performed to observe the fracture morphologies, revealing that tensile fractures were through-thickness cracks perpendicular to the loading direction, while compressive fractures were at a 52° angle to the loading direction. Finally, a micromechanical finite element method (FEM) was employed to simulate the tensile and compressive failure processes of the unidirectional composite, and the tensile and compressive properties were predicted. The simulation results showed that under both tensile and compressive loadings, interfacial elements failed first, causing stress concentration and damage to nearby resin elements. The damaged resin and interfacial elements expanded and connected, leading to ultimate failure. The predicted tensile stress–strain curve exhibited linear characteristics consistent with the experimental results in most regions but showed more pronounced nonlinearity before ultimate failure. The predicted compressive stress–strain curve aligned well with the experimental results in terms of nonlinearity. The predicted elastic modulus, failure strengths, and failure strains were in good agreement with the experimental results, with differences of 1.1% (tension modulus), 3.2% (tension strength), and 13.5% (tension failure strain), and 3.6% (compression modulus), −8.5% (compression strength), and −3.8% (compression failure strain). The final failure morphologies were in good accordance with the fractography experimental observations. Full article
Show Figures

Figure 1

15 pages, 3581 KiB  
Article
Reinforcement of RC Two-Way Slabs with CFRP Laminates: Plastic Limit Method for Carbon Emissions and Deformation Control
by Zahraa Saleem Sharhan, Raffaele Cucuzza, Marco Domaneschi, Oveys Ghodousian and Majid Movahedi Rad
Buildings 2024, 14(12), 3873; https://doi.org/10.3390/buildings14123873 - 2 Dec 2024
Cited by 8 | Viewed by 985
Abstract
Carbon-fiber-reinforced polymer (CFRP) laminates have gained attention for their potential to reduce carbon emissions in construction. The impact of carbon-fiber-reinforced polymer (CFRP Laminate) on carbon emissions and the influence of elasto-plastic analysis on this technique were studied in this research. This study focuses [...] Read more.
Carbon-fiber-reinforced polymer (CFRP) laminates have gained attention for their potential to reduce carbon emissions in construction. The impact of carbon-fiber-reinforced polymer (CFRP Laminate) on carbon emissions and the influence of elasto-plastic analysis on this technique were studied in this research. This study focuses on how CFRP can affect the environmental footprint of reinforced concrete structures and how elasto-plastic analysis contributes to optimizing this strengthening method. Four flat RC slabs were created to evaluate this technique in strengthening. One slab was used as a reference without strengthening, while the other three were externally strengthened with CFRP. The slabs, which were identical in terms of their overall (length, width, and thickness) as well as their flexural steel reinforcement, were subjected to concentrated patch load until they failed. The strength of two-way RC slabs was analyzed using a concrete plastic damage constitutive model (CDP). Additionally, CFRP strips were applied to the tension surface of existing RC slabs to improve their strength. The load–deflection curves obtained from the simulations closely match the experimental data, demonstrating the validity and accuracy of the model. Strengthening concrete slabs with CFRP sheets reduced central deflection by 17.68% and crack width by 40%, while increasing the cracking load by 97.73% and the ultimate load capacity by 134.02%. However, it also led to a 15.47% increase in CO2 emissions. Also, the numerical results show that increasing the strengthening ratio significantly impacts shear strength and damage percentage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 8486 KiB  
Article
Interlayer Friction Mechanism and Scale Effects in Ultra-Thin TA1 Titanium Alloy/Carbon Fiber-Reinforced Plastic Laminates
by Quanda Zhang, Zeen Liu, Guopeng Song, Fuzhen Sun, Zizhi Liu, Xiaoxu Li and Wengang Chen
Metals 2024, 14(12), 1369; https://doi.org/10.3390/met14121369 - 30 Nov 2024
Viewed by 733
Abstract
Fiber metal laminates (FMLs) are a novel lightweight composite material, predominantly utilized in the aerospace sector for large-scale components like skin panels and fuselages. However, research on FMLs in the microsystem domain remains limited. Additionally, they are influenced by scale effects, rendering macroscopic [...] Read more.
Fiber metal laminates (FMLs) are a novel lightweight composite material, predominantly utilized in the aerospace sector for large-scale components like skin panels and fuselages. However, research on FMLs in the microsystem domain remains limited. Additionally, they are influenced by scale effects, rendering macroscopic forming theories inadequate for microforming applications. The application of ultra-thin fiber metal laminates in the microsystem field is hindered by this constraint. This paper investigates the friction performance of ultra-thin TA1 titanium alloy/carbon fiber-reinforced plastic (CFRP) laminates at the microscale. The content of the epoxy resin used is 38.0 ± 3.0%. Friction tests on ultra-thin TA1/CFRP laminates were conducted based on the Striebeck friction theory model. The effects of factors such as the weaving method, ply angle, normal force, tensile speed, and temperature on friction performance are explored in the study. Furthermore, the influences of geometric scale and grain scale on friction performance are examined. Geometric scale effects indicate that an increase in laminate width leads to an increase in the friction coefficient. Grain-scale effects demonstrate that as grain size increases, the friction coefficient also increases, attributed to reduced grain boundaries, increased twinning, and increased surface roughness of the metal. Finally, surface morphology analysis of the metal and fiber after friction tests further confirms the influence of grain size on the friction coefficient. Through detailed experimental design, result analysis and graphical representation, this paper provides a scientific basis for understanding and predicting the friction behavior of ultra-thin TA1/CFRP laminates. Full article
(This article belongs to the Special Issue Plasticity and Metal Forming)
Show Figures

