Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = carbon trading price forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1795 KiB  
Article
From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
by Cristiana Tudor, Aura Girlovan, Robert Sova, Javier Sierra and Georgiana Roxana Stancu
Energies 2025, 18(15), 4125; https://doi.org/10.3390/en18154125 - 4 Aug 2025
Viewed by 42
Abstract
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log [...] Read more.
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log transformation and first differencing), which includes four auction-based markets (United States, Canada, United Kingdom, South Korea), two secondary markets (China, New Zealand), and a government-set fixed-price scheme (Germany), this research estimates a panel vector autoregression (PVAR) employing a Common Correlated Effects (CCE) model and augments it with machine learning analysis utilizing XGBoost and explainable AI methodologies. The PVAR-CEE reveals numerous unexpected findings related to carbon markets: ETS returns exhibit persistence with an autoregressive coefficient of −0.137 after a four-month lag, while increasing inflation results in rising ETS after the same period. Furthermore, ETSs generate spillover effects in the real economy, as elevated ETSs today forecast a 0.125-point reduction in unemployment one month later and a 0.0173 increase in inflation after two months. Impulse response analysis indicates that exogenous shocks, including Brent oil prices, policy uncertainty, and financial volatility, are swiftly assimilated by ETS pricing, with effects dissipating completely within three to eight months. XGBoost models ascertain that policy uncertainty and Brent oil prices are the most significant predictors of one-month-ahead ETSs, whereas ESG factors are relevant only beyond certain thresholds and in conditions of low policy uncertainty. These findings establish ETS markets as dynamic transmitters of macroeconomic signals, influencing energy management, labor changes, and sustainable finance under carbon pricing frameworks. Full article
Show Figures

Figure 1

25 pages, 1488 KiB  
Article
DKWM-XLSTM: A Carbon Trading Price Prediction Model Considering Multiple Influencing Factors
by Yunlong Yu, Xuan Song, Guoxiong Zhou, Lingxi Liu, Meixi Pan and Tianrui Zhao
Entropy 2025, 27(8), 817; https://doi.org/10.3390/e27080817 (registering DOI) - 31 Jul 2025
Viewed by 142
Abstract
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage [...] Read more.
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage and ecological changes, which are vital for forecasting carbon prices. Carbon prices fluctuate due to the interaction of various factors, exhibiting non-stationary characteristics and inherent uncertainties, making accurate predictions particularly challenging. To address these complexities, this study proposes a method for predicting carbon trading prices influenced by multiple factors. We introduce a Decomposition (DECOMP) module that separates carbon price data and its influencing factors into trend and cyclical components. To manage non-stationarity, we propose the KAN with Multi-Domain Diffusion (KAN-MD) module, which efficiently extracts relevant features. Furthermore, a Wave-MH attention module, based on wavelet transformation, is introduced to minimize interference from uncertainties, thereby enhancing the robustness of the model. Empirical research using data from the Hubei carbon trading market demonstrates that our model achieves superior predictive accuracy and resilience to fluctuations compared to other benchmark methods, with an MSE of 0.204% and an MAE of 0.0277. These results provide reliable support for pricing carbon financial derivatives and managing associated risks. Full article
Show Figures