Figure 1

21 pages, 25167 KiB  
Article
Numerical Analysis of Laminated Veneer Lumber Beams Strengthened with Various Carbon Composites
by Michał Marcin Bakalarz and Paweł Grzegorz Kossakowski
Polymers 2024, 16(12), 1697; https://doi.org/10.3390/polym16121697 - 14 Jun 2024
Cited by 1 | Viewed by 1345
Abstract
Among the many benefits of implementing numerical analysis on real objects, economic and environmental considerations are likely the most important ones. Nonetheless, it is also crucial to constrain the duration and space necessary for conducting experimental investigations. Although these benefits are clear, the [...] Read more.
Among the many benefits of implementing numerical analysis on real objects, economic and environmental considerations are likely the most important ones. Nonetheless, it is also crucial to constrain the duration and space necessary for conducting experimental investigations. Although these benefits are clear, the applicability of such models must be appropriately verified. This research subjected validation of numerical models depicting the behavior of unstrengthened and strengthened laminated veneer lumber (LVL) beams. As a reinforcement, a carbon fiber reinforced polymer (CFRP) sheet and laminates were used. Experiments were conducted on full-scale members within the framework of the so-called four-point bending testing method. Numerical simulations were performed using the Abaqus software. Two types of material models were examined for laminated veneer lumber: linearly elastic and linearly elastic–perfectly plastic with Hill’s yield criterion. A distinction was made in the material properties of carbon composites based on their location on the height of the cross-section. The outlined numerical models accurately depict the behavior of real structural elements. The precision of predicting load-bearing capacity amounts to a few percent for strengthened beams and a maximum of eleven percent for unstrengthened beams. The relative deviation between numerical and experimental values of bending stiffness was at a maximum of seven percent. Applying the elastic–plastic model enables accurate representation of the load versus deflection relation and the distribution of stress and deformation of strengthened beams. Based on the findings, directives were provided for further optimization of the positioning of composite reinforcement along the span of the beam. Reinforcement design of existing laminated veneer lumber members can be made using presented methodology. Full article
(This article belongs to the Special Issue Multiscale Modeling and Simulation of Polymer-Based Composites)
Show Figures