Figure 1

24 pages, 4175 KiB  
Article
Joint Planning of Renewable Energy and Electric Vehicle Charging Stations Based on a Carbon Pricing Optimization Mechanism
by Shanli Wang, Bing Fang, Jiayi Zhang, Zewei Chen, Mingzhe Wen, Huanxiu Xiao and Mengyao Jiang
Energies 2025, 18(13), 3462; https://doi.org/10.3390/en18133462 - 1 Jul 2025
Viewed by 283
Abstract
The integration of renewable energy and electric vehicle (EV) charging stations into distribution systems presents critical challenges, including the inherent variability of renewable generation, the complex behavioral patterns of EV users, and the need for effective carbon emission mitigation. To address these challenges, [...] Read more.
The integration of renewable energy and electric vehicle (EV) charging stations into distribution systems presents critical challenges, including the inherent variability of renewable generation, the complex behavioral patterns of EV users, and the need for effective carbon emission mitigation. To address these challenges, this paper proposes a novel distribution system planning method based on the carbon pricing optimization mechanism. First, to address the strong randomness and volatility of renewable energy, a prediction model for renewable energy output considering climatic conditions is established to characterize the output features of wind and solar power. Subsequently, a charging station model is constructed based on the behavioral characteristics of electric vehicle users. Then, an optimized carbon trading price mechanism incorporating the carbon price growth rate is introduced into the carbon emission cost accounting. Based on this, a joint planning model for the power and transportation systems is developed, aiming to minimize the total economic cost while accounting for renewable energy integration and electric vehicle charging station deployment. In the case study, the proposed model is validated using the actual operational data of a specific region and a modified IEEE 33-node system, demonstrating the rationality and effectiveness of the model. Full article
(This article belongs to the Special Issue Artificial Intelligence in Energy Sector)
Show Figures

Figure 1

33 pages, 10136 KiB  
Article
Carbon Price Forecasting Using a Hybrid Deep Learning Model: TKMixer-BiGRU-SA
by Yuhong Li, Nan Yang, Guihong Bi, Shiyu Chen, Zhao Luo and Xin Shen
Symmetry 2025, 17(6), 962; https://doi.org/10.3390/sym17060962 - 17 Jun 2025
Cited by 1 | Viewed by 539
Abstract
As a core strategy for carbon emission reduction, carbon trading plays a critical role in policy guidance and market stability. Accurate forecasting of carbon prices is essential, yet remains challenging due to the nonlinear, non-stationary, noisy, and uncertain nature of carbon price time [...] Read more.
As a core strategy for carbon emission reduction, carbon trading plays a critical role in policy guidance and market stability. Accurate forecasting of carbon prices is essential, yet remains challenging due to the nonlinear, non-stationary, noisy, and uncertain nature of carbon price time series. To address this, this paper proposes a novel hybrid deep learning framework that integrates dual-mode decomposition and a TKMixer-BiGRU-SA model for carbon price prediction. First, external variables with high correlation to carbon prices are identified through correlation analysis and incorporated as inputs. Then, the carbon price series is decomposed using Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) to extract multi-scale features embedded in the original data. The core prediction model, TKMixer-BiGRU-SA Net, comprises three integrated branches: the first processes the raw carbon price and highly relevant external time series, and the second and third process multi-scale components obtained from VMD and EWT, respectively. The proposed model embeds Kolmogorov–Arnold Networks (KANs) into the Time-Series Mixer (TSMixer) module, replacing the conventional time-mapping layer to form the TKMixer module. Each branch alternately applies the TKMixer along the temporal and feature-channel dimensions to capture dependencies across time steps and variables. Hierarchical nonlinear transformations enhance higher-order feature interactions and improve nonlinear modeling capability. Additionally, the BiGRU component captures bidirectional long-term dependencies, while the Self-Attention (SA) mechanism adaptively weights critical features for integrated prediction. This architecture is designed to uncover global fluctuation patterns in carbon prices, multi-scale component behaviors, and external factor correlations, thereby enabling autonomous learning and the prediction of complex non-stationary and nonlinear price dynamics. Empirical evaluations using data from the EU Emission Allowance (EUA) and Hubei Emission Allowance (HBEA) demonstrate the model’s high accuracy in both single-step and multi-step forecasting tasks. For example, the eMAPE of EUA predictions for 1–4 step forecasts are 0.2081%, 0.5660%, 0.8293%, and 1.1063%, respectively—outperforming benchmark models and confirming the proposed method’s effectiveness and robustness. This study provides a novel approach to carbon price forecasting with practical implications for market regulation and decision-making. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