Figure 1

16 pages, 7064 KiB  
Article
Evaluation of Joint Strength for CFRPs and Aluminum Alloys by Friction Stir Spot Welding Using Multi-Stage Heating
by Kazuto Tanaka and Yusuke Aiba
J. Compos. Sci. 2024, 8(3), 110; https://doi.org/10.3390/jcs8030110 - 20 Mar 2024
Cited by 3 | Viewed by 1869
Abstract
To reduce car body weight, multi-material structures with lightweight materials such as carbon-fiber-reinforced plastics (CFRPs) and aluminum alloys (Als) are used to replace parts of steel components, and joining technologies for such dissimilar materials are essential. Friction stir spot welding (FSSW) is one [...] Read more.
To reduce car body weight, multi-material structures with lightweight materials such as carbon-fiber-reinforced plastics (CFRPs) and aluminum alloys (Als) are used to replace parts of steel components, and joining technologies for such dissimilar materials are essential. Friction stir spot welding (FSSW) is one of the technologies used to rapidly and strongly join dissimilar materials. FSSW for carbon-fiber-reinforced thermosetting resin (CFRTS) and Als has been developed using composite laminates with integrally molded thermoplastic resin in the outermost layer. To suppress excessive heating under the tool, this study investigated whether multi-stage heating with a non-heating time during joining affects the heat distribution and strength properties of the joint. Due to heat diffusion in Al during the non-heating time, multi-stage heating can suppress excessive heating under the tool compared to continuous heating, resulting in up to 27% larger welded area, up to 37% smaller decomposed area, and up to 6% lower maximum temperature. The use of multi-stage heating results in up to 5% higher tensile shear strength and 210% longer fatigue life by reducing the thermal decomposition of CFRP matrix resin and PA12 resin. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

18 pages, 3665 KiB  
Article
Global Sensitivity Analysis of Factors Influencing the Surface Temperature of Mold during Autoclave Processing
by Jiayang He, Lihua Zhan, Youliang Yang and Yongqian Xu
Polymers 2024, 16(5), 705; https://doi.org/10.3390/polym16050705 - 5 Mar 2024
Cited by 1 | Viewed by 1554
Abstract
During the process of forming carbon fiber reinforced plastics (CFRP) in an autoclave, deeply understanding the global sensitivity of factors influencing mold surface temperature is of paramount importance for optimizing large frame-type mold thermally and enhancing curing quality. In this study, the convective [...] Read more.
During the process of forming carbon fiber reinforced plastics (CFRP) in an autoclave, deeply understanding the global sensitivity of factors influencing mold surface temperature is of paramount importance for optimizing large frame-type mold thermally and enhancing curing quality. In this study, the convective heat transfer coefficient (CHTC), the thickness of composite laminates (TCL), the thickness of mold facesheet (TMF), the mold material type (MMT), and the thickness of the auxiliary materials layer (TAL) have been quantitatively assessed for the effects on the mold surface temperature. This assessment was conducted by building the thermal–chemical curing model of composite laminates and utilizing the Sobol global sensitivity analysis (GSA) method. Additionally, the interactions among these factors were investigated to gain a comprehensive understanding of their combined effects. The results show that the sensitivity order of these factors is as follows: CHTC > MMT > TMF > TCL > TAL. Moreover, CHTC, MMT, and TMF are the main factors influencing mold surface temperature, as the sum of their first-order sensitivity indices accounts for over 97.3%. The influence of a single factor is more significant than that of the interaction between factors since the sum of the first-order sensitivity indices of the factors is more than 78.1%. This study will support the development of science-based guidelines for the thermal design of molds and associated heating equipment design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 4057 KiB  
Article
Spring-In Prediction of CFRP Part Using Coupled Analysis of Forming and Cooling Processes in Stamping
by Jae-Chang Ryu, Chan-Joo Lee, Jin-Seok Jang and Dae-Cheol Ko
Materials 2024, 17(5), 1115; https://doi.org/10.3390/ma17051115 - 28 Feb 2024
Cited by 3 | Viewed by 1218
Abstract
The spring-in phenomenon of the composite parts can affect the assembly process. This study aims to predict the spring-in phenomenon of a carbon fiber reinforced plastic (CFRP) part. Here, we predict the spring-in of the CFRP part using a coupled analysis of the [...] Read more.
The spring-in phenomenon of the composite parts can affect the assembly process. This study aims to predict the spring-in phenomenon of a carbon fiber reinforced plastic (CFRP) part. Here, we predict the spring-in of the CFRP part using a coupled analysis of the forming and cooling processes during the stamping process. First, a simulation of the entire forming process, such as the transfer of the composite laminate, gravity analysis, and forming was performed to obtain the temperature distribution of the CFRP part. Subsequently, a finite-element (FE) simulation of the cooling process was conducted to predict the spring-in phenomenon of the shaped CFRP part using the temperature data obtained in the forming simulation. Finally, a CFRP part was manufactured and compared with the results of the FE simulation. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 6152 KiB  
Article
Lightweight Design for Active Small SAR S-STEP Satellite Using Multilayered High-Damping Carbon Fiber-Reinforced Plastic Patch
by Kyung-Rae Koo, Hyun-Guk Kim, Dong-Geon Kim, Seong-Cheol Kwon and Hyun-Ung Oh
Aerospace 2023, 10(9), 774; https://doi.org/10.3390/aerospace10090774 - 31 Aug 2023
Cited by 3 | Viewed by 2832
Abstract
In the launch environment, satellites are subjected to severe dynamic loads. These dynamic loads in the launch environment can lead to the malfunction of the payload, or to mission failure. In order to improve the structural stability of satellites and enable the reliable [...] Read more.
In the launch environment, satellites are subjected to severe dynamic loads. These dynamic loads in the launch environment can lead to the malfunction of the payload, or to mission failure. In order to improve the structural stability of satellites and enable the reliable execution of space missions, it is necessary to have a reinforcement structure that reduces structural vibrations. However, for active small SAR satellites, the mass requirements are very strict, and this makes it difficult to apply an additional structure for vibration reduction. Therefore, we have developed a carbon fiber-reinforced plastic (CFRP)-based laminated patch to obtain a vibration reduction structure with a lightweight design for improving the structural stability of an S-STEP satellite. To verify the vibration reduction performance of the CFRP-based patch, sine and random vibration tests were conducted at the specimen level. Finally, the structural stability of the S-STEP satellite with the proposed CFRP-based laminated patch was experimentally verified using sine and random vibration tests. The validation results indicate that the CFRP-based laminated patch is an efficient solution which can effectively reduce the vibration response without the need for major changes to the design of the satellite structure. The lightweight vibration reduction mechanism developed in this study is one of the best solutions for protecting vibration-sensitive components. Full article
(This article belongs to the Special Issue Advanced Small Satellite Technology)
Show Figures

Figure 1

16 pages, 6115 KiB  
Article
Ultimate Strength Study of Structural Bionic CFRP-Sinker Bolt Assemblies Subjected to Preload under Three-Point Bending
by Zhengqi Qin, Ying He, Shengwu Wang and Cunying Meng
Biomimetics 2023, 8(2), 215; https://doi.org/10.3390/biomimetics8020215 - 23 May 2023
Cited by 4 | Viewed by 1796
Abstract
Countersunk head bolted joints are one of the main approaches to joining carbon fiber-reinforced plastics, or CFRP. In this paper, the failure mode and damage evolution of CFRP countersunk bolt components under bending load are studied by imitating water bears, which are born [...] Read more.
Countersunk head bolted joints are one of the main approaches to joining carbon fiber-reinforced plastics, or CFRP. In this paper, the failure mode and damage evolution of CFRP countersunk bolt components under bending load are studied by imitating water bears, which are born as adult animals and have strong adaptability to life. Based on the Hashin failure criterion, we establish a 3D finite element failure prediction model of a CFRP-countersunk bolted assembly, benchmarked with the experiment. The analysis shows that the simulation results under specified parameters have a good correlation with the experimental results, and can better reflect the three-point bending failure and fracture of the CFRP-countersunk bolted assembly. Based on the specified parameter of the carbon lamina material change, we used the countersunk bolt preload to investigate the stress distribution near the counterbore zone, and to investigate the effect of bolt load on the three-point bending limit load. The results obtained using FEA calculations indicate that the stress distribution around the countersunk hole is related to the laminate direction. The bolt preloading force increasing reduces the load value at the initial damage, and the appropriate preload force will increase the ultimate load of the joint. Full article
(This article belongs to the Special Issue Bionic Engineering for Boosting Multidisciplinary Integration)
Show Figures