31 pages, 1194 KiB  
Article
UK Carbon Price Dynamics: Long-Memory Effects and AI-Based Forecasting
by Zeno Dinca, Camelia Oprean-Stan and Daniel Balsalobre-Lorente
Fractal Fract. 2025, 9(6), 350; https://doi.org/10.3390/fractalfract9060350 - 27 May 2025
Viewed by 609
Abstract
This study examines the price dynamics of the UK Emission Trading Scheme (UK ETS) by integrating advanced computational methods, including deep learning and statistical modelling, to analyze and simulate carbon market behaviour. By analyzing long-memory effects and price volatility, it assesses whether UK [...] Read more.
This study examines the price dynamics of the UK Emission Trading Scheme (UK ETS) by integrating advanced computational methods, including deep learning and statistical modelling, to analyze and simulate carbon market behaviour. By analyzing long-memory effects and price volatility, it assesses whether UK carbon prices align with theoretical expectations from carbon pricing mechanisms and market efficiency theories. Findings indicate that UK carbon prices exhibit persistent long-memory effects, contradicting the Efficient Market Hypothesis, which assumes price movements are random and fully reflect available information. Furthermore, regulatory interventions exert significant downward pressure on prices, suggesting that policy uncertainty disrupts price equilibrium in cap-and-trade markets. Deep learning models, such as Time-series Generative Adversarial Networks (TGANs) and adjusted fractional Brownian motion, outperform traditional approaches in capturing price dependencies but are prone to overfitting, highlighting trade-offs in AI-based forecasting for carbon markets. These results underscore the need for predictable regulatory frameworks, hybrid pricing mechanisms, and data-driven approaches to enhance market efficiency. By integrating empirical findings with economic theory, this study contributes to the carbon finance literature and provides insights for policymakers on improving the stability and effectiveness of emissions trading systems. Full article
Show Figures

Figure 1

22 pages, 2700 KiB  
Article
A Novel Forecasting Framework for Carbon Emission Trading Price Based on Nonlinear Integration
by Rulin Gao and Jingyun Sun
Mathematics 2025, 13(10), 1624; https://doi.org/10.3390/math13101624 - 15 May 2025
Viewed by 389
Abstract
The complex features of carbon price, such as volatility and nonlinearity, pose a serious challenge to accurately predict it. To this end, this paper proposes a novel forecasting framework for carbon emission trading price based on nonlinear integration, including feature selection, deep learning [...] Read more.
The complex features of carbon price, such as volatility and nonlinearity, pose a serious challenge to accurately predict it. To this end, this paper proposes a novel forecasting framework for carbon emission trading price based on nonlinear integration, including feature selection, deep learning and model combination. Firstly, the historical carbon price series are collected and collated, and the factors affecting the carbon price are analyzed. Secondly, the data are downscaled and the input variables are screened using the max-relevance and min-redundancy. Then, the three integrated learning models are combined with the neural network model through nonlinear integration to construct a hybrid prediction model, and the best performing combined model is obtained. Finally, interval prediction is realized on the basis of point prediction. The experimental results show that the prediction model outperforms other comparative models in terms of prediction accuracy, stability and statistical hypothesis testing, and has good prediction performance. In summary, the hybrid prediction model proposed in this paper can not only provide high-precision carbon market price prediction for government and enterprise decision makers, but also help investors optimize their trading strategies and improve their returns. Full article
(This article belongs to the Special Issue Probability Statistics and Quantitative Finance)
Show Figures

Figure 1

31 pages, 8241 KiB  
Article
Carbon Price Point and Interval-Valued Prediction Based on a Novel Hybrid Model
by Haoyu Chen, Qunli Wu and Chonghao Han
Energies 2025, 18(5), 1054; https://doi.org/10.3390/en18051054 - 21 Feb 2025
Cited by 2 | Viewed by 662
Abstract
Accurate carbon price forecasting enables the steady operation of the carbon trading market and optimal resource allocation while also empowering market participants to understand dynamics and make informed decisions, ultimately supporting sustainable development in the carbon market. While early research primarily focused on [...] Read more.
Accurate carbon price forecasting enables the steady operation of the carbon trading market and optimal resource allocation while also empowering market participants to understand dynamics and make informed decisions, ultimately supporting sustainable development in the carbon market. While early research primarily focused on point forecasting of single-value carbon price, recent studies have shifted towards interval prediction, although there is still a lack of research dedicated to developing models for interval-valued predictions. The importance of interval-valued forecasting lies in its ability to better capture the upper and lower bounds of the carbon price range across different time dimensions, thereby revealing the intrinsic patterns and trends of price fluctuations and assisting in point forecasting to comprehensively capture carbon market volatility. This study offers a novel approach based on a CEEMDAN-CNN-BiLSTM-SENet hybrid model, providing a framework for both point and interval-valued carbon price predictions. The model makes a more comprehensive analysis of the carbon market possible by combining the predictions from these two approaches. In the case study using Hubei market’s data, the mean absolute percentage error for carbon pricing was 0.8125%, with the MAPE for the highest and lowest prices being 1.8898% and 1.7852%, respectively—both outperforming other comparative models. The results demonstrate that this model can measure trends of carbon pricing effectively. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