Figure 1

12 pages, 7327 KiB  
Article
Non-Destructive Evaluation of In-Plane Waviness in Carbon Fiber Laminates Using Eddy Current Testing
by Matthew Newton, Tonoy Chowdhury, Ian Gravagne and David Jack
Appl. Sci. 2023, 13(10), 6009; https://doi.org/10.3390/app13106009 - 13 May 2023
Cited by 10 | Viewed by 2384
Abstract
Non-destructive detection of the in-plane waviness of carbon fiber-reinforced plastic (CFRP) laminates is of interest in a wide variety of industries, as wrinkles and other fiber alignment defects significantly impact the mechanical performance of the composites. This work demonstrates a method to detect [...] Read more.
Non-destructive detection of the in-plane waviness of carbon fiber-reinforced plastic (CFRP) laminates is of interest in a wide variety of industries, as wrinkles and other fiber alignment defects significantly impact the mechanical performance of the composites. This work demonstrates a method to detect in-plane wrinkles on a 5-ply unidirectional CFRP laminate with a customized eddy current testing (ECT) system. The results show that the ECT system is effective in detecting and quantifying in-plane waviness, and the results are compared to conventional X-ray computed tomography (CT) and ultrasonic testing (UT) methods. Using the anisotropic conductive nature of the aligned CFRP lamina, the ECT system was able to clearly detect throughout the part changes in the local fiber orientation, wave tangent angle, and wrinkle width. Full article
(This article belongs to the Special Issue Nondestructive Testing of Composite Materials)
Show Figures

Figure 1

15 pages, 7395 KiB  
Article
Enhanced Open-Hole Strength and Toughness of Sandwich Carbon-Kevlar Woven Composite Laminates
by Mohammad K. A. Khan, Harri Junaedi, Hassan Alshahrani, Ahmed Wagih, Gilles Lubineau and Tamer A. Sebaey
Polymers 2023, 15(10), 2276; https://doi.org/10.3390/polym15102276 - 11 May 2023
Cited by 9 | Viewed by 2909
Abstract
Fiber-reinforced plastic composites are sensitive to holes, as they cut the main load-carrying member in the composite (fibers) and they induce out-of-plane stresses. In this study, we demonstrated notch sensitivity enhancement in a hybrid carbon/epoxy (CFRP) composite with a Kevlar core sandwich compared [...] Read more.
Fiber-reinforced plastic composites are sensitive to holes, as they cut the main load-carrying member in the composite (fibers) and they induce out-of-plane stresses. In this study, we demonstrated notch sensitivity enhancement in a hybrid carbon/epoxy (CFRP) composite with a Kevlar core sandwich compared to monotonic CFRP and Kevlar composites. Open-hole tensile samples were cut using waterjet cutting at different width to diameter ratios and tested under tensile loading. We performed an open-hole tension (OHT) test to characterize the notch sensitivity of the composites via the comparison of the open-hole tensile strength and strain as well as the damage propagation (as monitored via CT scan). The results showed that hybrid laminate has lower notch sensitivity than CFRP and KFRP laminates because the strength reduction rate with hole size was lower. Moreover, this laminate showed no reduction in the failure strain by increasing the hole size up to 12 mm. At w/d = 6, the lowest drop in strength showed by the hybrid laminate was 65.4%, followed by the CFRP and KFRP laminates with 63.5% and 56.1%, respectively. For the specific strength, the hybrid laminate showed a 7% and 9% higher value as compared with CFRP and KFRP laminates, respectively. The enhancement in notch sensitivity was due to its progressive damage mode, which was initiated via delamination at the Kevlar–carbon interface, followed by matrix cracking and fiber breakage in the core layers. Finally, matrix cracking and fiber breakage occurred in the CFRP face sheet layers. The specific strength (normalized strength and strain to density) and strain were larger for the hybrid than the CFRP and KFRP laminates due to the lower density of Kevlar fibers and the progressive damage modes which delayed the final failure of the hybrid composite. Full article
(This article belongs to the Special Issue Mechanical Behavior of Polymeric Materials: Recent Study)
Show Figures

Figure 1

Back to TopTop