31 pages, 1759 KiB  
Article
A Decomposition-Integration Framework of Carbon Price Forecasting Based on Econometrics and Machine Learning Methods
by Zhehao Huang, Benhuan Nie, Yuqiao Lan and Changhong Zhang
Mathematics 2025, 13(3), 464; https://doi.org/10.3390/math13030464 - 30 Jan 2025
Cited by 2 | Viewed by 1127
Abstract
Carbon price forecasting and pricing are critical for stabilizing carbon markets, mitigating investment risks, and fostering economic development. This paper presents an advanced decomposition-integration framework which seamlessly integrates econometric models with machine learning techniques to enhance carbon price forecasting. First, the complete ensemble [...] Read more.
Carbon price forecasting and pricing are critical for stabilizing carbon markets, mitigating investment risks, and fostering economic development. This paper presents an advanced decomposition-integration framework which seamlessly integrates econometric models with machine learning techniques to enhance carbon price forecasting. First, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method is employed to decompose carbon price data into distinct modal components, each defined by specific frequency characteristics. Then, Lempel–Ziv complexity and dispersion entropy algorithms are applied to analyze these components, facilitating the identification of their unique frequency attributes. The framework subsequently employs GARCH models for predicting high-frequency components and a gated recurrent unit (GRU) neural network optimized by the grey wolf algorithm for low-frequency components. Finally, the optimized GRU model is utilized to integrate these predictive outcomes nonlinearly, ensuring a comprehensive and precise forecast. Empirical evidence demonstrates that this framework not only accurately captures the diverse characteristics of different data components but also significantly outperforms traditional benchmark models in predictive accuracy. By optimizing the GRU model with the grey wolf optimizer (GWO) algorithm, the framework enhances both prediction stability and adaptability, while the nonlinear integration approach effectively mitigates error accumulation. This innovative framework offers a scientifically rigorous and efficient tool for carbon price forecasting, providing valuable insights for policymakers and market participants in carbon trading. Full article
Show Figures

Figure 1

23 pages, 830 KiB  
Article
A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data
by Dinggao Liu, Liuqing Wang, Shuo Lin and Zhenpeng Tang
Mathematics 2025, 13(3), 455; https://doi.org/10.3390/math13030455 - 29 Jan 2025
Cited by 2 | Viewed by 1011
Abstract
The European Union Emissions Trading System (EU ETS) serves as the cornerstone of European climate policy, providing a critical mechanism for mitigating greenhouse gas emissions. Accurate forecasting of the carbon allowance prices within the market is essential for policymakers, enterprises, and investors. To [...] Read more.
The European Union Emissions Trading System (EU ETS) serves as the cornerstone of European climate policy, providing a critical mechanism for mitigating greenhouse gas emissions. Accurate forecasting of the carbon allowance prices within the market is essential for policymakers, enterprises, and investors. To address the need for interval-valued time series modeling and forecasting in the carbon market, this paper proposes a Transformer-based multi-task learning framework that integrates online news and search engine data information to forecast interval-valued EU carbon allowance futures prices. Empirical evaluations demonstrate that the proposed framework achieves superior predictive accuracy for short-term forecasting and remains robust under high market volatility and economic policy uncertainty compared to single-task learning benchmarks. Furthermore, ablation experiments indicate that incorporating news sentiment intensity and search index effectively enhances the framework’s predictive performance. Interpretability analysis highlights the critical role of specific temporal factors, while the time-varying variable importance analysis further underscores the influence of carbon allowance close prices and key energy market variables and also recognizes the contributions of news sentiment. In summary, this study provides valuable insights for policy management, risk hedging, and portfolio decision-making related to interval-valued EU carbon prices and offers a robust forecasting tool for carbon market prediction. Full article
(This article belongs to the Special Issue AI in Game Theory: Theory and Applications)
Show Figures

Figure 1

18 pages, 2189 KiB  
Article
Prediction of China’s Carbon Price Based on the Genetic Algorithm–Particle Swarm Optimization–Back Propagation Neural Network Model
by Jining Wang, Xuewei Zhao and Lei Wang
Sustainability 2025, 17(1), 59; https://doi.org/10.3390/su17010059 - 25 Dec 2024
Cited by 3 | Viewed by 1097
Abstract
Traditional BP neural networks frequently encounter local optima during carbon price forecasts. This study adopts a hybrid approach, combining a genetic algorithm and particle swarm optimization (GA-PSO) to improve the BP neural network, resulting in the creation of a GA-PSO-BP neural network model. [...] Read more.
Traditional BP neural networks frequently encounter local optima during carbon price forecasts. This study adopts a hybrid approach, combining a genetic algorithm and particle swarm optimization (GA-PSO) to improve the BP neural network, resulting in the creation of a GA-PSO-BP neural network model. Seven critical factors were identified affecting carbon prices, and we utilized data on carbon emission trading prices from China for the analysis. Compared to traditional BP neural network models, including GA-BP neural network models optimized solely with genetic algorithms and PSO-BP neural network models enhanced through particle swarm optimization, the findings reveal that the GA-PSO-BP neural network model demonstrates superior performance in terms of precision and robustness. Furthermore, it demonstrates advancements across various error evaluation metrics, thus delivering more accurate forecasts. Offering precise carbon price predictions, the enhanced GA-PSO-BP neural network model proves to be a valuable tool for analyzing the market and making decisions in the carbon pricing sector. Full article
Show Figures

Figure 1

16 pages, 7324 KiB  
Article
A Sustainable Model for Forecasting Carbon Emission Trading Prices
by Jiaqing Chen, Dongpeng Peng, Zhiwei Liu, Lingzhi Wu and Ming Jiang
Sustainability 2024, 16(19), 8324; https://doi.org/10.3390/su16198324 - 25 Sep 2024
Cited by 4 | Viewed by 2096
Abstract
Carbon trading has garnered considerable attention as a pivotal policy instrument for advancing carbon peaking and carbon neutrality, which are essential components of sustainable development. The capacity to precisely anticipate the cost of carbon trading has significant implications for the optimal deployment of [...] Read more.
Carbon trading has garnered considerable attention as a pivotal policy instrument for advancing carbon peaking and carbon neutrality, which are essential components of sustainable development. The capacity to precisely anticipate the cost of carbon trading has significant implications for the optimal deployment of market mechanisms, the economic advancement of technological innovations in corporate emissions reduction, and the facilitation of international energy policy adjustments. To this end, this paper proposes a novel and sustainable trading price prediction tool that employs a four-step process: decomposition, reconstruction, prediction, and integration. This innovative approach first utilizes the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), then reconstructs the decomposition set using multi-scale entropy (MSE), and finally uses the Long Short-Term Memory neural network model (LSTM) enhanced by the Grey Wolf Optimizer (GWO) to predict the carbon emission trading price. The experimental results demonstrate that the tool achieves high accuracy for both the EU carbon price series and the carbon price series of China’s seven major carbon trading markets, with accuracy rates of 99.10% and 99.60% in Hubei and the EU carbon trading markets, respectively. This represents an improvement of approximately 3.1% over the ICEEMDAN-LSTM model and 0.91% over the ICEEMDAN-MSE-LSTM model, thereby contributing to more sustainable and efficient carbon trading practices. Full article
Show Figures

Figure 1

18 pages, 1210 KiB  
Article
Application of Dynamic Weight Mixture Model Based on Dual Sliding Windows in Carbon Price Forecasting
by Rujie Liu, Wei He, Hongwei Dong, Tao Han, Yuting Yang, Hongwei Yu and Zhu Li
Energies 2024, 17(15), 3662; https://doi.org/10.3390/en17153662 - 25 Jul 2024
Cited by 2 | Viewed by 1051
Abstract
As global climate change intensifies, nations around the world are implementing policies aimed at reducing emissions, with carbon-trading mechanisms emerging as a key market-based tool. China has launched carbon-trading markets in several cities, achieving significant trading volumes. Carbon-trading mechanisms encompass cap-and-trade markets and [...] Read more.
As global climate change intensifies, nations around the world are implementing policies aimed at reducing emissions, with carbon-trading mechanisms emerging as a key market-based tool. China has launched carbon-trading markets in several cities, achieving significant trading volumes. Carbon-trading mechanisms encompass cap-and-trade markets and voluntary markets, influenced by various factors, including policy changes, economic conditions, energy prices, and climate fluctuations. The complexity of these factors, coupled with the nonlinear and non-stationary nature of carbon prices, makes forecasting a substantial challenge. This paper proposes a dynamic weight hybrid forecasting model based on a dual sliding window approach, effectively integrating multiple forecasting models such as LSTM, Random Forests, and LASSO. This model facilitates a thorough analysis of the influences of policy, market dynamics, technological advancements, and climatic conditions on carbon pricing. It serves as a potent tool for predicting carbon market price fluctuations and offers valuable decision support to stakeholders in the carbon market, ultimately aiding in the global efforts towards emission reduction and achieving sustainable development goals. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

26 pages, 7408 KiB  
Article
A Hybrid Model for Carbon Price Forecasting Based on Improved Feature Extraction and Non-Linear Integration
by Yingjie Zhu, Yongfa Chen, Qiuling Hua, Jie Wang, Yinghui Guo, Zhijuan Li, Jiageng Ma and Qi Wei
Mathematics 2024, 12(10), 1428; https://doi.org/10.3390/math12101428 - 7 May 2024
Cited by 4 | Viewed by 1999
Abstract
Accurately predicting the price of carbon is an effective way of ensuring the stability of the carbon trading market and reducing carbon emissions. Aiming at the non-smooth and non-linear characteristics of carbon price, this paper proposes a novel hybrid prediction model based on [...] Read more.
Accurately predicting the price of carbon is an effective way of ensuring the stability of the carbon trading market and reducing carbon emissions. Aiming at the non-smooth and non-linear characteristics of carbon price, this paper proposes a novel hybrid prediction model based on improved feature extraction and non-linear integration, which is built on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), fuzzy entropy (FuzzyEn), improved random forest using particle swarm optimisation (PSORF), extreme learning machine (ELM), long short-term memory (LSTM), non-linear integration based on multiple linear regression (MLR) and random forest (MLRRF), and error correction with the autoregressive integrated moving average model (ARIMA), named CEEMDAN-FuzzyEn-PSORF-ELM-LSTM-MLRRF-ARIMA. Firstly, CEEMDAN is combined with FuzzyEn in the feature selection process to improve extraction efficiency and reliability. Secondly, at the critical prediction stage, PSORF, ELM, and LSTM are selected to predict high, medium, and low complexity sequences, respectively. Thirdly, the reconstructed sequences are assembled by applying MLRRF, which can effectively improve the prediction accuracy and generalisation ability. Finally, error correction is conducted using ARIMA to obtain the final forecasting results, and the Diebold–Mariano test (DM test) is introduced for a comprehensive evaluation of the models. With respect to carbon prices in the pilot regions of Shenzhen and Hubei, the results indicate that the proposed model has higher prediction accuracy and robustness. The main contributions of this paper are the improved feature extraction and the innovative combination of multiple linear regression and random forests into a non-linear integrated framework for carbon price forecasting. However, further optimisation is still a work in progress. Full article
Show Figures

Figure 1

12 pages, 1483 KiB  
Article
How Does Carbon Trading Impact China’s Forest Carbon Sequestration Potential and Carbon Leakage?
by Dan Qiao, Zhao Zhang and Hongxun Li
Forests 2024, 15(3), 497; https://doi.org/10.3390/f15030497 - 7 Mar 2024
Cited by 2 | Viewed by 2321
Abstract
This paper presents an in-depth analysis of the impact of forest carbon sink trading in China, examining its effects from 2018 to 2030 under various carbon pricing scenarios. Using the Global Timber Market Model (GFPM) along with the IPCC Carbon Sink Model, we [...] Read more.
This paper presents an in-depth analysis of the impact of forest carbon sink trading in China, examining its effects from 2018 to 2030 under various carbon pricing scenarios. Using the Global Timber Market Model (GFPM) along with the IPCC Carbon Sink Model, we simulate the potential shifts in China’s forest resources and the global timber market. The study finds that forest carbon trading markedly boosts China’s forest stock and carbon sequestration, aligning with its dual carbon objectives. China’s implementation of forest carbon trading is likely to result in a degree of carbon leakage on a global scale. During the forecast period, our study reveals that the carbon leakage rates under three different forest carbon trading price scenarios, which at estimated at 81.5% (USD 9.8/ton), 64.0% (USD 25/ton), and 57.8% (USD 54/ton), respectively. Notably, the leakage rate diminishes as the forest carbon sink price increases. Furthermore, analysis also suggests that regional variations in the average carbon sequestration capacity of forests, alongside the structure of China’s timber imports, emerge as significant factors influencing the extent of carbon leakage. Full article
Show Figures

Figure 1

23 pages, 12045 KiB  
Article
Fluctuations and Forecasting of Carbon Price Based on A Hybrid Ensemble Learning GARCH-LSTM-Based Approach: A Case of Five Carbon Trading Markets in China
by Sha Liu, Yiting Zhang, Junping Wang and Danlei Feng
Sustainability 2024, 16(4), 1588; https://doi.org/10.3390/su16041588 - 14 Feb 2024
Cited by 6 | Viewed by 2442
Abstract
Carbon trading risk management and policy making require accurate forecasting of carbon trading prices. Based on the sample of China’s carbon emission trading pilot market, this paper firstly uses the Augmented Dickey–Fuller test and Autoregressive conditional heteroscedasticity model to test the stationarity and [...] Read more.
Carbon trading risk management and policy making require accurate forecasting of carbon trading prices. Based on the sample of China’s carbon emission trading pilot market, this paper firstly uses the Augmented Dickey–Fuller test and Autoregressive conditional heteroscedasticity model to test the stationarity and autocorrelation of carbon trading price returns, uses the Generalized Autoregressive Conditional Heteroscedasticity family model to analyze the persistence, risk and asymmetry of carbon trading price return fluctuations, and then proposes a hybrid prediction model neural network (generalized autoregressive conditional heteroscedasticity–long short-term memory network) due to the shortcomings of GARCH models in carbon price fluctuation analysis and prediction. The model is used to predict the carbon trading price. The results show that the carbon trading pilots have different degrees of volatility aggregation characteristics and the volatility persistence is long, among which only the Shanghai and Beijing carbon trading markets have risk premiums. The other pilot returns have no correlation with risks, and the fluctuations of carbon trading prices and returns are asymmetrical. The prediction results of different models show that the root mean square error (RMSE) of Hubei, Shenzhen and Shanghai carbon trading pilots based on the GARCH-LSTM model is significantly lower than that of the single GARCH model, and the RMSE values are reduced by 0.0006, 0.2993 and 0.0151, respectively. The RMSE in the three pilot markets improved by 0.0007, 0.3011 and 0.0157, respectively, compared to the standalone LSTM model. At the same time, compared with the single model, the GARCH-LSTM model significantly increased the R^2 value in Hubei (0.2000), Shenzhen (0.7607), Shanghai (0.0542) and Beijing (0.0595). Therefore, compared with other models, the GARCH-LSTM model can significantly improve the prediction accuracy of carbon price and provide a new idea for scientifically predicting the fluctuation of financial time series such as carbon price. Full article
Show Figures

Figure 1

Back to TopTop